AA 203: Optimal and Learning-based Control
 Homework \#1
 Due April 24 by 11:59 pm

Learning goals for this problem set:

Problem 1: Learn how to construct stabilizing controllers by exploiting structure in the dynamics.
Problem 2: Gain familiarity with the Pontryagin maximum principle (PMP), study the structure of time-optimal trajectories, and learn about singular arcs.

Problem 3: Implement an indirect method for optimal control and gain familiarity with JAX.
1.1 Backstepping. Consider the strict-feedback system

$$
\begin{aligned}
& \dot{x}=f(x)+B(x) z \\
& \dot{z}=u
\end{aligned}
$$

with $x \in \mathbb{R}^{n}$ and $z, u \in \mathbb{R}^{m}$, where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $B: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times m}$ are known smooth functions, and $f(0)=0$.

Suppose the subsystem $\dot{x}=f(x)+B(x) z$ can be stabilized by a smooth feedback law $z=\phi_{0}(x)$ with $\phi_{0}(0)=0$, i.e., the closed-loop system $\dot{x}=f(x)+B(x) \phi_{0}(x)$ is globally asymptotically stable with respect to the origin $x=0$. Moreover, suppose we know a smooth, positive-definite, radially unbounded Lyapunov function $V_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}$ and positive definite function $\rho: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}$ satisfying

$$
\nabla V_{0}(x)^{\top}\left(f(x)+B(x) \phi_{0}(x)\right) \leq-\rho(x),
$$

for all $x \in \mathbb{R}^{n}$.
We now consider the entire (x, z)-system, which we can only control through $u \in \mathbb{R}^{m}$. We want to use our knowledge of a stabilizing controller for the inner x-dynamics and the strict-feedback form of the (x, z)-dynamics to "back out" a stabilizing controller for the entire system.
Use the Lyapunov candidate function

$$
V_{1}(x, z)=V_{0}(x)+\frac{1}{2}\left\|z-\phi_{0}(x)\right\|_{2}^{2}
$$

to find a stabilizing controller $u=\phi_{1}(x, z)$ for some function $\phi_{1}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ that ensures $(x, z) \rightarrow(0,0)$. Notice that V_{1} comprises the "inner" Lyapunov function V_{0} and a penalty term for the difference between z and the value of the "inner" stabilizing control. Explicitly derive the function ϕ_{1} and rigorously describe why it stabilizes the (x, z)-system using Lyapunov theory (i.e., prove $V_{1}(x, z)$ is positive-definite and radially unbounded, and $\dot{V}_{1}(x, z)$ is negative-definite along trajectories of the (x, z)-subsystem in closed-loop with $u=\phi_{1}(x, z)$).
1.2 Singular arc for Dubins' car. The kinematics of Dubins' car are described by

$$
\begin{aligned}
\dot{x} & =v \cos \theta \\
\dot{y} & =v \sin \theta, \\
\dot{\theta} & =u
\end{aligned}
$$

where $(x, y) \in \mathbb{R}^{2}$ is the car's position, $\theta \in \mathbb{R}$ is the car's heading, $v>0$ is the car's constant known speed, and u is the controlled turn rate. The turn rate is bounded, i.e., $u \in[-\bar{\omega}, \bar{\omega}]$, where $\bar{\omega}>0$ is a known constant.

The car starts at $(x, y)=(0,0)$ with a heading of $\theta=0$ at $t=0$. We want the car to drive to $(x, y)=(0, c)$ in the least amount of time possible, where $c>0$ is a given constant.
(a) Use Pontryagin's maximum principle to express the optimal control input $u^{*}(t)$ as a function of the optimal co-state $p^{*}(t):=\left(p_{x}^{*}(t), p_{y}^{*}(t), p_{\theta}^{*}(t)\right) \in \mathbb{R}^{3}$.

