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Roadmap



AA203 | Lecture 125/10/2023

Outline of the next two lectures

3

MPC: Basic setting and key ideas

Main design choices: 

Further reading: 
• F. Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid 

Systems, 2017. 
• J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory, 

Computation, and Design, 2017.

• Persistent feasibility
• Stability 

Implementation aspects of MPC
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Review:

4

MPC solves finite-time OCPs 
in a receding horizon fashion
(1) For computational reasons
(2) To incorporate latest 
informations 

Main issues
(1) Ensure persistent feasibility
(2) Stability

min
ut∣t,…,ut+N−1∣t

lT (xt+N∣t) +
N−1

∑
k=0

l (xt+k∣t, ut+k∣t)
s.t xt+k+1∣t = Axt+k∣t + But+k∣t, k = 0,…, N − 1

xt+k∣t ∈ X, k = 0,…, N − 1
ut+k∣t ∈ U, k = 0,…, N − 1
xt+N∣t ∈ Xf

xt|t = x(t)

Xf

∃u ∈ U
How to approach (1)?
Define the terminal constraint 
set  to be control invariant 
(as large as possible)

Xf

Feasibility theorem:  
If set  is a control invariant set for system 

, then the MPC law is persistently feasible 

Xf

x(t + 1) = Ax(t) + Bu(t), x(t) ∈ X, u(t) ∈ U, t ≥ 0

Mathematically, we focused on LTI systems
Goal: design MPC controller so that feasibility for all 
future times is guaranteed 

J*0 (x(t)) = min
u0,…,uN−1

lT (xN) +
N−1

∑
k=0

l (xk, uk)
s.t xk+1 = Axk + Buk, k = 0,…, N − 1

xk ∈ X, k = 0,…, N − 1
uk ∈ U, k = 0,…, N − 1
xN ∈ Xf

x0 = x(t)

Approach: leverage tools from invariant set theory 

Cx ≤ d
c ⊤
i x ≤ d

i
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Stability of MPC
• Persistent feasibility does not guarantee that the closed-loop trajectories converge towards the desired 

equilibrium point  

• One of the most popular approaches to guarantee persistent feasibility and stability of the MPC law makes use of 
a control invariant terminal set  for feasibility, and of a terminal cost  for stability 

• To prove stability, we leverage the tool of Lyapunov stability theory

Xf lT( ⋅ )
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Lyapunov Stability Theorem (in discrete time)

• Consider the equilibrium point  for the autonomous system  (with ).  
• Let  be a closed, bounded, positively invariant set containing the origin.  
• Let  be a function, continuous at the origin, such that 

 

 then  is asymptotically stable in  

• The idea is to show that with appropriate choices of  and ,  is a Lyapunov function for the closed-loop 

system

x = 0 {xk+1 = f(xk)} f(0) = 0
Ω ⊂ Rn

V : ℝn → ℝ

V(0) = 0 and V(x) > 0 ∀x ∈ Ω\{0}
V (xk+1) − V (xk) < 0 ∀xk ∈ Ω\{0}

→ x = 0 Ω

Xf lT( ⋅ ) J*0

Lyapunov Theorem:
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MPC Stability Theorem

Assume: 
A0:  
A1: Sets  , and  contain the origin in their interior and are closed 

A2:  is control invariant and bounded 

A3:  

Then, the origin of the closed-loop system is asymptotically stable with domain of attraction 

Q = QT ≻ 0, R = RT ≻ 0, P ≻ 0
X, Xf U

Xf ⊆ X

min
u∈U,Ax+Bu∈Xf

(−lT(x) + l(x, u) + lT(Ax + Bu)) ≤ 0,∀x ∈ Xf

X0

MPC Stability Theorem (for quadratic cost):

where  lT(x) = x⊤Px, l(x, u) = x⊤Qx + u⊤Ru

J*0 (x(t)) = min
u0,…,uN−1

lT (xN) +
N−1

∑
k=0

l (xk, uk)
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Proof:  
1. Note that, by assumption A2, persistent feasibility is guaranteed for any  
2. We want to show that  is a Lyapunov function for the closed-loop system , with respect to 

the equilibrium   
(the origin is indeed an equilibrium as , and the cost is positive for any non-zero control sequence) 

3.  is bounded and closed  

(follows from assumption on ) 

4.  (value is nonnegative by construction, and 0 is achievable) 

