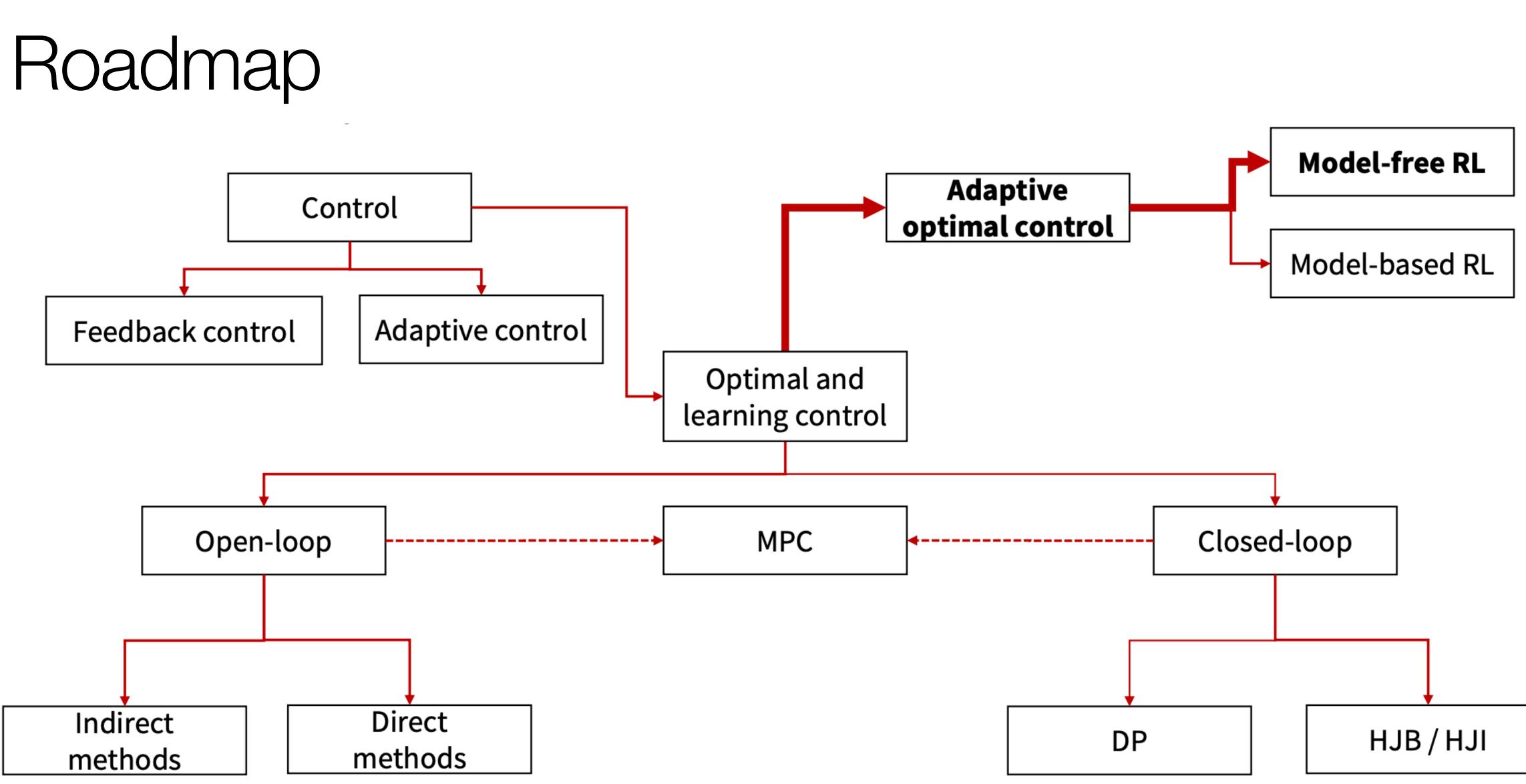
AA203 Optimal and Learning-based Control Lecture 10 Introduction to Reinforcement Learning

Autonomous Systems Laboratory Daniele Gammelli

Autonomous Systems Laboratory Stanford Aeronautics & Astronautics



Outline

What is Reinforcement Learning? (and the RL setting)

From exact methods to model-free control

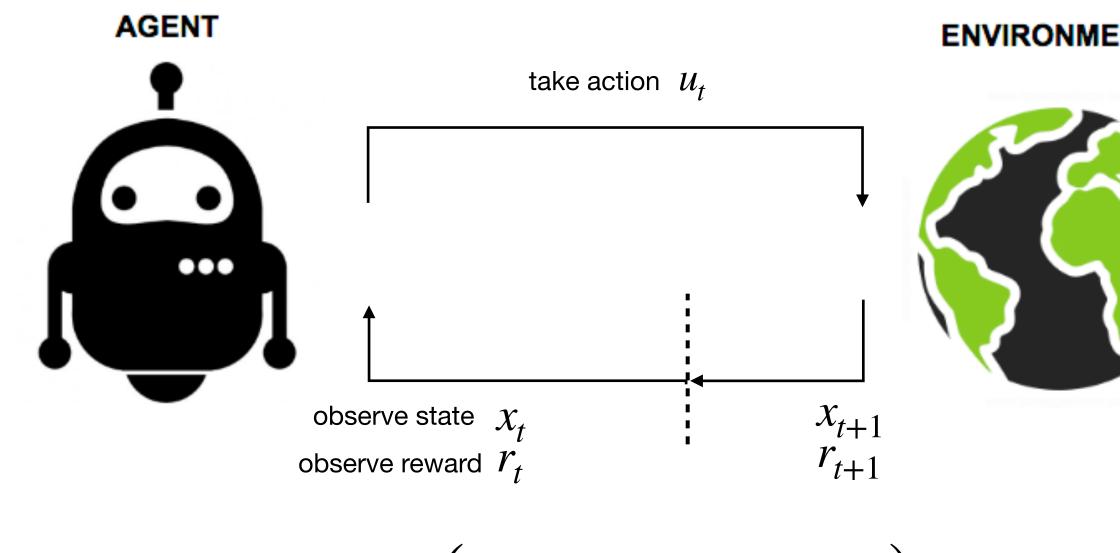
- Monte Carlo Learning
- Temporal-Difference (TD) Learning

A taxonomy of RL algorithms & important trade-offs

What is reinforcement learning?

Fundamentally:

- A mathematical formalism for **learning-based** decision making
- An approach for learning decision making and control from experience Success is measured by a scalar reward



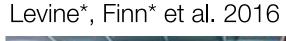
ENVIRONMENT

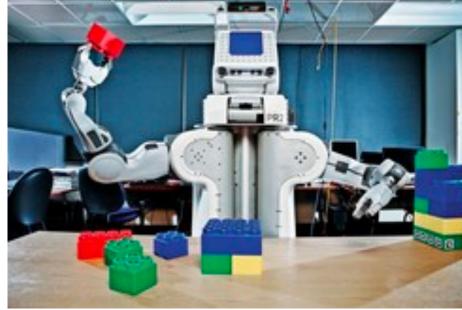
 $\tau = (x_0, u_0, \dots, x_N, u_N)$

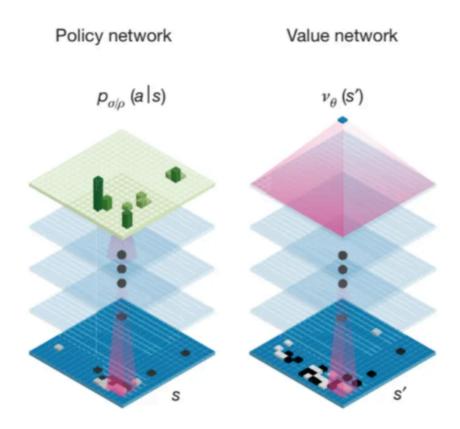
Why reinforcement learning?

• Only need to specify a reward function and the agent learn everything else!

Silver et al. 2016

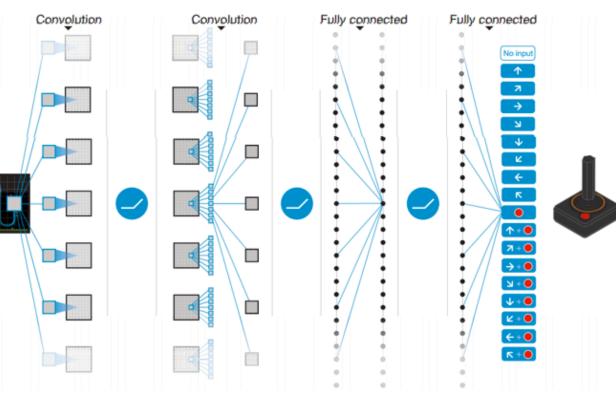






Mnih et al. 2014

Deep Q Network



ChatGPT "Alignment" - OpenAl

Step 2

Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the

outputs from best

This data is used

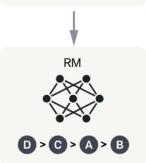
to train our

reward model.

to worst.

