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Model predictive control

« Stability of MPC
* Implementation aspects of MPC
* Robust MPC

* Reading;:
 F. Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid
Systems, 2017.

» J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory,
Computation, and Design, 2017.
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-
Stability of MPC

* Persistent feasibility does not guarantee that the closed-loop
trajectories converge towards the desired equilibrium point

* One of the most popular approaches to guarantee persistent
feasibility and stability of the MPC law makes use of a control
invariant terminal set X, for feasibility, and of a terminal function

p(-) for stability
 To prove stability, we leverage the tool of Lyapunov stability theory
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Lyapunov stability theory

 Lyapunov theorem: Consider the equilibrium point x = 0 for the
autonomous system {x;,; = f(x;)} (with f(0) = 0).Let Q) c R" be
a closed, bounded, positively invariant set containing the origin. Let
V:R"™ — R be a function, continuous at the origin, such that

V(0)=0andV(x) >0 vxe Q\ {0}
V(Xp41) — V(X)) <0 Vx, € Q\ {0}
Then x = 0 is asymptotically stable in Q.

* The idea is to show that with appropriate choices of X and p(-),
Jo is a Lyapunov function for the closed-loop system
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-
MPC stability theorem

* MPC stability theorem (for quadratic cost): Assume

AO:Q =Q" =0,R=R">0,P>0

Al: Sets X, X¢, and U contain the origin in their interior and are closed
A2: X; € X is control invariant and bounded

: - _ <
A3: weu min exf( p(x) +c(x,u) + p(Ax + Bu)) <0,VX € Xy

Then, the origin of the closed-loop system is asymptotically stable
with domain of attraction X,.
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-
MPC stability theorem

* Proof:
1. Note that, by assumption A2, persistent feasibility is guaranteed for
any P,(Q, R

2. We want to show that J; is a Lyapunov function for the closed-loop
systemx(t + 1) = f,(x(t)), with respect to the equilibrium f(0) =
0 (the origin is indeed an equilibrium as 0 € X, 0 € U, and the cost is
positive for any non-zero control sequence)

3. X, is bounded and closed (follows from assumption on X¢)
4. J5(0) = 0 (value is nonnegative by construction, and 0 is achievable)
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MPC stability theorem

* Proof:
5. Jo(x) > O0forallx € X, \ {0}

6. Next we show the decay property. Since the setup is time-invariant,
we can study the decay property betweent =0andt =1

* Letx(0) € X, let U, o] — [ugo],ugo], ...,u,[\(,)]_l] be the optimal control sequence,

and let [x(0), x1 ) e, X [0]] be the corresponding trajectory

* After applying uO ,one obtains x(1) = Ax(O) + BuE,O]

* Consider the sequence of controls [ug , 2] '\f |, wherev € U, and the

corresponding state trajectory is [x(1), x . xN ,AXN + Bv]|
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MPC stability theorem

e Since xl[\(,)] € X¢(by terminal constraint), and since X is control invariant,

3v € U such that Axl[\?] + BV € X¢

 With such a choice of v, the sequence [u:[lo], u[zo], e “1[\(1)]—1» v] is feasible for the

MPC optimization problem attimet =1
* Since this sequence is not necessarily optimal

N—-1
]S(X(l)) <p (Ax,[\?] + B\_r) + z C (X,[(O], uLO]) +c (XI[\?],‘_I)
k=1
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MPC stability theorem

e Since xl[\(,)] € X¢(by terminal constraint), and since X is control invariant,

3v € U such that Axl[\?] + BV € X¢

 With such a choice of v, the sequence [u:[lo], u[zo], e “1[\(1)]—1» v] is feasible for the

MPC optimization problem attimet =1
* Since this sequence is not necessarily optimal

N-1
Jo(x(1) <p (AXN + Bv + z c + c( 0] v)
k=1

+p (XN ) (x 0] ) +c (X(O), uOO ) —C (x(O), ugo])
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MPC stability theorem

* Equivalently

P (x(l)) <p (Ax,[\?] -+ B\_/) + /5 (X(O)) —p (XI[\(,)]) —C (X(O), ugo]) + c(x,[\?],\_f)

* Since x,[\(,)] € X, by assumption A3, we can select v such that

J5(x(1)) < J5(x(0)) — ¢ (x(0), up”)
» Sincec (X(O), ugo]) > (0 forallx(0) € X, \ {0},
Jo(x(D) — J5(x(0)) < 0

* The last step is to prove continuity; details are omitted and can be
found in Borrelli, Bemporad, Morari, 2017

* Note: A2 is used to guarantee persistent feasibility; this assumption
can be replaced with an assumption on the horizon N
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How to choose Xf and P?

* Case 1: assume A is asymptotically stable
* Set X; as the maximally positive invariant set O, for systemx(t + 1) =
Ax(t), x(t) € X
* X¢isacontrolinvariant set for system x(t + 1) = Ax(t) + Bu(t),asu =
0 is a feasible control

* Asfor stability, u = 0 is feasible and Ax € X; if X € X, thus assumption A3
becomes

—x"Px+x"Qx+x"A"PAx < 0, forallx € X,
which is true since, due to the fact that 4 is asymptotically stable,
IJP>0| —P+Q + ATPA =0 (Lyapunov Equation)

Cost-to-go/value function
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How to choose Xf and P?

 Case 2: general case (e.g., if A is open-loop unstable)
* Let F,, be the optimal gain for the infinite-horizon LQR controller
* Set X as the maximal positive invariant set for system

x(t+ 1) = (A + BFE,)x(t)

(with constraints x(t) € X, and E_x(t) € U)

» Set P as the solution P, to the discrete-time Riccati equation, i.e., the value
function via LQR

—P+Q +AT"PA— (ATPB)(R+ B"PB)"1(BTPA) =0
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How to choose Xf and P?