5.  for all  

6. Next, we check for the decaying property (i.e.,  )

P, Q, R
J*0 x(t + 1) = fcl(x(t))

fcl(0) = 0
0 ∈ X, 0 ∈ U

X0

Xf

J*0 (0) = 0

J*0 (x) > 0 x ∈ X0\{0}

J*0 (x(k + 1)) − J*0 (x(k)) < 0

MPC Stability Theorem
J*0 (x(t)) = min

u0,…,uN−1

x⊤
NPxN +

N−1

∑
k=0

x⊤
k Qxk + u⊤

k Ruk

s.t xk+1 = Axk + Buk, k = 0,…, N − 1
xk ∈ X, k = 0,…, N − 1
uk ∈ U, k = 0,…, N − 1
xN ∈ Xf

x0 = x(t)

fcl(x(t)) → xk+1 = Axk + Bπ(xk), where π() = MPC Optimization Problem
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Proof:  
7. Since the setup is time-invariant, we can study the decay property between  and   

• Let , let  be the optimal control sequence, and let 

 be the corresponding (predicted) trajectory 

• After applying , one obtains  

• Consider the sequence of controls , where  , and the corresponding state 

trajectory is  

8. Since  (by terminal constraint), and since  is control invariant,  
 such that  

9. With such a choice of , the sequence  is feasible for the MPC optimization problem at 

time 

t = 0 t = 1
x(0) ∈ X0 U[0]

0 = [u[0]
0 , u[0]

1 , …, u[0]
N−1]

[x(0), x[0]
1 , …, x[0]

N ]
u[0]

0 x(1) = Ax(0) + Bu[0]
0

[u[0]
1 , u[0]

2 , …, u[0]
N−1, v] v ∈ U

[x(1), x[0]
2 , …, x[0]

N , Ax[0]
N + Bv]

x[0]
N ∈ Xf Xf

∃v̄ ∈ U, Ax[0]
N + Bv̄ ∈ Xf

v̄ [u[0]
1 , u[0]

2 , …, u[0]
N−1, v̄]

t = 1

MPC Stability Theorem
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Proof:  
10.Since this sequence is not necessarily optimal 

 

11. Equivalently,  
 

• Since , by assumption A3, we can select  such that 

 

• Moreover, since  for all , we can write 

J*0 (x(1)) ≤ lT (Ax[0]
N + Bv)+

N−1

∑
k=1

l (x[0]
k , u[0]

k )+l (x[0]
N , v)

+lT (x[0]
N )−lT (x[0]

N )+l (x(0), u[0]
0 )−l (x(0), u[0]

0 )

J*0 (x(1)) ≤ lT (Ax[0]
N + Bv)+J*0 (x(0))+l (x[0]

N , v) − lT (x[0]
N )−l (x(0), u[0]

0 )
x[0]

N ∈ Xf v̄

J*0 (x(1)) ≤ J*0 (x(0)) − l (x(0), u[0]
0 )

l (x(0), u[0]
0 ) > 0 x(0) ∈ X0\{0}

J*0 (x(1)) − J*0 (x(0)) < 0

MPC Stability Theorem
A3: min

u∈U,Ax+Bu∈Xf

(−lT(x) + l(x, u) + lT(Ax + Bu)) ≤ 0,∀x ∈ Xf
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MPC Stability Theorem
Note: 
• The last step in the proof is to prove continuity; details are omitted and can be found in Borrelli, Bemporad, 

Morari, 2017  
• A2 (i.e.,  is control invariant and bounded) is used to guarantee persistent feasibility; this assumption can 

be replaced with an assumption on the horizon 
Xf ⊆ X

N
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How to choose  and ?Xf lT
In this and the previous lecture, we derived two general criterial for choosing the terminal constraint and cost of our short-
term problem. Namely:

1)  control invariant (from persistent feasibility theorem) Xf 2)  satisfies A3 

(from stability theorem) 

lT
min

u∈U,Ax+Bu∈Xf

(−lT(x) + l(x, u) + lT(Ax + Bu)) ≤ 0,∀x ∈ Xf

Let us consider two cases where we describe two specific choices of  and  Xf lT
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Consider  

1. The system

x(t + 1) = Ax(t) + Bu(t), x(t) ∈ ℝn, u(t) ∈ ℝm

s.t. x(t) ∈ X, u(t) ∈ U, t ≥ 0

J*0 (x(t)) = min
u0,…,uN−1

lT (xN) +
N−1

∑
k=0

l (xk, uk)
s.t xk+1 = Axk + Buk, k = 0,…, N − 1

xk ∈ X, k = 0,…, N − 1
uk ∈ U, k = 0,…, N − 1
xN ∈ Xf

x0 = x(t)

2. The RHC control law

U*0 (x(t)) = {u*0 , …, u*N−1} π(x(t)) := u*0
3. Cost function J0 (x(0)) = x⊤

NPxN +
N−1

∑
k=0

x⊤
k Qxk + u⊤

k Ruk

Set:  
•  as the maximally positive invariant set for the closed-loop system  

• (With constraints , and ) 
• Where  is the optimal gain for the infinite-horizon LQR controller 