0 Explain reinforcement learning to a 6 year old.

D C We give treats and punishments to teach... In machine learning...



Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

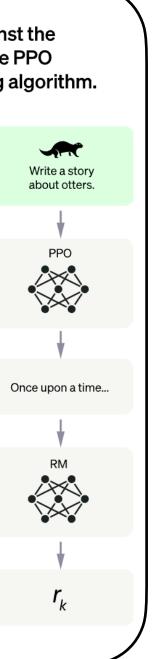
A new prompt is sampled from the dataset.

The PPO model is initialized from the supervised policy.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.



Characteristics of reinforcement learning?

How does RL differ from other machine learning paradigms?

- No supervision, only a reward signal
- Feedback can be delayed, not instantaneous
- Data is **not** i.i.d., earlier decisions affect later interactions (tension between exploration and exploitation) ullet

Markov Decision Problem

State:	$x \in \mathscr{X}$
Action:	$u \in \mathcal{U}$
Transition function / Dynamics:	$T\left(x_{t} \mid x_{t-1}, u_{t-1}\right)$
Reward function:	$r_t = R(x_t, u_t) : \mathscr{X}$
Discount factor:	$\gamma \in (0,1)$

Goal: choose a policy that maximizes cumulative (discounted) reward

$$\pi^* = \arg \max_{\pi} \mathbb{E}_p \left[\sum_{t \ge 0} \gamma^t R\left(x_t, \pi\left(x_t \right) \right) \right]$$

$$= p\left(x_t \mid x_{t-1}, u_{t-1}\right)$$
$$\times \mathcal{U} \to \mathbb{R}$$

Typically represented as a tuple

 $\mathscr{M} = (\mathscr{X}, \mathscr{U}, T, R, \gamma)$

Value functions

State-value function: "the expected total reward if we start in that state and act accordingly to a particular policy"

Action-state value function: "the expected total reward if we start in that state, take an action, and act accordingly to a particular policy"

Optimal state-value function $V^*(x) = \max_{\pi} V_{\pi}(x)$ Optimal action-state value function $Q^*(x, u) = \max_{\pi} Q_{\pi}(x, u)$

$$V_{\pi}(x) = \mathbb{E}_{p} \left[\sum_{t \ge 0} \gamma^{t} R\left(x_{t}, \pi\left(x_{t}\right)\right) \right]$$
$$Q_{\pi}(x, u) = \mathbb{E}_{p} \left[\sum_{t \ge 0} \gamma^{t} R\left(x_{t}, u_{t}\right) \right]$$

Bellman Equations

The optimal value function satisfies Bellman's equation:

$$V^{*}(x_{t}) = \max_{u} \left(R(x_{t}, u_{t}) + \gamma \sum_{x_{t+1} \in X} T(x_{t+1} \mid x_{t}, u_{t}) V^{*}(x_{t+1}) \right)$$

For any stationary policy π , the value $V_{\pi}(x) := \mathbb{E}\left[\sum_{t \ge 0} \gamma^t R\left(x_t, \pi\left(x_t\right)\right)\right]$ the unique solution to the equation $(x_{t+1})]$ $\Gamma\left(x_{t+1} \mid x_t, \pi\left(x_t\right)\right) \mathbf{V}_{\pi}\left(x_{t+1}\right)$ **Bellman Expectation Equation**

$$V_{\pi}(x_{t}) = \mathbb{E}_{\pi} \left[R\left(x_{t}, \pi\left(x_{t}\right)\right) + \gamma V_{\pi}(x_{t}) \right]$$
$$= R\left(x_{t}, \pi\left(x_{t}\right)\right) + \gamma \sum_{x_{t+1} \in X} T$$

Bellman Optimality Equation

Bellman Equations

The optimal state-action value function (Q function) $Q^*(x, u)$ satisfies Bellman's equation:

$$Q^*(x_t, u_t) = R(x_t, u_t) + \gamma \sum_{x_{t+1} \in X} T\left(x_{t+1} \mid x_t, u_t\right) \max_{u_{t+1}} Q^*\left(x_{t+1}, u_{t+1}\right) \quad \underline{\text{Bellman Optimality Equation}}$$

For any stationary policy π , the value corresponding Q function satisfies

$$Q_{\pi}(x_{t}, u_{t}) = R(x_{t}, u_{t}) + \gamma \sum_{x_{t+1} \in \mathcal{X}} T\left(x_{t+1} \mid x_{t}, u_{t}\right) Q_{\pi}\left(x_{t+1}, \pi\left(x_{t+1}\right)\right) \qquad \text{Bellman Expectation Equation}$$

Solving MDPs

In previous lectures, we resorted to exact methods

Problem	Bellman Equation	Algorithm
Prediction Bellman Expectation Equation	Bollman Expectation Equation	Iterative
	Policy Evaluation	
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

To solve unknown MDPs, we'll use **interactions** with the environment

Limitations of exact methods (such as Policy/Value Iteration):

- Update equations (i.e., Bellman equations) require access to dynamics model $T(x_{t+1} \mid x_t, u_t)$
- Iteration over (and storage of) all states and actions requires small, discrete state-action space Function approximation

All of these formulations require a **model of the MDP!**

Sampling-based approximations

Outline

What is Reinforcement Learning? (and the RL setting)

From exact methods to model-free control

- Monte Carlo Learning
- Temporal-Difference (TD) Learning

A taxonomy of RL algorithms & important trade-offs

Monte Carlo Reinforcement Learning

- MC methods learn directly from episodes of experience
- MC is model-free: no knowledge of MDP transitions / rewards
- MC uses the simplest possible idea: value = mean return
 - Recall that the return is the total discounted reward:

$$G_t = R_{t+1} -$$

- Caveat: can only apply MC to episodic MDPs
 - All episodes must terminate

 $+ \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T$

Monte Carlo Policy Evaluation

- Let's consider Monte Carlo methods for learning the state-value function $V_{\pi}(x)$ from episodes of experience under policy π
- Recall that the value function is the expected return

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_{T}$$
$$V_{\pi}(x_{t}) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^{t} R\left(x_{t}, \pi\left(x_{t}\right)\right)\right] = \mathbb{E}\left[G_{t} \mid x_{t}\right]$$

• Monte-Carlo policy evaluation uses empirical mean return instead of expected return

Monte Carlo Policy Evaluation

<u>First-visit</u>

- To evaluate state *x*
- The **first** time-step *t* that state *x* is visited in an episode
- Increment counter $N(x) \leftarrow N(x) + 1$
- Increment total return $S(x) \leftarrow S(x) + G_t$
- Value is estimated by mean return $\hat{V}(x) = S(x)/N(x)$
- By law of large numbers $\hat{V}(x) \to V_{\pi}(x)$ as $N(x) \to \infty$

Every-visit

- To evaluate state *x*
- Every time-step *t* that state *x* is visited in an episode
- Increment counter $N(x) \leftarrow N(x) + 1$
- Increment total return $S(x) \leftarrow S(x) + G_t$
- Value is estimated by mean return $\hat{V}(x) = S(x)/N(x)$
- By law of large numbers $\hat{V}(x) \to V_{\pi}(x)$ as $N(x) \to \infty$

