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Important links

Lecture slides and homework assignments:
https://asl.stanford.edu/aa203

Lecture recordings:
https://canvas.stanford.edu/courses/171491

Announcements and discussion forum:
https://edstem.org/us/courses/38294

Coursework submission:
https://www.gradescope.com/courses/525712

For urgent questions:
aa203-spr2223-staff@lists.stanford.edu
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Grading

Homework (60%) 4 homeworks, each problem weighted equally across all
homeworks.
Covers a mixture of theory and programming.
Generally due every 2 weeks.

Project (40%) 5% proposal, 10% midterm report, 25% final report and video
presentation.
Open-ended in groups of up to 3 people.

Discussion (≤ 5% bonus) 0.5% per endorsed Edstem post, up to 5%.

Late days 6 total, up to 3 on a single assignment.
Not applicable to the final report and video presentation (due
on the last day of class).
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Course material

In order of importance:

Lecture slides Should be posted on the class website before each lecture.

Recitations Friday lecture sessions (Weeks 1–4) led by the CAs covering supplementary
tools (mathematical and computational).

Course notes Evolving, somewhat outdated partial notes available at:
https://github.com/StanfordASL/AA203-Notes

Textbooks Suggested ad hoc during lecture and discussions (not required).
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Prerequisites

Standard undergraduate engineering mathematics knowledge
(i.e., vector calculus, ordinary differential equations (ODEs), probability theory).

Strong familiarity with linear algebra
(e.g., EE263, CME200).

Some knowledge of optimization is nice to have
(e.g., EE364A, CME307, CS269O, AA222).

To get the most out of this class, it is recommended to have taken at least one course in:
control (e.g., ENGR105, ENGR205, AA212)
machine learning (e.g., CS229, CS230, CS231N)

Homework 0 (ungraded) is out now to help you gauge your preparedness.
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Caveats

Arguably, this class aims for breadth over depth. Some past students have needed to
self-study some of the details.

The course content is subject to feedback. Homework problems covering state-of-the-art
topics sometimes suffer from bugs.

This class is quite challenging. Some past students have had trouble managing both
homeworks and project deliverables.

Projects focused on learning-based control may require self-study of material before the
relevant lectures.
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Agenda

1. Context and course goals

2. Stability and Lyapunov functions

3. Optimal control problems
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1. Context and course goals

2. Stability and Lyapunov functions

3. Optimal control problems
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Feedback control

10



Feedback control example
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Feedback control with complications
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Feedback control in reinforcement learning
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Dynamical systems

Continuous-time:
Time t ∈ R

State x(t) ∈ Rn

Control input u(t) ∈ Rm

Dynamics ẋ(t) = f(t, x(t), u(t))
Trajectories x : t 7→ x(t)

u : t 7→ u(t)

Discrete-time:
t ∈ N

xt ∈ Rn

ut ∈ Rm

xt+1 = f(t, xt, ut)
x : t 7→ xt

u : t 7→ ut

We assume f is sufficiently “well-behaved” such that, given a piecewise-continuous input u,
there exists a unique solution x for each initial condition.

In roughly the second-half of the course, the dynamics may be unknown, and so will have to
learn how to control our system based on data.
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Example: Double-integrator control

Point-mass with acceleration control in 1-D:(
ṡ
v̇

)
=

[
0 1
0 0

] (
s
v

)
+

[
0
1

]
u

More generally, in multiple dimensions we have:(
ṡ
v̇

)
=

[
0 I
0 0

] (
s
v

)
+

[
0
I

]
u

Objective Drive to a standstill at the origin, i.e., (0, 0).
Proposal Proportional-derivative (PD) feedback:

u = −kps − kdv =⇒
(

ṡ
v̇

)
=

[
0 1

−kp −kd

] (
s
v

)
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Example: Double-integrator stability

Is the closed-loop system stable?(
ṡ
v̇

)
=

[
0 1

−kp −kd

] (
s
v

)
=⇒

(
s(t)
v(t)

)
= exp

([
0 1

−kp −kd

]
t

)
︸ ︷︷ ︸

=:Φ(t)

(
s(0)
v(0)

)

where Φ(t) = V exp(tJ)V −1 with eigenvalues λ± = − kd

2 ± 1
2
√

k2
d − 4kp and

exp(tJ) =



[
eλ+t 0

0 eλ−t

]
, k2

d > 4kp[
1 t
0 1

]
e− kd

2 t, k2
d = 4kp[

cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

]
e− kd

2 t, k2
d < 4kp
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Feedback control desiderata

Traditional feedback control balances the following desiderata.

Stability The system output does not diverge or “blow up”.

Tracking The system output converges to a desired reference.

Disturbance rejection The system is insensitive to disturbances and noise.

Robustness The controller performs well despite some model misspecification.
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Optimal and learning-based control desiderata

This course also incorporates and focuses on the following objectives.

Performance The controller achieves an optimal trade-off between various metrics.

Constraints The controller does not cause the system to violate safety restrictions or inherent
(e.g., physical) limitations.

Planning An appropriate reference trajectory is computed and given to the controller for
tracking.

Learning The controller can adapt to an unknown or time-varying system.
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Course overview and goals

To learn the theory and practice of fundamental techniques in optimal and learning-based
control.
To gain a holistic understanding of how such techniques are used across fields.
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Agenda

1. Context and course goals

2. Stability and Lyapunov functions

3. Optimal control problems
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Mathematical definitions of stability

Consider ẋ = f(x) (or ẋ = f(x, π(x))) and an equilibrium x̄ ∈ Rn (i.e., f(x̄) = 0).