•  as the solution  to the discrete-time Riccati equation, i.e., the value function via LQR

Xf x(t + 1) = (A + BF∞) x(t)
x(t) ∈ X F∞x(t) ∈ U

F∞
P P∞

How to choose  and , ? (Case 1)Xf lT P
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Consider the same setting as before, where  is asymptotically stableA

Set:  
•  as the maximally positive invariant set for the closed-loop system  

• (With constraints ) 
•  is a control invariant set for the system , as  is a feasible control 
• As for stability,  is feasible and  if , thus assumption A3 becomes 

, 

which, due to the fact that  is asymptotically stable, it is satisfied as an equality if we choose  as a solution of the 
corresponding Lyapunov equation 

Xf x(t + 1) = Ax(t)
x(t) ∈ X

Xf x(t + 1) = Ax(t) + Bu(t) u = 0
u = 0 Ax ∈ Xf x ∈ Xf

−xTPx + xTQx + xT ATPAx ≤ 0, for all x ∈ Xf

A P

∃P ≻ 0 ∣ − P + Q + ATPA = 0

How to choose  and , ? (Case 2)Xf lT P
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Intuition

][
Note: both cases as presented are just (suboptimal) choices!

0 N t

t][
1 N+1

• We care about a (potentially) infinite-horizon 
problem and design a strategy to solve (in a 
receding horizon fashion) OCP for the first N steps 

• We discussed how  and  are key design 
choices 

•  as “a set of states where we are safe” 
•  to “guide performance by approximating the 

long-horizon problem”  cost-to-go! 

• In other words, use optimization over the first N 
steps to act “smart” 

• Approximate the long-horizon cost under some 
policy e.g., LQR 

Xf lT

Xf
lT

→

Xf

x0

π(x) = LQR; π(x) = 0
“Smart” via OCP
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Tuning and practical use
• At present there is no other technique than MPC to design controllers for general large linear multivariable 

systems with input and output constraints with a stability guarantee  

• Design approach (for squared 2-norm cost):  
• Choose horizon length 𝑁 and the control invariant target set 𝑋𝑓  
• Control invariant target set 𝑋𝑓 should be as large as possible for performance  
• Choose the parameters 𝑄 and 𝑅 freely to affect the control performance 
• Adjust 𝑃 as per the stability theorem 
• Useful toolbox (MATLAB): https://www.mpt3.org/  

• In practice, sometimes choosing a good terminal cost is enough (i.e., don’t need to enforce a terminal control 
invariant condition), though you may be sacrificing guarantees

https://www.mpt3.org/
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Explicit MPC
• In some cases, the MPC law can be pre-computed → no need for online optimization 

• Important case: constrained LQR

J*0 (x(t)) = min
u0,…,uN−1

x⊤
NPxN +

N−1

∑
k=0

x⊤
k Qxk + u⊤

k Ruk

s.t xk+1 = Axk + Buk, k = 0,…, N − 1
xk ∈ X, k = 0,…, N − 1
uk ∈ U, k = 0,…, N − 1
xN ∈ Xf

x0 = x(t)
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Explicit MPC
• The solution to the constrained LQR problem is a control which is a continuous piecewise affine function on 

polyhedral partition of the state space , that is  where 

 

• Thus, online, one has to locate in which cell of the polyhedral partition the state  lies, and then one obtains the 
optimal control via a look-up table query

X u*k = πk(xk)

πk(x) = Fj
kx + gj

k if H
j
kx ≤ Kj

k, j = 1,…, Nr
k

x
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MPC for reference tracking
• Usual cost  

 

does not work, as in steady state control does not need to be zero 
• -formulation: reason in terms of control changes 

N−1

∑
k=0

xT
k Qxk + uT

k Ruk

δu
uk = uk−1 + δuk
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MPC for reference tracking
• The MPC problem is readily modified to  

 

• The control input is then 

J*0 (x(t)) = min
δu0,…,δuN−1

∑
k

yk − rk
2
Q

+ δuk
2

R

 subject to  xk+1 = Axk + Buk, k = 0,…, N − 1
yk = Cxk, k = 0,…, N − 1
xk ∈ X, uk ∈ U, k = 0,…, N − 1
xN ∈ Xf

xk = uk−1 + δuk, k = 0,…, N − 1
x0 = x(t), u−1 = u(t − 1)

u(t) = δu*0 + u(t − 1)
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Next time

• Robust MPC 
• Adaptive MPC


