
Stanford Spring 2023

AA 203: Optimal and Learning-based Control
Homework #1

Due April 24 by 11:59 pm

Learning goals for this problem set:

Problem 1: Learn how to construct stabilizing controllers by exploiting structure in the dynamics.

Problem 2: Gain familiarity with the Pontryagin maximum principle (PMP), study the structure
of time-optimal trajectories, and learn about singular arcs.

Problem 3: Implement an indirect method for optimal control and gain familiarity with JAX.

1.1 Backstepping. Consider the strict-feedback system

ẋ = f(x) +B(x)z

ż = u
,

with x ∈ Rn and z, u ∈ Rm, where f : Rn → Rn and B : Rn → Rn×m are known smooth functions,
and f(0) = 0.

Suppose the subsystem ẋ = f(x) + B(x)z can be stabilized by a smooth feedback law z = φ0(x)
with φ0(0) = 0, i.e., the closed-loop system ẋ = f(x) + B(x)φ0(x) is globally asymptotically stable
with respect to the origin x = 0. Moreover, suppose we know a smooth, positive-definite, radially
unbounded Lyapunov function V0 : Rn → R≥0 and positive definite function ρ : Rn → R≥0

satisfying
∇V0(x)T(f(x) +B(x)φ0(x)) ≤ −ρ(x),

for all x ∈ Rn.

We now consider the entire (x, z)-system, which we can only control through u ∈ Rm. We want to
use our knowledge of a stabilizing controller for the inner x-dynamics and the strict-feedback form
of the (x, z)-dynamics to “back out” a stabilizing controller for the entire system.

Use the Lyapunov candidate function

V1(x, z) = V0(x) +
1

2
‖z − φ0(x)‖22

to find a stabilizing controller u = φ1(x, z) for some function φ1 : Rn × Rm → Rm that ensures
(x, z) → (0, 0). Notice that V1 comprises the “inner” Lyapunov function V0 and a penalty term
for the difference between z and the value of the “inner” stabilizing control. Explicitly derive the
function φ1 and rigorously describe why it stabilizes the (x, z)-system using Lyapunov theory (i.e.,
prove V1(x, z) is positive-definite and radially unbounded, and V̇1(x, z) is negative-definite along
trajectories of the (x, z)-subsystem in closed-loop with u = φ1(x, z)).

1.2 Singular arc for Dubins’ car. The kinematics of Dubins’ car are described by

ẋ = v cos θ

ẏ = v sin θ

θ̇ = u

,

1



where (x, y) ∈ R2 is the car’s position, θ ∈ R is the car’s heading, v > 0 is the car’s constant known
speed, and u is the controlled turn rate. The turn rate is bounded, i.e., u ∈ [−ω̄, ω̄], where ω̄ > 0
is a known constant.

The car starts at (x, y) = (0, 0) with a heading of θ = 0 at t = 0. We want the car to drive to
(x, y) = (0, c) in the least amount of time possible, where c > 0 is a given constant.

(a) Use Pontryagin’s maximum principle to express the optimal control input u∗(t) as a function
of the optimal co-state p∗(t) := (p∗x(t), p∗y(t), p

∗
θ(t)) ∈ R3.

Hint: You should discover that the maximum condition for u∗(t) is not informative whenever
p∗θ(t) ≡ p̄θ for a particular fixed value p̄θ ∈ R. When such a lack of information persists over
a non-trivial time interval, i.e., any time interval [t1, t2] with t2 > t1 ≥ 0, this is known as a
singular arc. To compute u∗(t) in this case, use the fact that p∗θ(t) ≡ p̄θ is constant in time
along this singular arc.

(b) Use boundary conditions to argue why p∗(t) might end in a singular arc. Suppose we know p∗(t)
begins on a non-singular arc, then switches once to and ends on a singular arc. For this par-
ticular case, argue why u∗(0) = ω̄ and describe the optimal state trajectory (x∗(t), y∗(t), θ∗(t))
and control trajectory u∗(t) in words without explicitly deriving them.

1.3 Single shooting for a unicycle. Consider the kinematic model of a unicycle

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = ω

,

where (x, y) is the planar position of the vehicle, θ is its heading angle, v is its forward velocity, and
ω is its angular velocity. Overall, the state and control input for this system are x := (x, y, θ) ∈ R3

and u := (v, ω) ∈ R2, respectively. We have overloaded x to denote both horizontal position x ∈ R
and the full state vector x ∈ R3.

Our task is to drive the vehicle from the starting configuration x(0) = (0, 0, π/2) to the target
configuration x(T ) = (5, 5, π/2) in minimum time with as little control effort as possible. To this
end, we consider the objective

J(x, u) =

∫ T

0

(
α+ v(t)2 + ω(t)2

)
dt,

where α > 0 is a chosen constant weighting factor and T is the free final time.

(a) Derive the Hamiltonian and necessary optimality conditions, specifically

i. the ODE for the state and co-state,

ii. the optimal control as a function of the state and co-state, and

iii. the boundary conditions, including the additional condition for free final time T .

Hint: Since the control set is unbounded, use the weak maximum condition.

In practice, you might use a boundary value problem (BVP) solver from an existing computing
library (e.g., scipy.integrate.solve bvp), but in this problem we will use a bit of nonlinear
optimization theory and JAX to write our own!

2

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_bvp.html


(b) In the file starter single shooting unicycle.py, complete the implementations of dynamics,
hamiltonian, optimal control, and pmp ode. Use α = 0.25.

In the single shooting method, we need to initialize estimates of the initial co-state p(0) and final
time T . We then integrate the state and co-state dynamics forward in time from t = 0 to t = T̂ ,
at which point we check whether the terminal boundary conditions are satisfied.

(c) Use the ODE integration from pmp trajectories to complete boundary residual, which
should compute a measure of how far off each of your terminal boundary conditions is from
satisfaction, given guesses for the initial co-state p(0) and final time T .

(d) Finally, in newton step and single shooting, implement the Newton-Raphson root-finding
method for boundary residual. Now, if you provide an appropriate guess for the initial costate
and final time, you can run python3 starter single shooting unicycle.py and see a plot
of the optimal solution. You may find that whether or not your BVP solver converges to a
solution is highly dependent on the quality of your initial guess – indeed, initialization is a
major challenge when applying indirect methods for optimal control!

Hint: For finding roots of a function f : Rn → Rn, each iteration of the Newton-Raphson
method entails improving a current best guess x(k) at iteration k using the update rule

x(k+1) = x(k) − ∂f

∂x
(x(k))−1f(x(k)).

Submit your completed version of starter single shooting unicycle.py and the generated plot.

3


