
AA203 Optimal and Learning-based Control
Lecture 10

Introduction to Reinforcement Learning

Autonomous Systems Laboratory
Daniele Gammelli

AA203 | Lecture 105/3/2023 2

Roadmap

AA203 | Lecture 105/3/2023

Outline

3

What is Reinforcement Learning? (and the RL setting)

From exact methods to model-free control
• Monte Carlo Learning
• Temporal-Difference (TD) Learning

A taxonomy of RL algorithms & important trade-offs

What is reinforcement learning?
Fundamentally:

• A mathematical formalism for learning-based decision making

• An approach for learning decision making and control from experience

take action

observe state
observe reward

ut

rt
xt rt+1

xt+1

τ = (x0, u0, …, xN, uN)

Success is measured by a scalar reward

Why reinforcement learning?
• Only need to specify a reward function and the agent learn everything else!

Silver et al. 2016 Levine*, Finn* et al. 2016
Mnih et al. 2014

ChatGPT “Alignment”- OpenAI

Deep Q Network

Characteristics of reinforcement learning?

How does RL differ from other machine learning paradigms?

• No supervision, only a reward signal

• Feedback can be delayed, not instantaneous

• Data is not i.i.d., earlier decisions affect later interactions (tension between exploration and exploitation)

AA203 | Lecture 105/3/2023 7

Markov Decision Problem

State:

Action:

Transition function / Dynamics: T (xt ∣ xt−1, ut−1) = p (xt ∣ xt−1, ut−1)
u ∈ 𝒰
x ∈ 𝒳

Reward function: rt = R(xt, ut) : 𝒳 × 𝒰 → ℝ
Discount factor: γ ∈ (0,1)

Typically represented as a tuple
ℳ = (𝒳, 𝒰, T, R, γ)

Goal: choose a policy that maximizes cumulative (discounted) reward

π* = arg max
π

𝔼p ∑
t≥0

γtR (xt, π (xt))

AA203 | Lecture 105/3/2023 8

Value functions

Optimal state-value function

Vπ(x) = 𝔼p ∑
t≥0

γtR (xt, π (xt))

Qπ(x, u) = 𝔼p ∑
t≥0

γtR (xt, ut)

V*(x) = max
π

Vπ(x)

Q*(x, u) = max
π

Qπ(x, u)Optimal action-state value function

State-value function: “the expected total reward if we start in that state and act
accordingly to a particular policy”

Action-state value function: “the expected total reward if we start in that state, take
an action, and act accordingly to a particular policy”

AA203 | Lecture 105/3/2023 9

Bellman Equations

For any stationary policy 𝜋, the value the unique solution to the equationVπ(x) := 𝔼 ∑
t≥0

γtR (xt, π (xt))

Vπ (xt) = 𝔼π [R (xt, π (xt)) + γVπ (xt+1)]
= R (xt, π (xt)) + γ ∑

xt+1∈X

T (xt+1 ∣ xt, π (xt)) Vπ (xt+1)
Bellman Expectation Equation

V* (xt) = max
u

R (xt, ut) + γ ∑
xt+1∈X

T (xt+1 ∣ xt, ut) V* (xt+1)

The optimal value function satisfies Bellman’s equation:

Bellman Optimality Equation

AA203 | Lecture 105/3/2023 10

Bellman Equations

For any stationary policy 𝜋, the value corresponding Q function satisfies

Qπ(xt, ut) = R(xt, ut) + γ ∑
xt+1∈𝒳

T (xt+1 ∣ xt, ut) Qπ (xt+1, π (xt+1)) Bellman Expectation Equation

Q*(xt, ut) = R(xt, ut) + γ ∑
xt+1∈X

T (xt+1 ∣ xt, ut) max
ut+1

Q* (xt+1, ut+1)

The optimal state-action value function (Q function) satisfies Bellman’s equation:Q*(x, u)

Bellman Optimality Equation

AA203 | Lecture 105/3/2023 11

Solving MDPs

All of these formulations require a model of the MDP!