 Case 2: general case (e.g., if A is open-loop unstable)
* Let F,, be the optimal gain for the infinite-horizon LQR controller
* Set X as the maximal positive invariant set for system

x(t+ 1) = (A + BFE,)x(t)

(with constraints x(t) € X, and E_x(t) € U)

» Set P as the solution P, to the discrete-time Riccati equation, i.e., the value
function via LQR

—P+Q +AT"PA— (ATPB)(R+ B"PB)"1(BTPA) =0
* Note: both cases as presented are just (suboptimal) choices!
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Explicit MPC

* In some cases, the MPC law can be pre-computed — no need for
online optimization

* Important case: constrained LQR

Jo(x) = u m1n xNPxN 2 X1 0X; + urRuy

subject to xk+1— Ax;, +Bu,, k=0,..,.N—-1
XkEX, ukE U, k:O,,N—l
XNE Xf

XO= X
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Explicit MPC

* The solution to the constrained LQR problem is a control which is a
continuous piecewise affme function on polyhedral partition of the
state space X, thatis u;, = m,(x;) where

T (x) = F)x+ gl if Hix<K], j=1,..,N]

* Thus, online, one has to locate in which cell of the polyhedral
partition the state x lies, and then one obtains the optimal control
via a look-up table query
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Tuning and practical use

* At present there is no other technique than MPC to design controllers
for general large linear multivariable systems with input and output
constraints with a stability guarantee

* Design approach (for squared 2-norm cost):
* Choose horizon length N and the control invariant target set X¢
* Control invariant target set X should be as large as possible for performance

« Choose the parameters Q and R freely to affect the control performance
* Adjust P as per the stability theorem
* Useful toolbox (MATLAB): https://www.mpt3.org/

* In practice, sometimes choosing a good terminal cost is enough (i.e.,
don’t need to enforce a terminal control invariant condition), though
you may be sacrificing guarantees
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https://www.mpt3.org/

MPC for reference tracking

* Usual cost
Yk=0 Xk QXy + i Ruy
does not work, as in steady state control does not need to be zero
 du- formulation: reason in terms of control changes
U, = Up,_1 +0uy
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MPC for reference tracking

* The MPC problem is readily modified to

Jo(x(©) =, min > llye = rilly + 6wyl
k

subjectto Xxj,1=4X;+Bu,, k=0,..,.N—-1
Vii= CX, k=0,..N—1
X, € X, u, e U, k=0,..N—1
XyE Xy

uk=uk_1+5uk, k=0,,N—1
Xo= X(t), U_q1 = U(t - 1)

* The controlinputis thenu(t) = duj + u(t — 1)
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Robust MPC

* We have so far not explicitly considered disturbances in constraint
satisfaction

 Consider system of the form
Xie+1 — AXk + Buk + Wi,

with constraintsx € X,u € U, and W is bounded.
» Can we guarantee stability and persistent feasibility for this system?
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Robust optimal control problem

N-1

]S(X(t)) = max min p(Xy) + c(Xp, Uy)
Wo,...WN—-1 Ug,--,UN—-1 —

subjectto X, 1=A4X; +Bu,+w,, k=0,..,.N—-1
x,€X, upel,weW k=0,..,N—1
XyE Xr
Xo= X(t)
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Robust MPC

 Key idea: consider forward reachable sets at each time

So(Xo) = {x(0)}
Sk (Xo, Ug.—1) = ASk—1(Xg, Wg.—2 ) + Bup_{ + W

All trajectories in these “tubes” must satisfy constraints.
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Robust MPC

N-1

]S(X(t)) = max min p(Xy) + c(Xp, Uy)
Wo,...WN-1 Up,..,UN—-1 —

subjectto X, 1=A4X; +Bu,+w,, k=0,..,.N—-1
S €EX, weU, wyeW k=0,..,.N—1
Sy € X¢
Xo= X(t)

Where p(Xy) is robustly stable and Xy is robust control invariant.
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Tube MPC

e Forward tubes in robust MPC can be
prohibitively large, motivating

techniques to reduce their size _, e ,, _

* Introduce nominal trajectory: v, NS

. . —_— [— ] \\\'\ TIJ 1: k '1 i} \\‘\\\'I . .L k 1I-:

Nominal trajectory: X, = AX;, + Buy, N e

Error: e, = X;, — Xy : - *
Yields dynamiCS: ek+1 p— Aek —I— Wk (a) Open-loop trajectories, : ib) Feedback trajectories,

* Consider feedback law: u;, = u;, + Fey
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Tube MPC

* Adding error feedback gives dynamics

)_(k+1 — A)_(k + Bﬁk
exr1 = (A + BFo)e, + wy

Must choose u,, to guarantee that X, + e;, satisfy state, action, and
terminal constraintsfork =1, ..., N.
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What about nonlinearity?

 Avery active field of research today!

* Control Barrier Functions (CBFs)
* Analogous to Control Lyapunov Functions (CLFs) but for constraints

 For general nonlinear dynamics x = f(x,u), if we can construct a function B(x)
satisfying
max V,B(X)Tf(x,u) > —a(B(x))
ueU

then C := {x € R" | B(x) = 0} is control invariant.

* Combining CBFs for persistent feasibility, CLFs for stability, horizon N = 1
results in a quadratic program for control-affine systems: CLF-CBF QPs

* Ames, et al., “Control Barrier Function Based Quadratic Programs for Safety Critical
Systems,” TAC, 2017.

* In practice, guarantees of persistent feasibility or stability are often
sacrificed; heuristic choices of terminal constraint, cost are employed
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Next time

* Back to learning!
Learning and adaptive MPC
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