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Optimal and Learning-based Control
Nonlinearity: tracking LQR, iterative LQR, differential dynamic programming



Roadmap

4/25/2022 AA 203 | Lecture 9 2

Open-loop

Indirect 
methods

Direct 
methods

Closed-loop

DP HJB / HJI

MPC

Adaptive
optimal control

Model-based RL

Model-free RL

Control

Optimal and 
learning control

Adaptive controlFeedback control

LQR iLQR DDP



LQR-style algorithms for optimal control

• Linear tracking problems

• Nonlinear tracking problems

• Using LQR techniques to solve nonlinear optimal control 
problems
• Iterative LQR

• Differential dynamic programming

• Readings: notes Section 3.1, 3.2 and references therein
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https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf


Recapping LQR
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• Minimize

s.t.

• Solved efficiently using dynamic programming by 
computing value function:

• Result:



Recapping LQR
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• Minimize

s.t.

• Solved efficiently using dynamic programming by 
computing value function:

• Result:
Q function (state-action value function)



Recapping LQR
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• Can also generalize cost (adding linear/constant terms), 
and dynamics (adding affine term)

Minimize

subject to dynamics

➔



Linear tracking problems

• Imagine you are given a nominal trajectory

(ഥ𝒙0, … , ഥ𝒙𝑁), (ഥ𝒖0, … , ഥ𝒖𝑁−1)

• Assume nominal trajectory satisfies linear dynamics

• Linear tracking problem: find policy to minimize cost
1

2
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𝑇
𝑄𝑁(𝒙𝑁 − ഥ𝒙𝑁 ) +

1

2


𝑘=0

𝑁−1

[ 𝒙𝑘 − ഥ𝒙𝑘
𝑇
𝑄(𝒙𝑘 − ഥ𝒙𝑘 ) + 𝒖𝑘 − ഥ𝒖𝑘

𝑇
𝑅(𝒖𝑘 − ഥ𝒖𝑘 )]

• Then define deviation variables 

𝛿𝒙𝑘 ≔ 𝒙𝑘 − ഥ𝒙𝑘 and 𝛿𝒖𝑘 ≔ 𝒖𝑘 − ഥ𝒖𝑘

and solve standard LQR with respect to deviation variables
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Nonlinear tracking problems

• Imagine you are given a feasible nominal trajectory

(ഥ𝒙0, … , ഥ𝒙𝑁), (ഥ𝒖0, … , ഥ𝒖𝑁−1)

• The  tracking cost is still quadratic, but the dynamics are now nonlinear
𝒙𝑘+1 = 𝑓(𝒙𝑘 , 𝒖𝑘)

• To apply LQR, we can linearize around the nominal trajectory

• And apply LQR to the deviation variables (with dynamics 𝛿𝒙𝑘+1 = 𝐴𝑘𝛿𝒙𝑘 + 𝐵𝑘𝛿𝒖𝑘)

𝐴𝑘 𝐵𝑘

𝛿𝒙𝑘 𝛿𝒖𝑘
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Nonlinear optimal control problem

• Consider now nonlinear optimal control 
problem

• Can we apply LQR-techniques to 
approximately solve it?
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Iterative LQR

• Imagine you are given a feasible nominal trajectory

(ഥ𝒙0, … , ഥ𝒙𝑁), (ഥ𝒖0, … , ഥ𝒖𝑁−1)

• Linearize the dynamics around feasible trajectory

• And Taylor expand cost function around feasible trajectory
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Iterative LQR

• By optimizing over deviation variables (using results for LQR with 
cross-quadratic cost & affine dynamics), we obtain new solution:

{ഥ𝒙𝑘 + 𝛿𝒙𝑘
∗ } and {ഥ𝒖𝑘 + 𝛿𝒖𝑘

∗ }

• We can then re-linearize and Taylor expand around this new 
trajectory, and iterate!
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Iterative LQR

• Backward pass (𝑘 = 𝑁 to 0): 
• Compute locally linear dynamics, locally quadratic cost 

around nominal trajectory

• Solve local approximation of DP recursion to compute 
control law

• Compute cost-to-go

• Forward pass (𝑘 = 0 to 𝑁):
• Use optimal control policy to update nominal trajectory

• Propagate full nonlinear dynamics f, not the linearized 
approximate dynamics!

• Iterate until convergence
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Algorithmic details

• Need to make sure that the new state / control stay 
close to the linearization point 
• Add extra penalty on deviations

• Apply a line search on policy rollout

• Need to decide on termination criterion 
• For example, one can stop when cost improvement is “small”

• Method can get stuck in local minima → “good” 
initialization is often critical 

• Cost matrices may not be positive definite
• Regularize them until they are

• Great collection of tips/tricks: Yuval Tassa’s thesis
(Section 2.2.3)
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https://homes.cs.washington.edu/~todorov/papers/TassaThesis.pdf


Differential Dynamic Programming (DDP)

• iLQR first approximates dynamics and 
cost, then performs exact DP recursion

• DDP instead approximates DP 
recursion directly
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In detail, consider the change in cost to go 
at timestep k under a perturbation                      

Using a 2nd order Taylor Expansion,

Differential Dynamic Programming (DDP)
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Differential Dynamic Programming (DDP)
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The optimal control perturbation is

Expanding the approximation, one gets



Differential Dynamic Programming (DDP)

Apply conditions for optimality (gradient 
equal to zero):

As was the case with LQR, the optimal 
control has the form 

Algorithm proceeds via same 
forward/backward passes as iLQR
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iLQR vs. DDP
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Quadratic approximations for the state-action 
value function (Q function):

DDP contains second-order dynamics 
derivatives compared to iLQR



Next time

• Direct methods for trajectory 
optimization

• Sequential convex programming
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