To solve unknown MDPs, we’ll use interactions with the environment

Limitations of exact methods (such as Policy/Value Iteration):

• Update equations (i.e., Bellman equations) require access to dynamics model

• Iteration over (and storage of) all states and actions requires small, discrete state-action space

T (xt+1 ∣ xt, ut) Sampling-based approximations

Function approximation

In previous lectures, we resorted to exact methods

AA203 | Lecture 105/3/2023

Outline

3

What is Reinforcement Learning? (and the RL setting)

From exact methods to model-free control
• Monte Carlo Learning

A taxonomy of RL algorithms & important trade-offs

• Temporal-Difference (TD) Learning

AA203 | Lecture 105/3/2023 13

Monte Carlo Reinforcement Learning

• MC methods learn directly from episodes of experience

• MC is model-free: no knowledge of MDP transitions / rewards

• MC uses the simplest possible idea: value = mean return
• Recall that the return is the total discounted reward:

• Caveat: can only apply MC to episodic MDPs
• All episodes must terminate

Gt = Rt+1 + γRt+2 + … + γT−1RT

AA203 | Lecture 105/3/2023 14

Monte Carlo Policy Evaluation

• Let’s consider Monte Carlo methods for learning the state-value function from episodes of experience
under policy

• Recall that the value function is the expected return

• Monte-Carlo policy evaluation uses empirical mean return instead of expected return

Vπ(x)
π

Gt = Rt+1 + γRt+2 + … + γT−1RT

Vπ(xt) = 𝔼 ∑
t≥0

γtR (xt, π (xt)) = 𝔼 [Gt ∣ xt]

AA203 | Lecture 105/3/2023 15

Monte Carlo Policy Evaluation

• To evaluate state

• The first time-step that state is visited in an episode

• Increment counter

• Increment total return

• Value is estimated by mean return

• By law of large numbers

x

t x

N(x) ← N(x) + 1

S(x) ← S(x) + Gt

̂V(x) = S(x)/N(x)
̂V(x) → Vπ(x) as N(x) → ∞

First-visit Every-visit

• To evaluate state

• Every time-step that state is visited in an episode

• Increment counter

• Increment total return

• Value is estimated by mean return

• By law of large numbers

x

t x

N(x) ← N(x) + 1

S(x) ← S(x) + Gt

̂V(x) = S(x)/N(x)
̂V(x) → Vπ(x) as N(x) → ∞

AA203 | Lecture 105/3/2023 16

Example: Blackjack
• States (200 possible states):

• Current sum (12-21)
• Dealer’s showing card (ace-10)
• Do I have a ‘usable’ ace (yes-no)

• Actions:
• Stick: stop receiving cards (and terminate)
• Twist: take another card (no replacement)

• Reward:
• For stick:

• +1 if sum of cards > sum of dealer cards
• 0 if sum of cards = sum of dealer cards
• -1 if sum of cards < sum of dealer cards

• For twist:
• -1 if sum of cards > 21 (and terminate)
• 0 otherwise

• Transitions:
• Automatically twist if sum of cards < 12

AA203 | Lecture 105/3/2023 17

Example: Blackjack
Small exercise:

1. Consider the diagrams on the right
a. Why does the estimated value function

jump up for the last two rows in the
rear?

b. Why does it drop off for the whole last
row on the left?

c. Why are the frontmost values higher in
the upper diagram than in the lower?

2. Would you expect results to be different
with EV-MC? Why or why not?

AA203 | Lecture 105/3/2023 18

Incremental Monte-Carlo updates

μk =
1
k

k

∑
j=1

xj

=
1
k

xk +
k−1

∑
j=1

xj

=
1
k (xk + (k − 1)μk−1)

= μk−1 +
1
k (xk − μk−1)

The mean of a sequence can be
computed incrementally

μ1, μ2, … x1, x2, … • We incrementally update after every episode

• For each state with return

• In non-stationary problems, it is often useful to track a running
mean to forget old (and ultimately less relevant) episodes

̂V(x)
τ = (x0, u0, …, xN, uN)

xt Gt

N (xt) ← N (xt) + 1

̂V (xt) ← ̂V (xt) +
1

N (xt) (Gt − ̂V (xt))

̂V (xt) ← ̂V (xt) + α (Gt − ̂V (xt))

AA203 | Lecture 105/3/2023

Outline

3

What is Reinforcement Learning? (and the RL setting)

From exact methods to model-free control
• Monte Carlo Learning

A taxonomy of RL algorithms & important trade-offs

• Temporal-Difference (TD) Learning

AA203 | Lecture 105/3/2023 20

Temporal-Difference Learning

• TD is a combination of Monte Carlo and Dynamic Programming ideas

• Like MC, TD is model-free: no knowledge of MDP transitions / rewards. TD can learn from experience