Hint: You should discover that the maximum condition for $u^{*}(t)$ is not informative whenever $p_{\theta}^{*}(t) \equiv \bar{p}_{\theta}$ for a particular fixed value $\bar{p}_{\theta} \in \mathbb{R}$. When such a lack of information persists over a non-trivial time interval, i.e., any time interval $\left[t_{1}, t_{2}\right]$ with $t_{2}>t_{1} \geq 0$, this is known as a singular arc. To compute $u^{*}(t)$ in this case, use the fact that $p_{\theta}^{*}(t) \equiv \bar{p}_{\theta}$ is constant in time along this singular arc.
(b) Use boundary conditions to argue why $p^{*}(t)$ might end in a singular arc. Suppose we know $p^{*}(t)$ begins on a non-singular arc, then switches once to and ends on a singular arc. For this particular case, argue why $u^{*}(0)=\bar{\omega}$ and describe the optimal state trajectory $\left(x^{*}(t), y^{*}(t), \theta^{*}(t)\right)$ and control trajectory $u^{*}(t)$ in words without explicitly deriving them.
1.3 Single shooting for a unicycle. Consider the kinematic model of a unicycle

$$
\begin{aligned}
& \dot{x}=v \cos (\theta) \\
& \dot{y}=v \sin (\theta), \\
& \dot{\theta}=\omega
\end{aligned}
$$

where (x, y) is the planar position of the vehicle, θ is its heading angle, v is its forward velocity, and ω is its angular velocity. Overall, the state and control input for this system are $x:=(x, y, \theta) \in \mathbb{R}^{3}$ and $u:=(v, \omega) \in \mathbb{R}^{2}$, respectively. We have overloaded x to denote both horizontal position $x \in \mathbb{R}$ and the full state vector $x \in \mathbb{R}^{3}$.
Our task is to drive the vehicle from the starting configuration $x(0)=(0,0, \pi / 2)$ to the target configuration $x(T)=(5,5, \pi / 2)$ in minimum time with as little control effort as possible. To this end, we consider the objective

$$
J(x, u)=\int_{0}^{T}\left(\alpha+v(t)^{2}+\omega(t)^{2}\right) d t
$$

where $\alpha>0$ is a chosen constant weighting factor and T is the free final time.
(a) Derive the Hamiltonian and necessary optimality conditions, specifically
i. the ODE for the state and co-state,
ii. the optimal control as a function of the state and co-state, and
iii. the boundary conditions, including the additional condition for free final time T.

Hint: Since the control set is unbounded, use the weak maximum condition.
In practice, you might use a boundary value problem (BVP) solver from an existing computing library (e.g., scipy.integrate.solve_bvp), but in this problem we will use a bit of nonlinear optimization theory and JAX to write our own!
(b) In the file starter_single_shooting_unicycle.py, complete the implementations of dynamics, hamiltonian, optimal_control, and pmp_ode. Use $\alpha=0.25$.

In the single shooting method, we need to initialize estimates of the initial co-state $p(0)$ and final time T. We then integrate the state and co-state dynamics forward in time from $t=0$ to $t=\hat{T}$, at which point we check whether the terminal boundary conditions are satisfied.
(c) Use the ODE integration from pmp_trajectories to complete boundary_residual, which should compute a measure of how far off each of your terminal boundary conditions is from satisfaction, given guesses for the initial co-state $p(0)$ and final time T.
(d) Finally, in newton_step and single_shooting, implement the Newton-Raphson root-finding method for boundary_residual. Now, if you provide an appropriate guess for the initial costate and final time, you can run python3 starter_single_shooting_unicycle.py and see a plot of the optimal solution. You may find that whether or not your BVP solver converges to a solution is highly dependent on the quality of your initial guess - indeed, initialization is a major challenge when applying indirect methods for optimal control!

Hint: For finding roots of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, each iteration of the Newton-Raphson method entails improving a current best guess $x^{(k)}$ at iteration k using the update rule

$$
x^{(k+1)}=x^{(k)}-\frac{\partial f}{\partial x}\left(x^{(k)}\right)^{-1} f\left(x^{(k)}\right)
$$

Submit your completed version of starter_single_shooting_unicycle.py and the generated plot.