Example: Blackjack

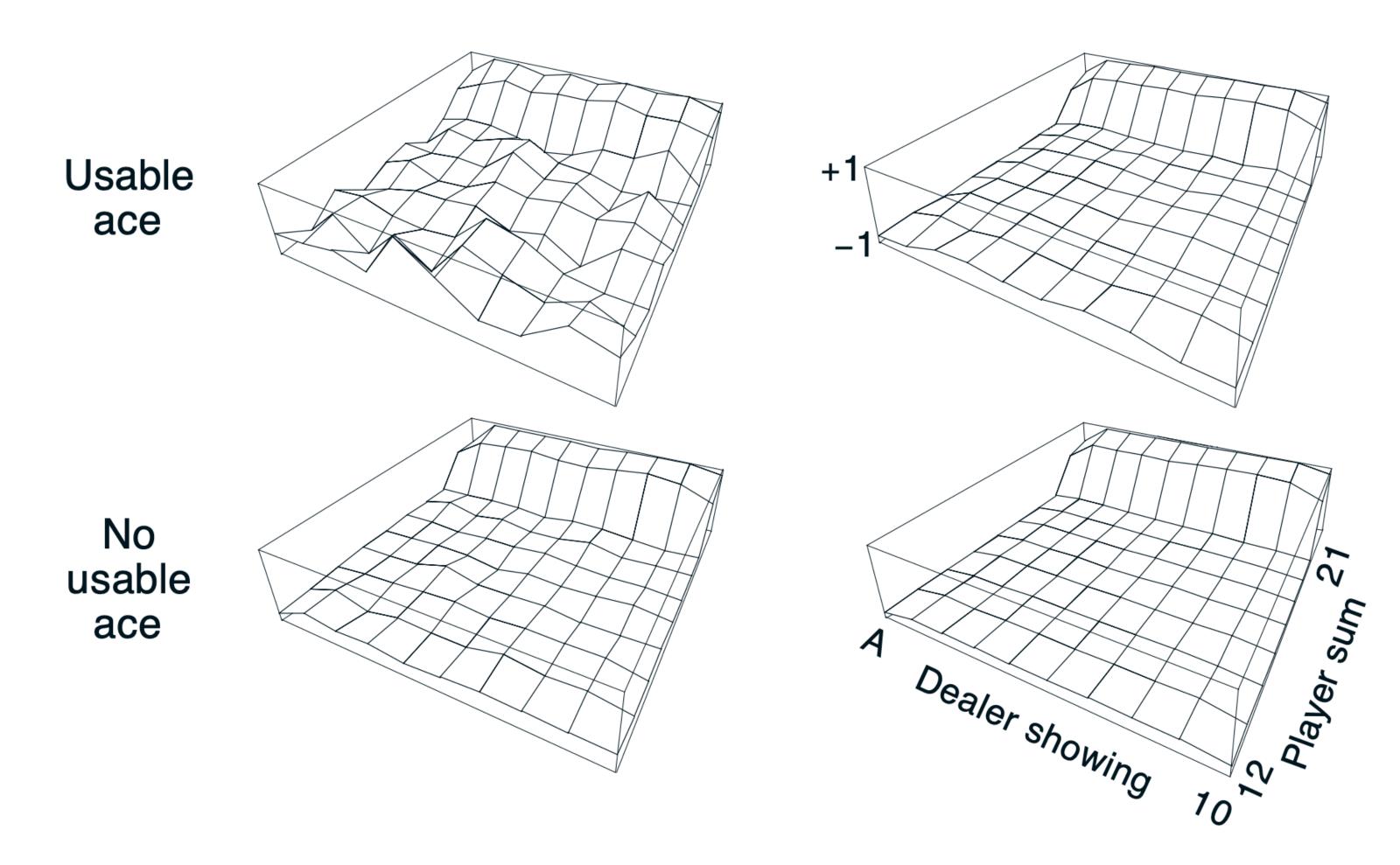
- States (200 possible states):
 - Current sum (12-21)
 - Dealer's showing card (ace-10)
 - Do I have a 'usable' ace (yes-no)
- Actions:
 - Stick: stop receiving cards (and terminate)
 - Twist: take another card (no replacement)
- Reward:
 - For stick:
 - +1 if sum of cards > sum of dealer cards
 - 0 if sum of cards = sum of dealer cards
 - -1 if sum of cards < sum of dealer cards
 - For twist:
 - -1 if sum of cards > 21 (and terminate)
 - 0 otherwise

• Transitions:

• Automatically twist if sum of cards < 12

Example: Blackjack

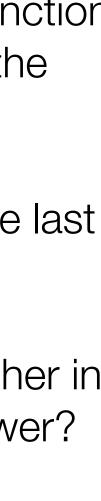
After 10,000 episodes



After 500,000 episodes

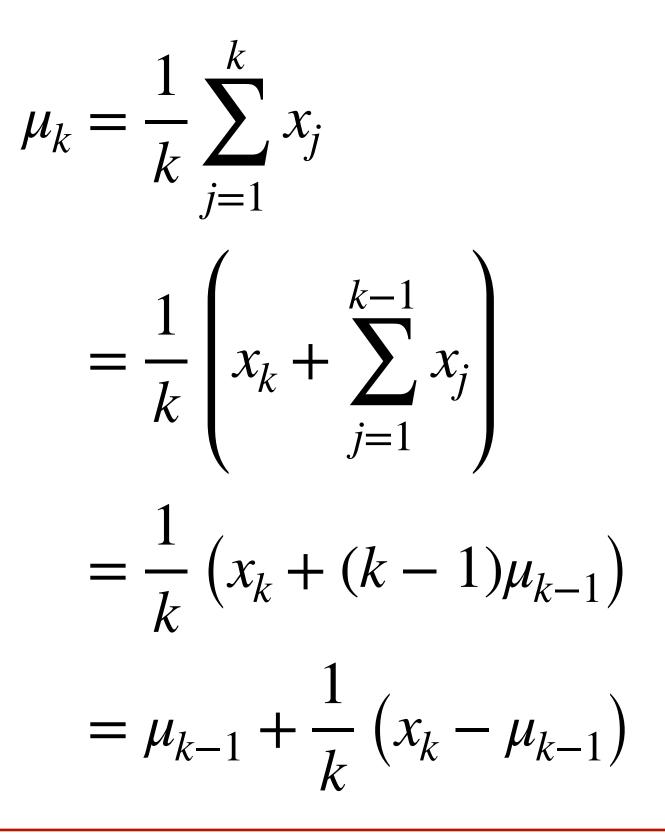
Small exercise:

- 1. Consider the diagrams on the right
 - a. Why does the estimated value function jump up for the last two rows in the rear?
 - b. Why does it drop off for the whole last row on the left?
 - c. Why are the frontmost values higher in the upper diagram than in the lower?
- 2. Would you expect results to be different with EV-MC? Why or why not?



Incremental Monte-Carlo updates

The mean μ_1, μ_2, \ldots of a sequence x_1, x_2, \ldots can be computed incrementally



- We incrementally update $\hat{V}(x)$ after every episode $\tau = (x_0, u_0, \dots, x_N, u_N)$
- For each state x_t with return G_t

$$N(x_t) \leftarrow N(x_t) + 1$$
$$\hat{V}(x_t) \leftarrow \hat{V}(x_t) + \frac{1}{N(x_t)} \left(G_t - \hat{V}(x_t)\right)$$

• In non-stationary problems, it is often useful to track a running mean to forget old (and ultimately less relevant) episodes

$$\hat{V}(x_t) \leftarrow \hat{V}(x_t) + \alpha \left(G_t - \hat{V}(x_t)\right)$$

Outline

What is Reinforcement Learning? (and the RL setting)

From exact methods to model-free control

- Monte Carlo Learning
- Temporal-Difference (TD) Learning

A taxonomy of RL algorithms & important trade-offs

Temporal-Difference Learning

- TD is a combination of Monte Carlo and Dynamic Programming ideas
- Like MC, TD is model-free: no knowledge of MDP transitions / rewards. TD can learn from experience
- Like DP, TD methods update estimates based in part on other learned estimates, without waiting for a final outcome (they **bootstrap**)
- TD updates a guess towards a guess

Temporal-Difference Learning

- To compare MC and TD, let us consider the task of learning V_{π} from experience under policy π
- Incremental every-visit Monte Carlo:
 - Update value $\hat{V}(x_t)$ toward *actual* return G_t

$$\hat{V}(x_t) \leftarrow \hat{V}(x_t) + \alpha \left(\frac{G_t}{V} - \hat{V}(x_t) \right)$$

- Temporal-difference algorithm:
 - Update value $\hat{V}(x_t)$ toward estimated return $R_t + \gamma \hat{V}$

$$\hat{V}(x_t) \leftarrow \hat{V}(x_t) + \alpha \left(\frac{R_t + \gamma \hat{V}(x_{t+1}) - \hat{V}(x_t)}{N} \right)$$

•
$$R_t + \gamma \hat{V}(x_{t+1})$$
 is called **TD target**

• $\delta_t = R_t + \gamma \hat{V}(x_{t+1}) - \hat{V}(x_t)$ is called **TD error**

$$\dot{Y}(x_{t+1})$$

TD methods combine:

- the sampling of Monte Carlo
- with the bootstrapping of DP

Advantages and disadvantages of MC vs TD

- TD can learn *before* knowing the final outcome
 - TD can learn online after every step
 - MC must wait until the end of the episode
- TD can learn without the final outcome
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences ullet
 - TD works in continuing (non-terminating) environments
 - MC only works in episodic (terminating) environments \bullet