• Like DP, TD methods update estimates based in part on other learned estimates, without waiting for a final
outcome (they bootstrap)

• TD updates a guess towards a guess

AA203 | Lecture 105/3/2023 21

Temporal-Difference Learning
• To compare MC and TD, let us consider the task of learning from experience under policy
• Incremental every-visit Monte Carlo:

• Update value toward actual return

• Temporal-difference algorithm:
• Update value toward estimated return

• is called TD target
• is called TD error

Vπ π

̂V(xt) Gt

̂V(xt) Rt + γ ̂V (xt+1)

Rt + γ ̂V (xt+1)
δt = Rt + γ ̂V (xt+1) − ̂V (xt)

̂V (xt) ← ̂V (xt) + α (Gt− ̂V (xt))

̂V (xt) ← ̂V (xt) + α (Rt + γ ̂V (xt+1)− ̂V (xt))
TD methods combine:

1) the sampling of Monte Carlo
2) with the bootstrapping of DP

AA203 | Lecture 105/3/2023 22

Advantages and disadvantages of MC vs TD

• TD can learn before knowing the final outcome
• TD can learn online after every step
• MC must wait until the end of the episode

• TD can learn without the final outcome
• TD can learn from incomplete sequences
• MC can only learn from complete sequences
• TD works in continuing (non-terminating) environments
• MC only works in episodic (terminating) environments

AA203 | Lecture 105/3/2023 23

Bias-Variance Trade-off

• Return is an unbiased estimate of

• In theory, the true TD target is also an unbiased estimate of

• TD target is a biased estimate of
• However, the TD target is much lower variance than the return

• The return depends on a full sequence of random actions, transitions, rewards (i.e., evaluated at the end
of the episode)

• The TD error only depends on one random action, transition, reward

Gt = Rt+1 + γRt+2 + … + γT−1RT Vπ(x)
Rt + γV (xt+1) Vπ(x)

Rt + γ ̂V (xt+1) Vπ(x)

Gt

AA203 | Lecture 105/3/2023 24

Monte-Carlo Backup

xt

ut

xt+1
rt

Terminal state

̂V (xt) ← ̂V (xt) + α (Gt− ̂V (xt))

AA203 | Lecture 105/3/2023 25

Temporal-Difference Backup

xt

ut

xt+1
rt

ut

xt+1rt

̂V (xt) ← ̂V (xt) + α (Rt + γ ̂V (xt+1)− ̂V (xt))

AA203 | Lecture 105/3/2023 26

Dynamic Programming Backup

xt

V̂π (xt) ← 𝔼 [Rt + γV̂π (xt+1)]

AA203 | Lecture 105/3/2023 27

Bootstrapping and sampling

• Sampling: define the update through samples to approximate expectations
• MC samples
• TD samples
• DP does not sample

• Bootstrapping: define the update through an estimate
• MC does not bootstrap
• TD bootstraps
• DP bootstraps

AA203 | Lecture 105/3/2023 28

A unifying view of RL

AA203 | Lecture 105/3/2023

Outline

3

What is Reinforcement Learning? (and the RL setting)

From exact methods to model-free control
• Monte Carlo Learning

A taxonomy of RL algorithms & important trade-offs

• Temporal-Difference (TD) Learning

AA203 | Lecture 105/3/2023 30

(Review) Generalized Policy Iteration
In Week 3, we discussed Policy Iteration as consisting of two simultaneous, interactive processes: Policy Evaluation
and Policy Improvement

We use the term generalized policy iteration (GPI) to refer to the general idea of letting policy-evaluation and policy
improvement processes interact, independent of the granularity and other details of the two processes.

Policy Evaluation: Iterative policy evaluation
Policy Improvement: Greedy policy improvement

AA203 | Lecture 105/3/2023 31

GPI with Monte-Carlo Evaluation

Policy Evaluation: Monte-Carlo policy evaluation of ?

Policy Improvement: Greedy policy improvement?

V(x)

Problem:

Greedy policy improvement over requires a model of
the MDP!

On the other hand, greedy policy improvement over
does not

V(x)

Q(x, u)

πk+1(x) = arg max
u

R(x, u) + γ ∑
xt+1∈𝒳

T (xt+1 ∣ xt, ut) Vk+1 (xt+1)

πk+1(x) = arg max
u

Q(x, u)

AA203 | Lecture 105/3/2023 32

GPI with state-action value function

Policy Evaluation: Monte-Carlo policy evaluation of

Policy Improvement: Greedy policy improvement?