Marginal/Lyapunov ∀ε > 0, ∃δ > 0 : ∥x(0) − x̄∥ < δ =⇒ ∥x(t) − x̄∥ < ε, ∀t ≥ 0
“Trajectories that start close to the equilibrium remain close to the
equilibrium.”

Asymptotic (local) ∃δ > 0 : ∥x(0) − x̄∥ < δ =⇒ limt→∞∥x(t) − x̄∥ = 0
“Trajectories that start near the equilibrium converge to it.”

Exponential (local) ∃δ, c, α > 0 : ∥x(0) − x̄∥ < δ =⇒ ∥x(t) − x̄∥ ≤ ce−αt∥x(0) − x̄∥
“Trajectories that start near the equilibrium converge to it exponentially
fast.”

Take δ → ∞ to get “global” definitions. For linear time-invariant (LTI) systems, “asymptotic
= exponential” and “local = global” always.
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Lyapunov functions

Theorem (Lyapunov’s direct method)
Consider ẋ = f(x) where f is locally Lipschitz and f(0) = 0.
Suppose there exists V ∈ C1(Rn,R) such that

V is positive-definite, i.e., V (x) ≥ 0 and
V (x) = 0 ⇐⇒ x = 0,
V̇ is negative-definite, i.e., ∇V (x)Tf(x) ≤ 0 and
∇V (x)Tf(x) = 0 ⇐⇒ x = 0.

Then x̄ = 0 is locally asymptotically stable. If in addition
V is radially unbounded, i.e., V (x) → ∞ as ∥x∥ → ∞,

then x̄ = 0 is globally asymptotically stable.

If the “energy” V (x) is
decreasing everywhere along
trajectories, then V (x) → 0
and thus x → 0.

The existence of a Lyapunov function is a sufficient condition or certificate for stability.
Pointwise Lyapunov inequalities are generally less cumbersome to work with than limits.
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Converse Lyapunov theorems

The existence of a Lyapunov function is also necessary for stability.

Theorem (Converse Lyapunov theorem)
Consider ẋ = f(x) where f is locally Lipschitz. Suppose x̄ = 0 is
a locally asymptotically stable equilibrium with region of attraction
A ⊂ Rn. Then there exists V ∈ C1(Rn,R) such that

V is positive-definite on A,
V̇ is negative-definite on A,
V (x) → ∞ as x → ∂A (the boundary of A),
{x | V (x) ≤ c} is a compact subset of A for any c > 0.

If x̄ = 0 is globally asymptotically stable, i.e., A = Rn, then
V is radially unbounded.

If the “energy” V (x) is
decreasing everywhere along
trajectories, then V (x) → 0
and thus x → 0.
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Agenda

1. Context and course goals

2. Stability and Lyapunov functions

3. Optimal control problems
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Optimal control problems (continuous-time)

minimize
x,u

J(x, u) := ℓT (T, x(T )) +
∫ T

0
ℓ(t, x(t), u(t)) dt cost (terminal + stage)

subject to ẋ(t) = f(t, x(t), u(t)), ∀t ∈ [0, T ] dynamical feasibility

x(t0) = x0, x(T ) ∈ XT boundary conditions

x(t) ∈ X , ∀t ∈ [0, T ] state constraints

u(t) ∈ U , ∀t ∈ [0, T ] input constraints

An optimal control u∗(t) for a specific initial state x0 is an open-loop input. An optimal
control of the form u∗(t) = π∗(t, x(t)) is a closed-loop input.

The stochastic and unknown model settings will be covered later on in the course.
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Optimal control problems (discrete-time)

minimize
x,u

J(x, u) := ℓT (T, xT ) +
T −1∑
t=0

ℓ(t, xt, ut) cost (terminal + stage)

subject to xt+1 = f(t, xt, ut), ∀t ∈ {0, 1, . . . , T − 1} dynamical feasibility

x0 = x̄0, xT ∈ XT boundary conditions

xt ∈ X , ∀t ∈ {0, 1, . . . , T − 1} state constraints

ut ∈ U , ∀t ∈ {0, 1, . . . , T − 1} input constraints

An optimal control u∗
t for a specific initial state x0 is an open-loop input. An optimal control

of the form u∗
t = π∗(t, xt) is a closed-loop input.

The stochastic and unknown model settings will be covered later on in the course.
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Example: Finite-horizon linear quadratic regulator (LQR)

minimize
x,u

x(T )TQT x(T ) +
∫ T

0

(
x(t)TQ(t)x(t) + u(t)TR(t)u(t)

)
dt cost

subject to ẋ(t) = A(t)x(t) + B(t)u(t), ∀t ∈ [0, T ] dynamical feasibility
x(0) = x0 initial condition

For linear dynamics and a quadratic cost, we can derive the optimal feedback law
u∗(t) = K(t)x(t), which is also linear.
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Example: Infinite-horizon linear quadratic regulator (LQR)

minimize
x,u

∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt cost

subject to ẋ(t) = Ax(t) + Bu(t), ∀t ∈ [0, ∞) dynamical feasibility
x(t0) = x0 initial condition

For LTI dynamics and a time-invariant quadratic cost, we can derive the optimal feedback law
u∗(t) = Kx(t), which is also LTI.

The closed-loop system must converge to zero (i.e., be asymptotically stable) to ensure the
infinite-horizon cost is well-defined.

The cost function J(x∗, u∗) is a Lyapunov function for the closed-loop dynamics!
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Next class

Nonlinear optimization theory
(for unconstrained and constrained problems)
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