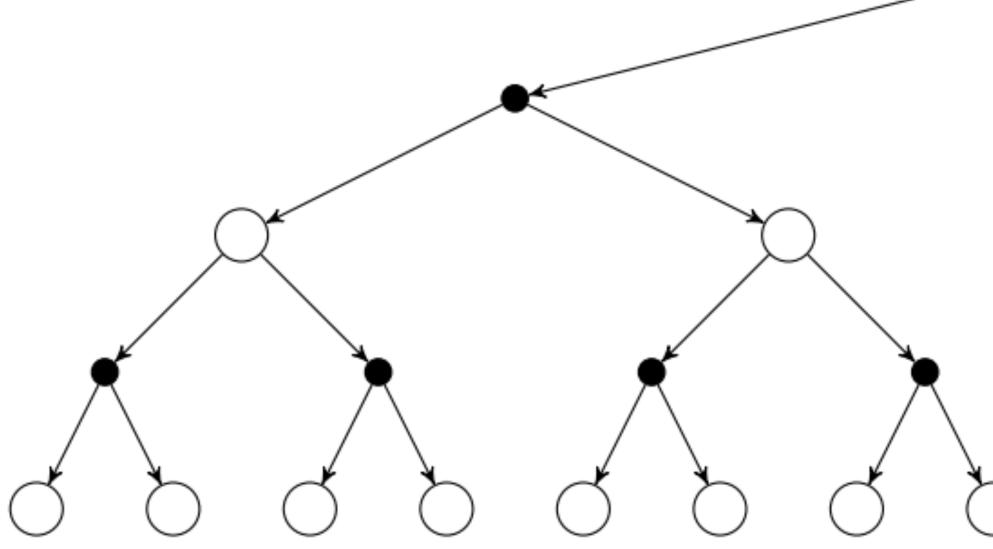
AA203 | Lecture 10

Bias-Variance Trade-off

- Return $G_t = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T$ is an unbiased estimate of $V_{\pi}(x)$
- In theory, the true TD target $R_t + \gamma V(x_{t+1})$ is also an unbiased estimate of $V_{\pi}(x)$
- TD target $R_t + \gamma \hat{V}(x_{t+1})$ is a biased estimate of $V_{\pi}(x)$
- However, the TD target is much lower variance than the return
 - The return G_t depends on a full sequence of random actions, transitions, rewards (i.e., evaluated at the end of the episode)
 - The TD error only depends on **one** random action, transition, reward

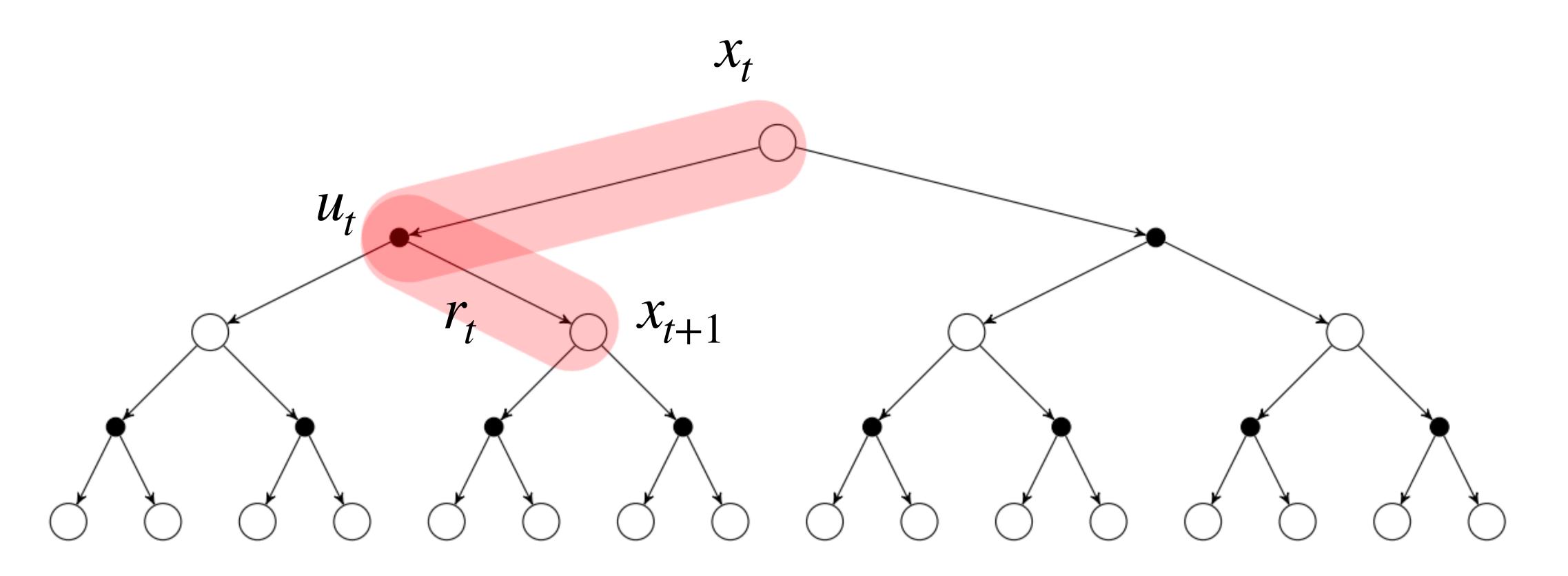
Monte-Carlo Backup

 $\hat{V}(x_t) \leftarrow \hat{V}(x_t) + \alpha \left(\frac{G_t}{V} - \hat{V}(x_t) \right)$ X_t \mathcal{U}_t x_{t+1} т



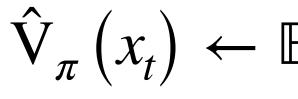
Terminal state

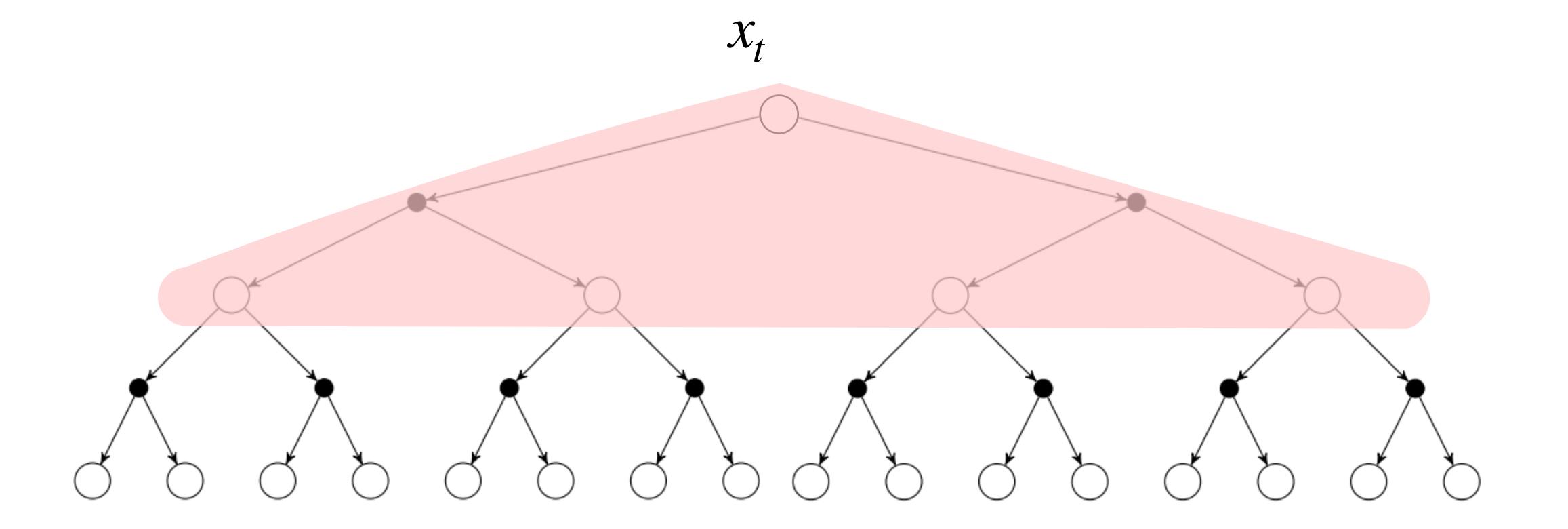
Temporal-Difference Backup



 $\hat{V}(x_t) \leftarrow \hat{V}(x_t) + \alpha \left(\frac{R_t}{r} + \gamma \hat{V}(x_{t+1}) - \hat{V}(x_t) \right)$

