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LQR-style algorithms for optimal control

* Linear tracking problems
* Nonlinear tracking problems

* Using LQR techniques to solve nonlinear optimal control
problems
* |terative LOR
» Differential dynamic programming

* Readings: notes Section 3.1, 3.2 and references therein
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https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf

Recapping LQR

* Minimize
1 1=
J()(XO) = §X7]\}QNXN + 5 Z (Xngxk + unguk + 2X£H}€uk)
k=0
s.t. Xet1 = Apxp + Brug,  ke€{0,1,...,N—1}

 Solved efficiently using dynamic programming by
computing value function:

eI TQk HE [xa
Jk(xk)_r%in§([uk] [Hg Ryl |up| T

(Apxp + Brug)? Pey (Arxp + Bkukz))
e Result:
WZ(XI{) = Lk;Xk;
1

JZ; (Xk;) — §XZP[€X]€
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Recapping LQR

* Minimize
1 N—1

1
Jo(x0) = QXJJ\}QNXN +35 > (xhQuxy + uf Ryuy, + 2x Hyuy)
k=0

s.t. Xet1 = Apxp + Brug,  ke€{0,1,...,N—1}

 Solved efficiently using dynamic programming by
computing value function:

eI TQk HE [xa
Jk(xk)_r%inﬁ([uk] [Hg Ryl |up| T

(Apxp + Brug)? Py (Apxp + Bkukz))

* Result: ‘ ' J
i (xg) = LipXp, Q function (state-action value function)
. 1
Jk: (Xk;) — §XZP[€X]€
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Recapping LQR

* Can also generalize cost (adding linear/constant terms),
and dynamics (adding affine term)

Minimize

subject to dynamics
=L B[]
> mh(xk) = [Lr Llk] [Xf]

« 1 xy ’ P, pr| Xk
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Linear tracking problems

Imagine you are given a nominal trajectory
(EOJ ) YN)' (ﬁOJ ) ﬁN—l)
* Assume nominal trajectory satisfies linear dynamics

* Linear tracking problem: fiNn_q policy to minimize cost

1 1
E(xzv - iN)T Qn(xy — Xy) +§z[(xk — X )TQ(xk - X )+ (uk — Uy )TR(uk — Uy )]
k=0

Then define deviation variables

5xk = X — Ek and 5uk = Uy — l_lk

and solve standard LQR with respect to deviation variables
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Nonlinear tracking problems

Imagine you are given a feasible nominal trajectory

(EOJ ey YN)' (ﬁOJ ey ﬁN—l)
The tracking cost is still quadratic, but the dynamics are now nonlinear
Xi+1 = f (X, ug)

To apply LQR, we can linearize around the nominal trajectory

6xk 6uk
_ of ,_  _ - of . _ _
Tp1 ~ (g, Ug) + a—i(mk,uk)(wk — &) + a—i(mk,uk)(uk — Ug)
Ak Bk

And apply LQR to the deviation variables (with dynamics 6 x;,1 = Ay dx;, + Brduy)
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Nonlinear optimal control problem

* Consider now nonlinear optimal control
problem

A1
min Z c(Xk, ug)
k=0
subject to xXxy+1 = f(Xk, ug)

* Can we apply LQR-techniques to
approximately solve it?
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lterative LQR

* Imagine you are given a feasible nominal trajectory

(EO' ey EN)' (ﬁO' ey ﬁN—l)

 Linearize the dynamics around feasible trajectory

Xp4+1 ~ f(Xg, Qg) ‘|'fx(}_(ka ﬁkz&ck +fu(>_<k, ﬁkz(ﬁlk

\ 4

~~

VO VO
Xk41 Ag By

* And Taylor expand cost function around feasible trajectory

1 1
c(0xy,0ug) ~ ¢ + cz,k X + cz’k oug + —5xf Cxx,k 0Xf + —5u£ Cau,k OUf + (5XZ Cxu,k OU
dk ry Qr Ry, Hy,
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lterative LQR

* By optimizing over deviation variables (using results for LQR with
cross-quadratic cost & affine dynamics), we obtain new solution:

{x;, +6x3}and {u;, + du;}

* We can then re-linearize and Taylor expand around this new
trajectory, and iterate!
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lterative LQR

* Backward pass (k = N to 0):

* Compute locally linear dynamics, locally quadratic cost
around nominal trajectory

 Solve local approximation of DP recursion to compute
control law

* Compute cost-to-go

* Forward pass (k = 0 to N):
* Use optimal control policy to update nominal trajectory

* Propagate full nonlinear dynamics f, not the linearized
approximate dynamics!

* |[terate until convergence
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Algorithmic details

* Need to make sure that the new state / control stay
close to the linearization point

» Add extra penalty on deviations
* Apply a line search on policy rollout

* Need to decide on termination criterion
* For example, one can stop when cost improvement is “small”

* Method can get stuck in local minima - “good”
initialization is often critical

« Cost matrices may not be positive definite
* Regularize them until they are

 Great collection of tips/tricks: Yuval Tassa’s thesis
(Section 2.2.3)
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https://homes.cs.washington.edu/~todorov/papers/TassaThesis.pdf

Differential Dynamic Programming (DDP)

* iLQR first approximates dynamics and

cost, then performs exact DP recursion Optimal Control

Problem

* DDP instead approximates DP _
recursion directly ILQR DDP

Approximate the System Approximate the Value Function

Quadratic approximation of cost

Ciuadratic approximation of cost-to-go
Linear approximation of dynamics kP 9

Perform exact DP recursion on
the approximated system
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Differential Dynamic Programming (DDP)

In detail, consider the change in cost to go
at timestep k under a perturbation (dx;., duy.)

Qk(éxk, 5uk) = C()_(]€ + 5Xk, u; + 5uk) -+ Jk-l—l(f()_(k —+ (SXk;, u; + 5uk))

Using a 2nd order Taylor Expansion,

Qr(dxx, dur) & Q(0,0) + VQF [(m] +3 lg}%] v2Qu lgﬁﬂ
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Differential Dynamic Programming (DDP)

The optimal control perturbation is
du; = argming,, Q(dxg, du)

Expanding the approximation, one gets

Qr(0zk, dur) ~ Qr(0,0) + Q, 10Tk + Q,, 10U

first order terms

1 1
+ 508 Qua k0T + S0ty Quu 5k + 5Ty Qo 1Ok

. >

~
second order terms
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Differential Dynamic Programming (DDP)

Apply conditions for optimality (gradient
equal to zero):

Qu,k —I_ QU$,k5$k _|_ Quu’ké‘uk — O
— (5’11’,2; — _Q’l:‘l}’k@uak — Q;j}kQu%k(SCDk

As was the case with LQR, the optimal
control has the form

Algorithm proceeds via same
forward/backward passes asiLQR
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R EEEEEEEEE—————S——m—m—m———
ILQR vs. DDP

Quadratic approximations for the state-action
value function (Q function):

Qr = cx + Vg1
Qx.k = Cx,k + f,zkvkﬂ
Quk = Cuk + fzkvk—l—l
Qxx.k = Cxxk + S Vi1 frk + Vi1 * [k
Quu,k = Cau,k T fzkvlﬁ—i—lfuak + Vit1 * Juuk
Qux,k = Cux,k T flzkvk+1fx,k + Vit1 - fux.k

DDP contains second-order dynamics
derivatives compared to iLQR
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Next time

* Direct methods for trajectory
optimization

* Sequential convex programming
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