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Today’s lecture

• Aim
• Review regression models that will be used throughout this class

• Outline:
• Maximum likelihood and least squares via ML
• Bayesian inference and Bayesian linear regression
• Gaussian process regression
• Intro to neural networks
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Regression

• Main tool in learning dynamics models, value functions, and policies
• Aims to model a continuous output as a function of the input
• Contrast to classification setting which has a finite set of outputs
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Supervised learning

• We are given training dataset
• Want to find some such that                           is close to

What does it mean to be “close”?    
How do we represent     ?

How do we represent uncertainty?

AA 203 | Recitation 2



Maximum likelihood

• Dominant method in statistical inference due to flexibility and 
computational tractability 
• Assume model is parameterized by
• Likelihood 
• Principle of maximum likelihood: choose 
• In practice, will maximize log likelihood
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From max likelihood to least squares

• We have not chosen a model parameterization: how to represent    ?
• We will assume data is generated by 
• Likelihood is 
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Least squares

• Loss function is convex + smooth in     , so first 
order necessary conditions imply global optimum

• Observe      without noise, so can transform 
nonlinearly to construct features 
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Bayesian inference 

• Previously, we have computed a point estimate of model 
parameters, have not incorporated prior information
• Bayesian inference: specify prior belief over parameter, use Bayes’ 

rule to compute the posterior distribution

• As opposed to point estimate, gives full distribution over parameter
• Allows incorporation of prior information
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Bayesian inference: difficulties

• Requires computing marginal likelihood
• Typically results in intractable integral 

• In general, we will not be able to exactly compute posterior
• Instead, turn to sampling-based approximations

• We will examine special cases where posterior computation is exact
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Bayesian least squares

• Assume linear model with iid Gaussian noise
• Choose prior
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Maximum a Posteriori Estimation

• Want to factor in prior information but computing full posterior is 
irrelevant/too difficult
• Maximum a Posteriori (MAP) estimator 

• As prior becomes flatter, approaches maximum likelihood estimator
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Gaussian process regression

• Gaussian process: can think of as infinite 
dimensional Gaussian distribution, or Gaussian 
distribution over functions
• Fully specified by mean and variance 

• The function                  is referred to as the kernel; 
must be
• Symmetric:
• Positive definite: 
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Kernel functions 

• Consider Bayesian linear regression with prior

• So kernel is a simple inner product of feature vectors; can rewrite 
BLR in this form
• In general: every positive definite kernel corresponds to a (possible 

infinite dimensional) set of features; e.g
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Kernel function

• Choice of kernel determines features/shape of 
the posterior belief over function
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Gaussian process: machinery

• Let                                              then 

• So have

• With

• Gives
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Neural networks: perceptron 

• Have so far pre-specified features
• Since 2012, significant progress in learning 

features via neural networks
• Perceptron:
• The nonlinearity             is the threshold function
• Example: sigmoid

• Results in linear binary classifier
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Neural networks

• Feed-forward neural network: stack 
hidden units

• Single hidden layer:

• Can choose loss function
• Squared error common for regression

• Problem: optimization no longer 
convex
• Bottleneck until empirical 

performance became state of the art
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