Dynamic Programming Backup





 $\hat{\mathbf{V}}_{\pi}(x_t) \leftarrow \mathbb{E}\left[R_t + \gamma \hat{\mathbf{V}}_{\pi}(x_{t+1})\right]$

Bootstrapping and sampling

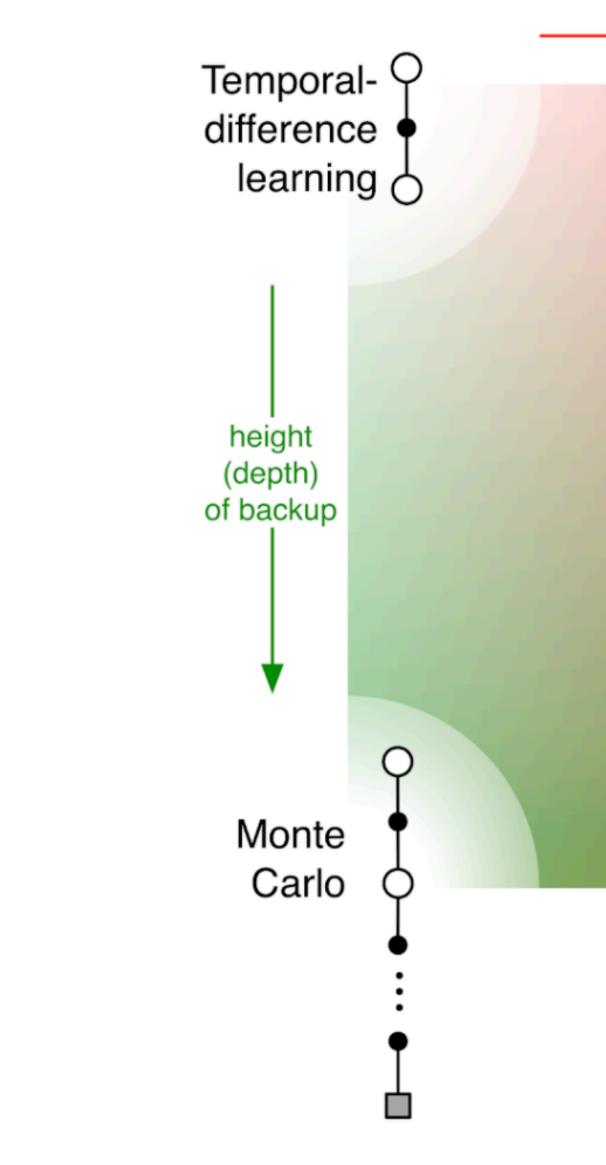
• Sampling: define the update through samples to approximate expectations

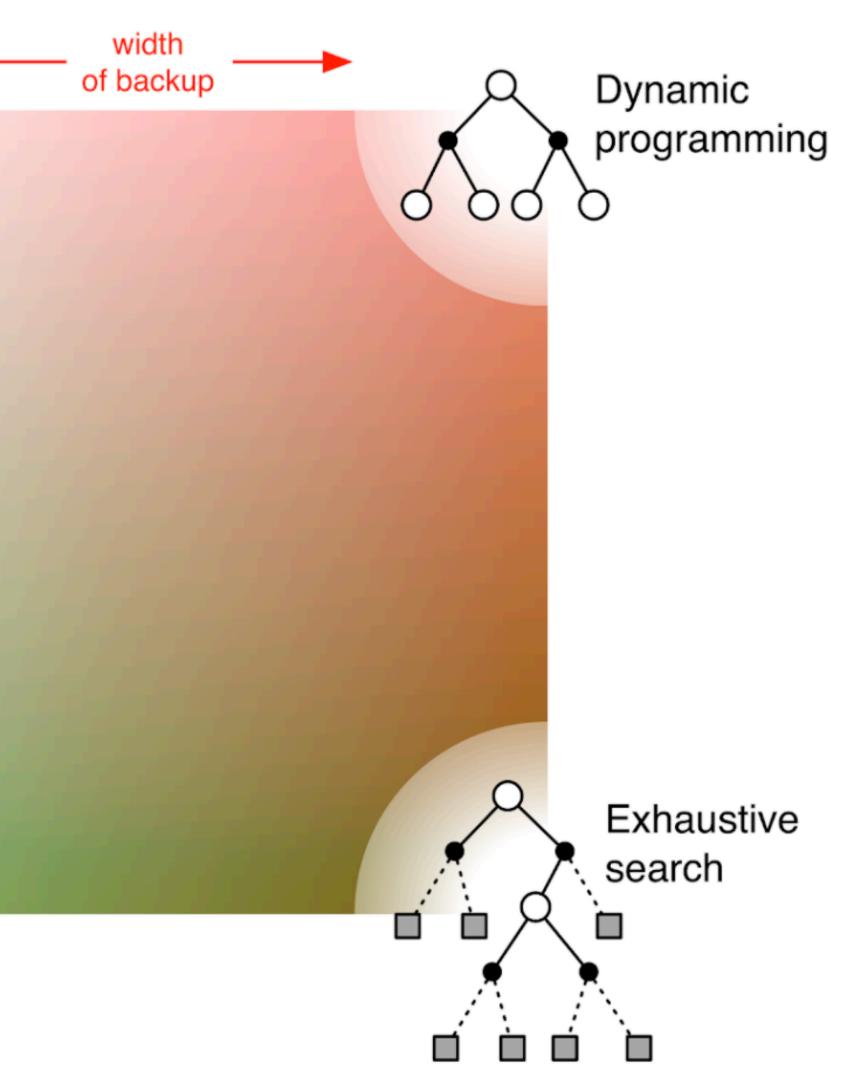
- MC samples
- TD samples
- DP does not sample

• **Bootstrapping:** define the update through an estimate

- MC does not bootstrap
- TD bootstraps
- DP bootstraps

A unifying view of RL





Outline

What is Reinforcement Learning? (and the RL setting)

From exact methods to model-free **control**

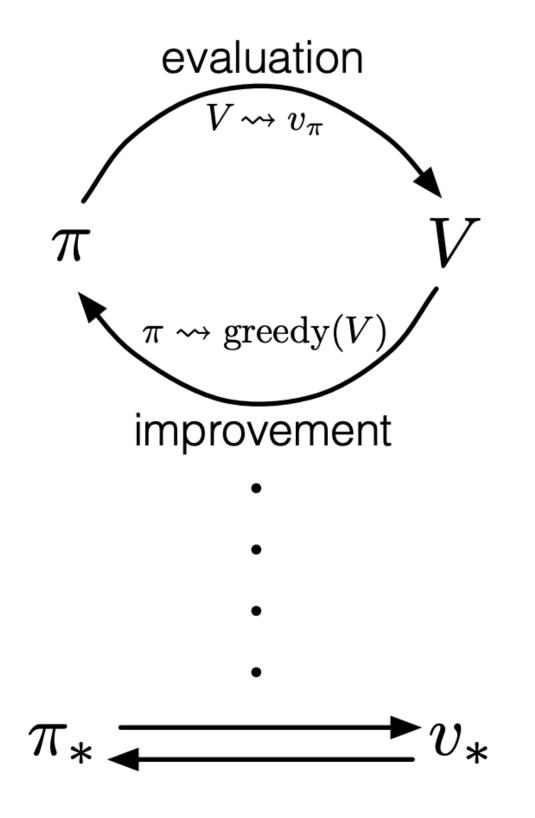
- Monte Carlo Learning
- Temporal-Difference (TD) Learning