Q(x, u)

Problem:

Exploration! Let’s consider an example:

• Need to choose among two possible doors:
• You open the left door:
• You open the right door:
• You open the right door:
• You open the right door:
• …

To estimate state-action values through samples, every
state-action pair needs to be visited (opposed to each
state as in MC estimation of)

Deterministic policies do not allow this exploration

R = 0,V(left) = 0
R = 1,V(left) = 1
R = 3,V(left) = 2
R = 2,V(left) = 2

V(x)

AA203 | Lecture 105/3/2023 33

A simple (but effective) strategy: -Greedy Explorationϵ

• With probability , choose the greedy action
• With probability , choose a random action
• Ensures that all actions are tried with non-zero probability

1 − ϵ
ϵ
m

π(u ∣ x) =

ϵ
m + 1 − ϵ if u* = argmax

u∈𝒰
Q(x, u)

ϵ
m otherwise

Policy Evaluation: Monte-Carlo policy evaluation of

Policy Improvement: Greedy policy improvement

Q(x, u)

ϵ-

AA203 | Lecture 105/3/2023 34

Monte-Carlo Control

Policy Evaluation: Monte-Carlo policy evaluation of

Policy Improvement: Greedy policy improvement

Q̂(x, u) ≈ Q(x, u)

ϵ-

AA203 | Lecture 105/3/2023 35

Example: Blackjack

AA203 | Lecture 105/3/2023 36

To recap…
We discussed the main limitations of exact methods (such as Policy/Value Iteration):

• Update equations (i.e., Bellman equations) require access to dynamics model

• Iteration over (and storage of) all states and actions requires small, discrete state-action space

T (xt+1 ∣ xt, ut) Sampling-based approximations

Function approximation

We introduced core ideas such as Monte-Carlo and Temporal-Difference Learning and
derived ways to solve unknown MDPs

However, we did not discuss methods to deal with high-dimensional state/action
spaces… more on this later!

AA203 | Lecture 105/3/2023

Outline

3

What is Reinforcement Learning? (and the RL setting)

From exact methods to model-free control
• Monte Carlo Learning

A taxonomy of RL algorithms & important trade-offs

• Temporal-Difference (TD) Learning

A taxonomy of RL
RL Algorithms

Model-free Model-based

Policy optimization Value-based Learn the model

use dynamics T(xt+1 |xt, ut)do not use dynamics T(xt+1 |xt, ut)

Given the model

 is knownT(xt+1 |xt, ut)directly maximize the RL
objective

𝔼τ∼pπ(τ) [
H

∑
t=0

γtr (xt, ut)]

estimate
fθ ≈ T(xt+1 |xt, ut)

policy implicitly defined via
 or V(x) Q(x, u)

 set π (st) = arg max
a

Q (st, at)

The skeleton of an RL algorithm

τ = (x0, u0, …, xN, uN)

π(ut |xt)

fθ (xt) ≈ Vπ (xt)
fθ (xt, ut) ≈ Qπ (xt, ut)
fθ (xt, ut) ≈ P (xt+1 ∣ xt, ut)

(e.g., Q-learning,
DQN)

(e.g., PG, A2C,
A3C)

Generate samples

Fit a model / estimate
return

Improve the policy
 set π (xt) = arg max

a
Q (xt, ut)

θ ← θ + α∇θ𝔼 [∑
t

r (xt, ut)]

Why so many RL algorithms?

• Different tradeoffs:
• Sample efficiency
• Stability & easy of use

• Different assumptions:
• Stochastic or deterministic
• Continuous or discrete
• Episodic or infinite horizon

• Different things are easy or hard in different settings:
• Easier to represent the policy?
• Easier to represent the model?

Comparison: sample efficiency

• Sample efficiency = how many samples do we need to get a good policy?

• Crucial question: is the algorithm off policy?
• Off policy: able to improve the policy without generating new samples from the current policy
• On policy: each time the policy is changed, even a little bit, we need to generate new samples

Why even bother using less efficient algorithms? Wall-clock time is not the same as efficiency!

Comparison: stability and ease of use

• Does it converge?
• And if it does, to what?
• Does it always converge?

• Supervised learning: almost always gradient descent
• Reinforcement learning: often not gradient descent

• Q-learning: fixed point iteration
• Model-based RL: model estimator is not optimized for expected reward

AA203 | Lecture 105/3/2023 43

Next time

• MPC

