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Outline of the next two lectures

MPC: Basic setting and key ideas

Main design choices:
« Persistent feasibility

Further reading:

« F Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid
Systems, 2017.

« J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory,

Computation, and Design, 2017.
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Review:

MPC solves finite-time OCPs
In a receding horizon fashion
(1) For computational reasons
(2) To Incorporate latest
iInformations

N—-1
min Z l <xf+k|t’ Uk >
Upigs- - s Uy N—1|} k=0

s.t .xH_k_'_llt = Axt+k|t+ But+k|t’k = O,...,N— 1
xH_k“EX, k=O,,N—1
ut+k|t€ U, k=0,,N—1

Xt+N|t E@

X, = x(7)

How to approach (1)?
Define the terminal constraint

set Xf to be control invariant
(as large as possible)

4

Main issues
(1) Ensure persistent feasibility
(2) Stability
due U
X

ﬁthematically, we focused on LTI systems

Goal: design MPC controller so that feasibility for all
future times Is guaranteed
Approach: leverage tools from invariant set theory

Uy,. .., _ _
Cx <d Nl k=0

Xy € Xy

Feasibility theorem: X = x(1)

If set Xf IS a control invariant set for system

4
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x(t+ 1) =Ax(®) + Bu(t), x(t) e X, u(lt) €U,

@ the MPC law is persistently feasible

N—-1
JEe(e) = min I (xy) + D 1 (. )

st x,,=Ax,+Bu, k=0,.,N-+
XkEX, k=0,,N—1
Mke U, k=0,,N—1

~

>0

/

AA203 | Lecture 12

4



Outline of the next two lectures

« Stability

Implementation aspects of MPC

Further reading:

« F Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid
Systems, 2017.

« J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory,

Computation, and Design, 2017.
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Stability of MPC

« Persistent feasibility does not guarantee that the closed-loop trajectories converge towards the desired

equilibrium point

* One of the most popular approaches to guarantee persistent feasibility and stability of the MPC law makes use of

a control invariant terminal set X, for feasibility, and of a terminal cost /;( - ) for stability

* o prove stability, we leverage the tool of Lyapunov stability theory

Theorem (Lyapunov's direct method)

Consider & = f(x) where f is locally Lipschitz and f(0) = 0.
Suppose there exists V € C'(R",R) such that
o V is positive-definite, i.e., V(x) > 0 and
V(r) =0 < z =0,
o V is negative-definite, i.e., VV (z)T f(z) < 0 and
VV(z)"f(z) =0 < z=0.
Then x = 0 is locally asymptotically stable. If in addition

If the “energy” V(x) is
decreasing everywhere along

. o th
o V is radially unbounded, i.e., V(x) — oo as ||z|| — oo, trajectories, then V' (z) — 0
and thus x — 0.

then x = 0 is globally asymptotically stable.
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| vapunov Stability Theorem (in discrete time)

Lyapunov Theorem:
» Consider the equilibrium point x = 0 for the autonomous system {x;,; = f(x) } (with f(0) = 0).

« Let  C R" be a closed, bounded, positively invariant set containing the origin.

» Let V: R" - R be a function, continuous at the origin, such that

V(0) =0and V(x) >0 Vx € Q\{0}
V(xe1) = V() <0 Vx, € Q\{0}

— then x = 0 is asymptotically stable in €2

. The idea is to show that with appropriate choices of Xf and [( -), ]6’< is a Lyapunov function for the closed-loop

system
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MPC Stability Theorem I300) = min 1y (5) + 3,1 (s

where [(x) = x'"Px, Il(x,u)=x"Ox+ u'Ru

MPC Stability Theorem (for quadratic cost):
Assume:

A0: 0 =0">0, R=R'>0, P>0

A1: Sets X, Xf, and U contain the origin in their interior and are closed
A2: Xf C X is control invariant and bounded

A3: min (=1p(x) + I(x, u) + [;(Ax + Bu)) < 0,Vx € X,
uelU,Ax+Bu EXf

Then, the origin of the closed-loop system is asymptotically stable with domain of attraction X,
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N-1
JE(®) = min x7Pxy+ Y x]Ox+ul Ru
k=0