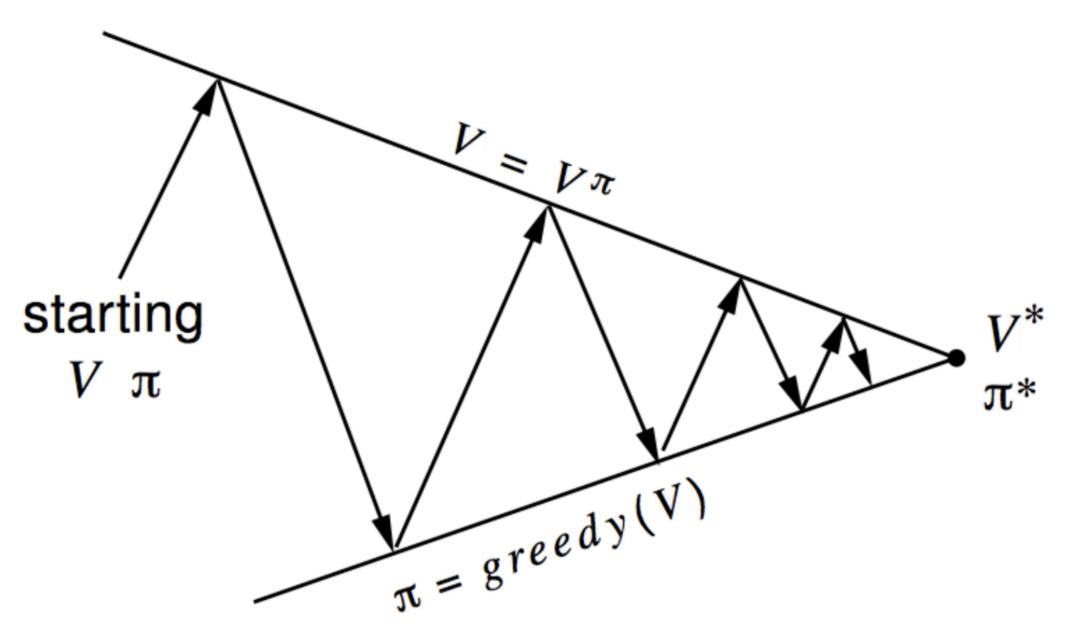
A taxonomy of RL algorithms & important trade-offs

(Review) Generalized Policy Iteration

In Week 3, we discussed Policy Iteration as consisting of two simultaneous, interactive processes: Policy Evaluation and Policy Improvement

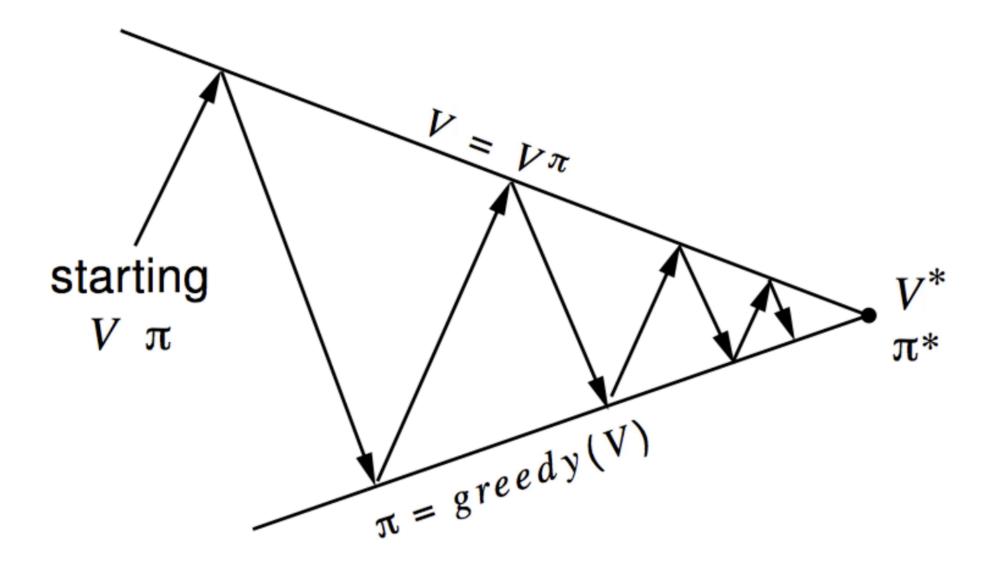
We use the term *generalized policy iteration* (GPI) to refer to the general idea of letting policy-evaluation and policy improvement processes interact, independent of the granularity and other details of the two processes.





Policy **Evaluation:** Iterative policy evaluation Policy **Improvement:** Greedy policy improvement

GPI with Monte-Carlo Evaluation



Policy **Evaluation:** Monte-Carlo policy evaluation of V(x)?

Policy Improvement: Greedy policy improvement?

Problem:

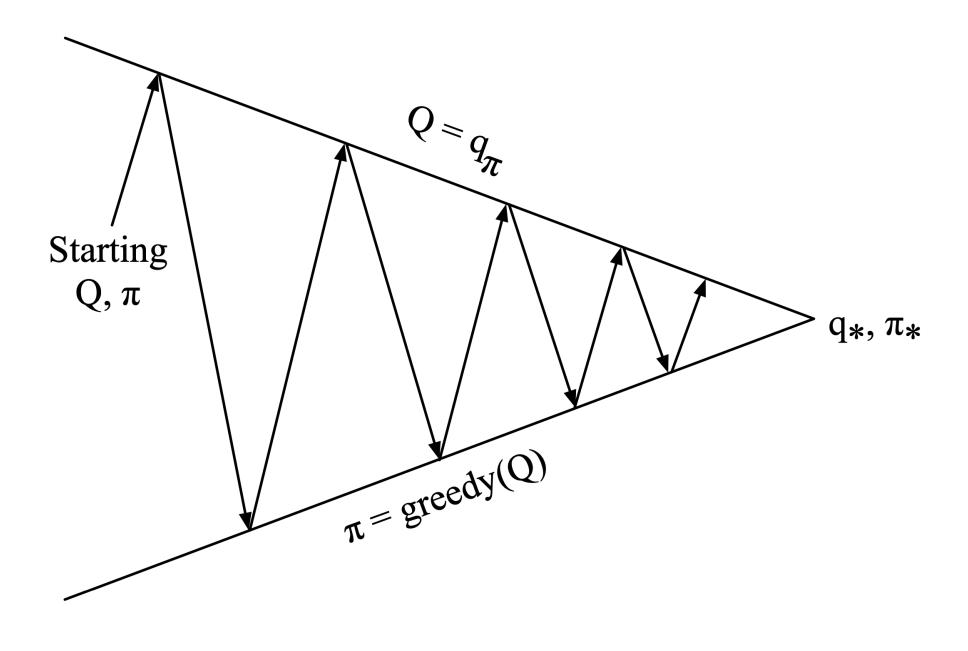
Greedy policy improvement over V(x) requires a model of the MDP!

$$\pi_{k+1}(x) = \arg \max_{u} \left(R(x, u) + \gamma \sum_{x_{t+1} \in \mathcal{X}} T\left(x_{t+1} \mid x_t, u_t\right) V_{k+1}\left(x_{t+1} \mid x_t, u_t\right) \right)$$

On the other hand, greedy policy improvement over Q(x, u) does not

$$\pi_{k+1}(x) = \arg\max_{u} Q(x, u)$$

GPI with state-action value function



Policy **Evaluation:** Monte-Carlo policy evaluation of Q(x, u)

Policy Improvement: Greedy policy improvement?

Problem:

Exploration! Let's consider an example:

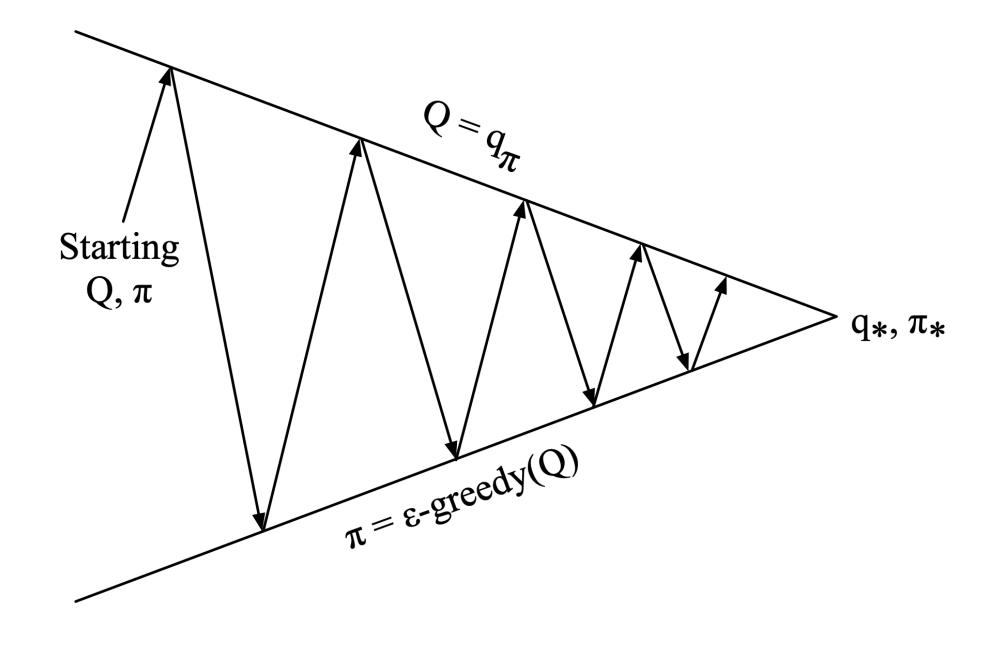
- Need to choose among two possible doors:
- You open the left door: R = 0, V(left) = 0
- You open the right door: R = 1, V(left) = 1
- You open the right door: R = 3, V(left) = 2
- You open the right door: R = 2, V(left) = 2
- ...
- To estimate state-action values through samples, every state-action pair needs to be visited (opposed to each state as in MC estimation of V(x))

