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Today’s lecture

* Aim
* Review regression models that will be used throughout this class

* Qutline:
* Maximum likelihood and least squares via ML
* Bayesian inference and Bayesian linear regression
* Gaussian process regression
* Intro to neural networks
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Regression

* Main tool in learning dynamics models, value functions, and policies
* Aims to model a continuous output as a function of the input
 Contrast to classification setting which has a finite set of outputs
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Supervised learning

* We are given training dataset D = {(z;, 1)},
* Want to find some f such that ¢, = f(a;) iscloseto y;

What does it mean to be “close”?

How do we represent f?
How do we represent uncertainty?
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Maximum likelihood

* Dominant method in statistical inference due to flexibility and
computational tractability

* Assume model is parameterized by 6
* Likelihood L(0) = p(D | 0)
* Principle of maximum likelihood: choose 8" = argmaxyL(0)

* |n practice, will maximize log likelihood

logp(D | 6 Zlogp yi | i, 0)
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From max likelihood to least squares

* We have not chosen a model parameterization: how to represent f?
* We will assume data is generated by y = x'0* + ¢

e Likelihood is | |
p(Z/ ‘ $/9> — N(Q’JTO?O'Z) —

. (y—=T6)?
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Least squares

 Loss function is convex + smooth in @, so first
order necessary conditions imply global optimum

Volly — X0|; =2X7X0 — 2XTy

Murphy, 2012.

* Observe & without noise, so can transform
nonlinearly to construct features ¢(x)
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Bayesian inference

* Previously, we have computed a point estimate of model
parameters, have not incorporated prior information

 Bayesian inference: specify prior belief over parameter, use Bayes’
rule to compute the posterior distribution

p(D | 0)p(0)

p(@ | D) = (D)

* As opposed to point estimate, gives full distribution over parameter
* Allows incorporation of prior information
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Bayesian inference: difficulties  »6p) - 221970

 Requires computing marginal likelihood p(D)
* Typically results in intractable integral

/ p(D | 0)p(6)d6

* In general, we will not be able to exactly compute posterior
* Instead, turn to sampling-based approximations

* We will examine special cases where posterior computation is exact
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Bayesian least squares

* Assume linear model with iid Gaussian noise
* Choose prior p(0) = N (o, 3o)
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prior/posterior

Murphy, 2012.

data space




Maximum a Posteriori Estimation

» Want to factor in prior information but computing full posterior is
irrelevant/too difficult

 Maximum a Posteriori (MAP) estimator
0r14p = argmaxyp(0 | D) = argmaxyp(D | 0)p(6)

* As prior becomes flatter, approaches maximum likelihood estimator
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(Gaussian process regression

Prior

* Gaussian process: can think of as infinite Z 0\/\ /
dimensional Gaussian distribution, or Gaussian 2 _,| \/ [N
distribution over functions .

* Fully specified by mean and variance 6 o 5

/I(ZB) — E f(m)] ) Posterior p' ’
k(@ «') = E[(f(x) - n(x))(f (&) — p(@))] |
 The function k(x, ') is referred to as the kernel; = :
must be g
e Symmetric: k(z,x') = k(z', x) -1
 Positive definite; [k(xy,z,) ... k(xy, ;)] |\
; =0 -5 0 5
k(xp, 1) ... k(Tk, k) i
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Rasmussen and Williams, 2006.




Kernel functions

* Consider Bayesian linear regression with prior 8 ~ N (0, X))

p(x) =E[0"¢(x)] = 0
k(x,x') = o(x) E[00" |p(x) = ¢(z)" Lop(x)

* So kernelis a simple inner product of feature vectors; can rewrite
BLR in this form

* In general: every positive definite kernel corresponds to a (possible

infinite dimensional) set of features; e.g
1

k(x,x') = exp(—ﬁHCL‘ —a'|3)
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Kernel function

 Choice of kernel determines features/shape of

the posterior belief over function

Gortler et al.,
Distill, 2019
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Gaussian process: machinery

Y1 X
e | et !z;] ~ N( [Z;] ; !2; Zz]) then p(yr | yo2) = N(Lh + 22121‘11(::/2 — M2), X1 — Z2121_11212)

. f(x*) O |k(x*, x") K(X,x)
So have { y |~V [0] ’ [K(w X) K(X,X)+a21])
. k(z*, ) k(z1, 1) k(xy, x4)
e With Kz, x) = ; K(X,X) = 5
_k(m*jwd)_ _k(a:d,wl) k(:cd,:cd)_

E[f(x*)] = K(z*, X)(K(X,X) +c*I) 'y

* Gives
var(f(x*)) = k(z*, z*) — K(x*, X)(K (X, X) + ) ' K(X, z*)

AA 203 | Recitation 2



Neural networks: perceptron

* Have so far pre-specified features

* Since 2012, significant progress in learning
features via neural networks
e Perceptron: h(z) = o(w’x)

» The nonlinearity o(-) is the threshold function

* Example: sigmoid 1 N
o(x)

1254 @

1 + (3_:1: 1001 e

* Results in linear binary classifier ol “wl
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Hidden
layer

Input

Neural networks

Feed-forward neural network: stack
hidden units

Single hidden layer:

Can choose loss function .-

d Sq u a red e rro r CO m m O n fo r reg reSS i O n Conv 1: Edge+Blob Conv 3: Textur Conv : Object Parts Fc8: Object Classes

Problem: optimization no longer
convex

» Bottleneck until empirical
performance became state of the art

AA 203 | Recitation 2