Ugs- - sUpn_1

MPC Stability Theorem St sy = Ax By k=0..N~1

xkEX, k=0,,N—1
Mke U, k=0,,N—1
Xy € X;

Proof: Xy = x(1)
1. Note that, by assumption A2, persistent feasibility is guaranteed for any P, O, R

2. We want to show that J(;k is a Lyapunov function for the closed-loop system x(¢ + 1) = f(x(¢)), with respect to

the equilibrium f;(0) = 0
(the origin is indeed an equilibrium as 0 € X, 0 € U, and the cost is positive for any non-zero control sequence)

3. X, is bounded and closed

(follows from assumption on X]a

4. ]6‘<(O) = 0 (value is nonnegative by construction, and O is achievable) \/

5. J¥(x) > O forallx € X,\{0} vV
6. Next, we check for the decaying property (i.e., J(;k(x(k + 1)) — J(;k(x(k)) < 0)

fu(x(@®) = x .y = Ax, + Ba(x,), where z() = MPC Optimization Problem
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MPC Stabllity Theorem

Proof:

/. Since the setup is time—invariant we can study the decay property betweent = Qand t = 1

. Letx(0) € X, let U[O] = (gO], 1[0],. . ]E,O_]l be the optimal control sequence, and let
x(O) x[o] e ]E,O] be the corresponding (predicted) trajectory

. After applying u[O], one obtains x(l) = Ax(0) + Bu[o]

. Consider the sequence of controls

trajectory is [x(1), x1%0 ..., x9] Ax[O] + Bv

9 2 9 *9 N p

1101 7, 10]
1 ’ 2 _"

. ]E,O_]l, v|, where v € U, and the corresponding state

8. Since xY € Xf (by terminal constraint), and since Xfis control invariant,
37 € U, such that Ax)! + By € X,

N

9. With such a choice of v, the sequence

timet =1

5/10/2023

1101 4,101

Uyt

s ]£,O_]1, \7 s feasible for the MPC optimization problem at
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A3: min (=1p(x) + I(x, u) + [;(Ax + Bu)) < 0,Vx € X;

MPC S‘tablhty TheOrem ueU,Ax+BueX,

Proof:
10.Since this sequence is not necessarily optimal

N—-1
(D) < b (A4 B )+ 71 (001 (0 7)
k=1

+l (XJEIO]>_ZT (XJEIO]>+Z <x(0), M(gO]>—l (x(O), u(501>

11. Equivalently,
Jrx(l) < Iy (Axﬁ,o] + BV>+J5’<(X(O))+Z (xjg,o], V) — 7 (xjg,o]>—l <x(0), u(g()]>
. Since x]Ef)] = Xf, by assumption A3, we can select v such that
(1) < J(x(0)) = 1 x(0), 4l
. Moreover, since [ <x(0), u(EO]> > () for all x(0) € X, \{0}, we can write

JE(1) = JEx0) < 0 V' V'V
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MPC Stabllity Theorem

Note:

* The last step in the proof is to prove continuity; details are omitted and can e found in Borrelli, Bemporad,
Morari, 2017

. A2 (i.e., Xf C X is control invariant and bounded) is used to guarantee persistent feasibility; this assumption can

be replaced with an assumption on the horizon N

5/10/2023 AA203 | Lecture 12
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How to choose Xyand /7

In this and the previous lecture, we derived two general criterial for choosing the terminal constraint and cost of our short-
term problem. Namely:

1) Xf control invariant (from persistent feasibility theorem) 2) L satisfies A3

min (—Llp(x) + l(x,u) + [;(Ax + Bu)) < 0,Vx € Xy
uelU ,Ax+Bu EXf

(from stability theorem)

Let us consider two cases where we describe two specific choices of Xf and [
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How to choose Xyand 47, P? (Case 1) |

J*(x(t))— min l xN +Zl xk,uk

_ Ups---sUN_1 =0
Consider st x, =Ax+Buy, k=0,..
1. The system 2. The RHC control law weX, k=0,..,N-1

eU, k=0,.,N—1
x(t+ 1) = Ax(¢) + Bu(r), x(?) € R", u(H) € R™ Ly,
Xy € X;

s.t. x()eX, u@el, >0 Xy = x(7)

N —

Us(x(1)) = { U, ooy U 1} a(x(1)) := u!