Deterministic policies do not allow this exploration

A simple (but effective) strategy: ϵ -Greedy Exploration

- With probability 1ϵ , choose the greedy action
- With probability ϵ , choose a random action
- Ensures that all *m* actions are tried with non-zero probability ullet

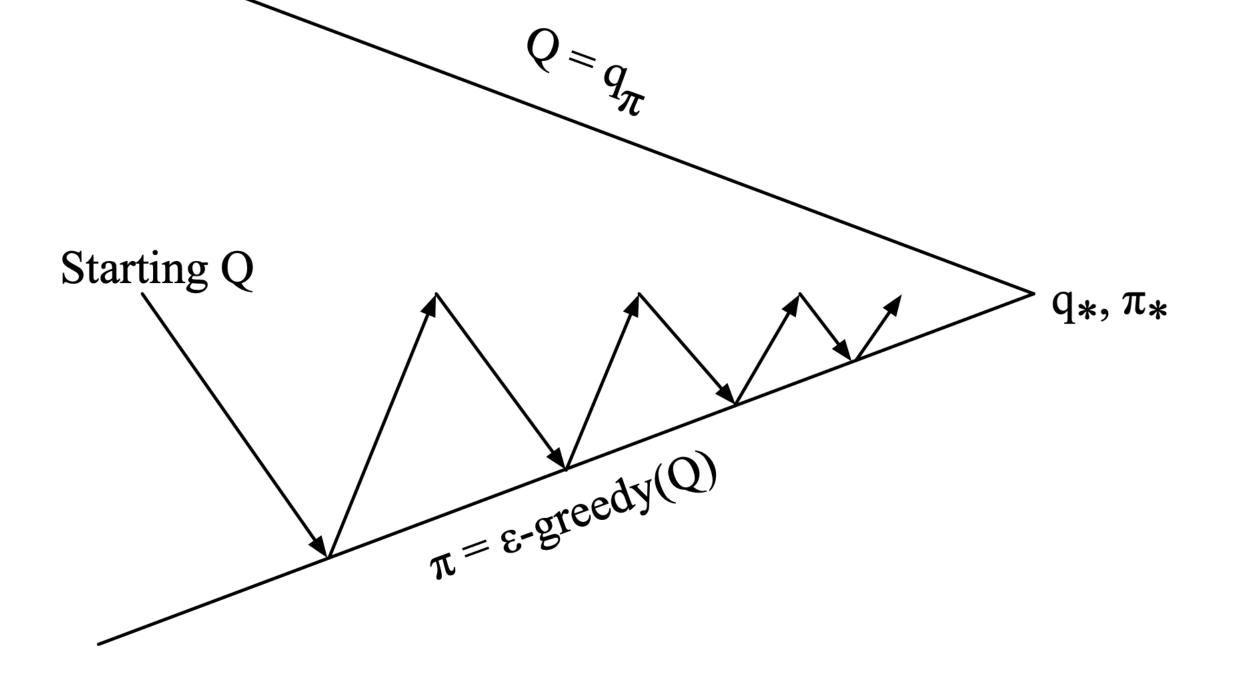
$$\pi(u \mid x) = \begin{cases} \frac{\epsilon}{m} + 1 - \epsilon & \text{if } u^* = \underset{u \in \mathcal{U}}{\operatorname{argmax}} Q(x, u) \\ \frac{\epsilon}{m} & \text{otherwise} \end{cases}$$



Policy **Evaluation:** Monte-Carlo policy evaluation of Q(x, u)

Policy **Improvement:** *C*-Greedy policy improvement

Monte-Carlo Control

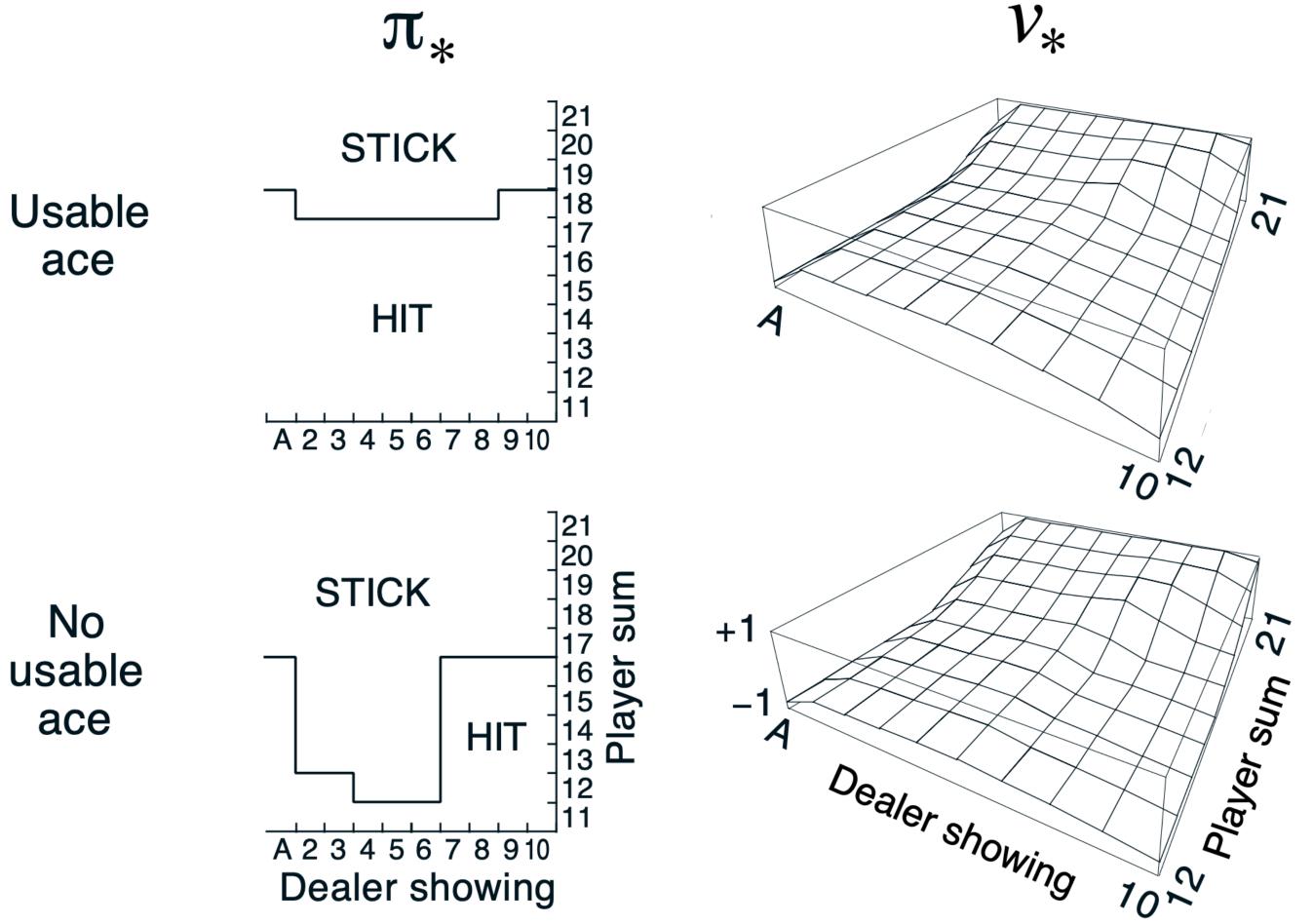


Policy **Evaluation:** Monte-Carlo policy evaluation of $\hat{Q}(x, u) \approx Q(x, u)$

Policy Improvement: *c*-Greedy policy improvement

AA203 | Lecture 10

Example: Blackjack



To recap...

We discussed the main limitations of exact methods (such as Policy/Value Iteration):

- Update equations (i.e., Bellman equations) require access to dynamics model $T(x_{t+1} \mid x_t, u_t)$
- Iteration over (and storage of) all states and actions requires small, discrete state-action space •

Temporal-We introduced core ideas such as Monte-Carlo and Temporal-Difference Learning and difference learnina derived ways to solve unknown MDPs of backur However, we did not discuss methods to deal with high-dimensional state/action Exhaustive Monte search Carlo spaces... more on this later!

Sampling-based approximations

Function approximation

Outline

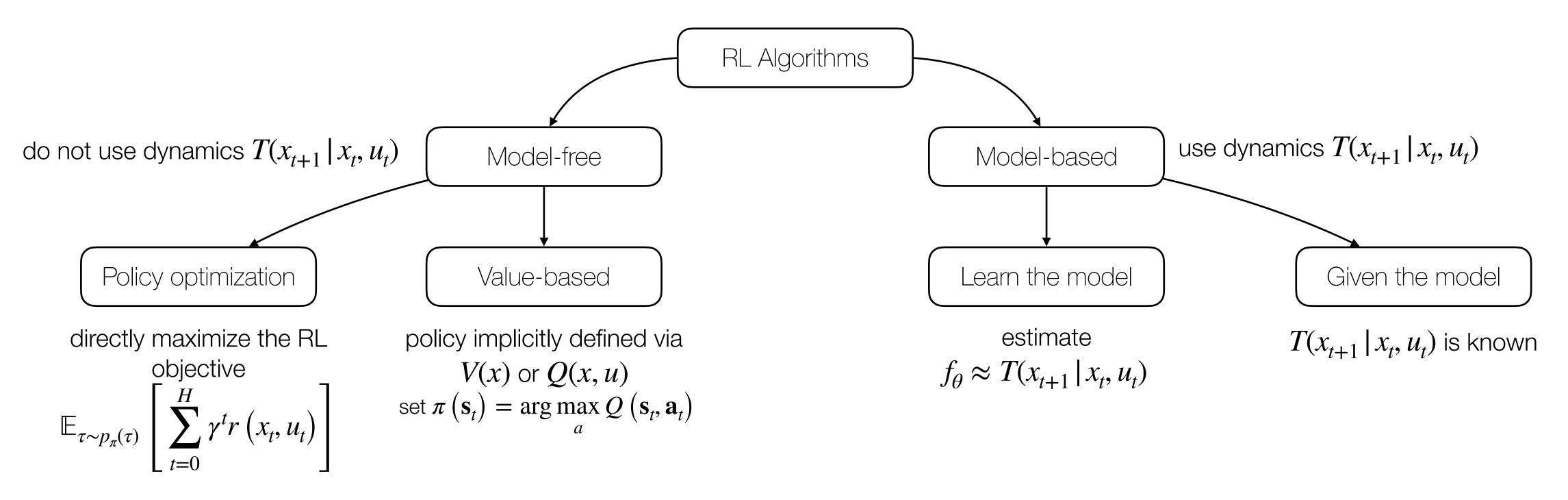
What is Reinforcement Learning? (and the RL setting)

From exact methods to model-free control

- Monte Carlo Learning
- Temporal-Difference (TD) Learning

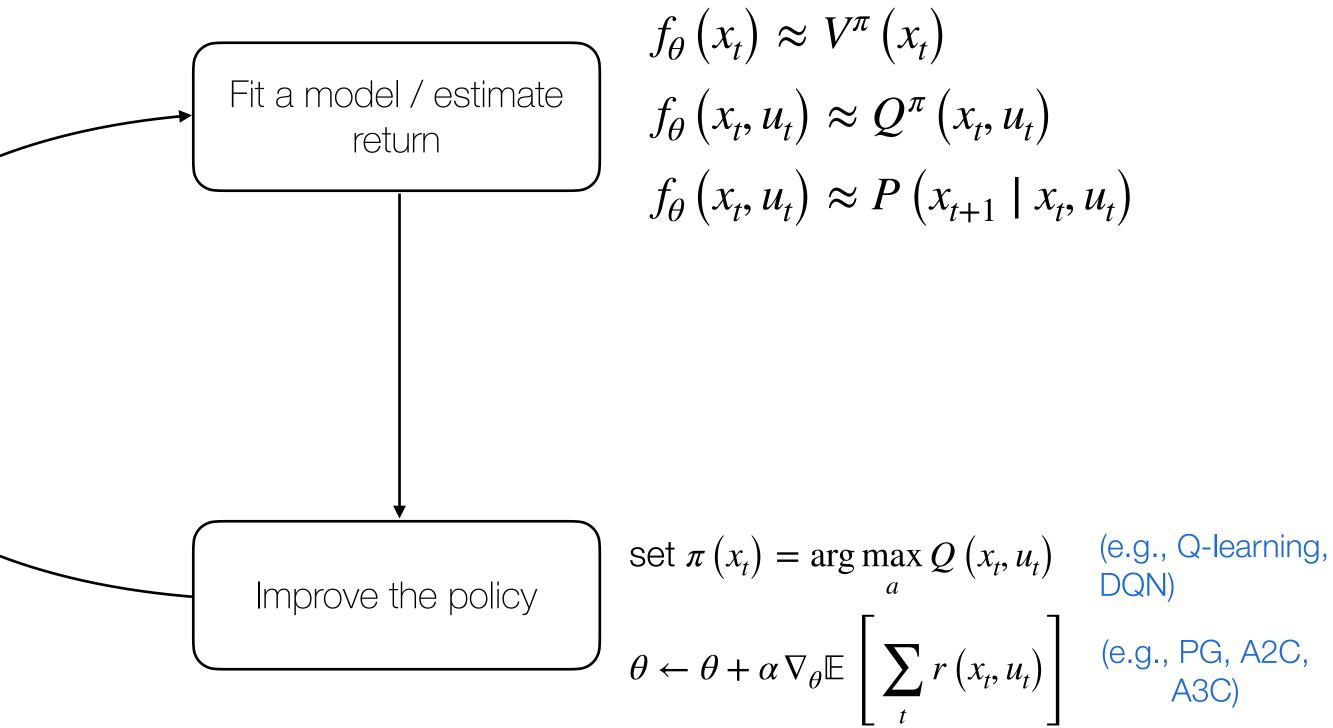
A taxonomy of RL algorithms & important trade-offs

A taxonomy of RL



The skeleton of an RL algorithm

 $\pi(u_t | x_t)$ $\tau = (x_0, u_0, \dots, x_N, u_N)$ Generate samples



Why so many RL algorithms?

• Different tradeoffs:

- Sample efficiency
- Stability & easy of use

• Different assumptions:

- Stochastic or deterministic
- Continuous or discrete
- Episodic or infinite horizon

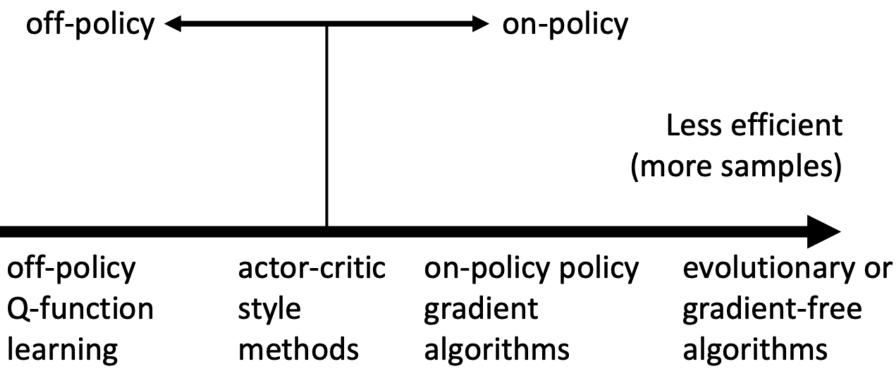
• Different things are easy or hard in different settings:

- Easier to represent the policy?
- Easier to represent the model?

Comparison: sample efficiency

- Sample efficiency = how many samples do we need to get a good policy?
- Crucial question: is the algorithm off policy?
 - Off policy: able to improve the policy without generating new samples from the current policy
 - On policy: each time the policy is changed, even a little bit, we need to generate new samples

Why even bother using less efficient algorithms? Wall-clock time is not the same as efficiency!



Comparison: stability and ease of use

- Does it converge?
- And if it does, to what?
- Does it *always* converge? ullet

- Supervised learning: almost always gradient descent ullet
- Reinforcement learning: often not gradient descent lacksquare
 - Q-learning: fixed point iteration
 - Model-based RL: model estimator is not optimized for expected reward

Next time

• MPC