3. Cost function J, (x(0)) = xy Pxy + Z TOx, + u Ru,

Set:
» Xyas the maximally positive invariant set for the closed-loop system x(t+1) = (A + BF OO) x(7)

» (With constraints x(¢) € X, and F_x(¢) € U)
- Where F_ is the optimal gain for the infinite-horizon LQR controller
- P as the solution P to the discrete-time Riccati equation, i.e., the value function via LQR

5/10/2023 AA203 | Lecture 12
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How to choose Xf and 1z, P? (Case 2)

Consider the same setting as before, where A is asymptotically stable

Set:
» X as the maximally positive invariant set for the closed-loop system x(t+ 1) = Ax(¥)

» (With constraints x(7) € X)
» Xyis a control invariant set for the system x(z + 1) = Ax(?) + Bu(?), as u = 0 is a feasible control

. As for stability, u = 0 is feasible and Ax & Xf if x € Xf, thus assumption A3 becomes
—x"Px +xT0Ox + xTATPAx <0, forall x € X

which, due to the fact that A is asymptotically stable, it is satisfied as an equality if we choose P as a solution of the
corresponding Lyapunov equation

AP>0|-P+Q+A'PA=0

5/10/2023 AA203 | Lecture 12
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‘ ntu |'t|Or] Note: both cases as presented are just (suboptimal) choices!

“Smart” via OCP

problem and design a strategy to solve (in a

» We care about a (potentially) infinite-horizon ‘ ] 7(x) = LQR; 7x(x)=0

receding horizon fashion) OCP for the first N steps

0 N
» We discussed how X and [} are key design
choices
o Xf as “a set of states where we are safe”
» [to “guide performance by approximating the 1 N+1

long-horizon problem”™ — cost-to-go!

* |n other words, use optimization over the first N
steps to act “smart”

* Approximate the long-horizon cost under some
policy e.g., LQR ®

--------------
————————
-
“
-
'f
L 4
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luning and practical use

* At present there is no other technique than MPC to design controllers for general large linear multivariable
systems with input and output constraints with a stability guarantee

» Design approach (for squared 2-norm cost):
» Choose horizon length N and the control invariant target set Xf

« Control invariant target set Xf should be as large as possible for performance
» Choose the parameters Q and R freely to affect the control performance

* Adjust P as per the stability theorem

» Useful toolbox (MATLAB): https://www.mpt3.org/

 |n practice, sometimes choosing a good terminal cost is enough (i.e., don’t need to enforce a terminal control
invariant condition), though you may be sacrificing guarantees
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https://www.mpt3.org/

Explicit MPC

* |n some cases, the MPC law can be pre-computed — no need for online optimization

* |mportant case: constrained LQR

JE(x()) = min xyPxy+ Z TOx, + u Ru,

TSRT
S.t xk+1=Axk+Buk, k=O,...,N—1
xeX, k=0,.,N-1
u,eU, k=0,.,N—1
Xy € X;

Xo = x(1)
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Explicit MPC

* The solution to the constrained LQR problem is a control which is a continuous piecewise affine function on

polyhedral partition of the state space X, that is u]f = 1 (x;) where

m(x)=Fx+glitHx<K,j=1,..,N]

* Thus, online, one has to locate in which cell of the polyhedral partition the state x lies, and then one obtains the

optimal control via a look-up table query
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MPC for reference tracking

e Usual cost
N—1

T T
Z x, Ox; + u, Ruy,
k=0
does not work, as in steady state control does not need to be zero
» Oou-formulation: reason in terms of control changes

I/lk — uk—l —+ 5l/tk
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MPC for reference tracking

 The MPC problem is readily modified to
J¥(x(f)) = min Z | 3 — i H + || 8wy H

* The control input is then

5/10/2023

OUy, - - - ,OUN_1

subjectto  Xpyy = Axk + Bu,, k=0,..

vo=Cx, k=0,.,N—1
xeX, uyelU, k=0,.,N-1
Xy € X;

X, =u_+ou, k=0,.,N—1
Xo =x(8), u_y=u-1)

u(t) = 5u6‘< + u(t— 1)
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Next time

 Robust MPC
» Adaptive MPC
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