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Stability of MPC, implementation aspects
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Model predictive control

• Stability of MPC

• Implementation aspects of MPC

• Robust MPC

• Reading:
• F. Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid 

Systems, 2017.

• J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory, 
Computation, and Design, 2017.
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Stability of MPC

• Persistent feasibility does not guarantee that the closed-loop 
trajectories converge towards the desired equilibrium point

• One of the most popular approaches to guarantee persistent 
feasibility and stability of the MPC law makes use of a control 
invariant terminal set 𝑋𝑓 for feasibility, and of a terminal function 
𝑝(⋅) for stability 

• To prove stability, we leverage the tool of Lyapunov stability theory
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Lyapunov stability theory

• Lyapunov theorem: Consider the equilibrium point 𝐱 = 0 for the 
autonomous system 𝐱𝑘+1 = 𝐟 𝐱𝑘 (with 𝐟 𝟎 = 𝟎). Let Ω ⊂ ℝ𝑛 be 
a closed, bounded, positively invariant set containing the origin. Let 
𝑉:ℝ𝑛 →ℝ be a function, continuous at the origin, such that 

𝑉 𝟎 = 0 and 𝑉 𝐱 > 0 ∀𝐱 ∈ Ω ∖ {𝟎}

𝑉 𝐱𝑘+1 − 𝑉 𝐱𝑘 < 0 ∀𝐱𝑘 ∈ Ω ∖ {𝟎}

Then 𝐱 = 0 is asymptotically stable in Ω.

• The idea is to show that with appropriate choices of 𝑋𝑓 and 𝑝(⋅),
𝐽0
∗ is a Lyapunov function for the closed-loop system 
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MPC stability theorem

• MPC stability theorem (for quadratic cost): Assume

A0: 𝑄 = 𝑄𝑇 ≻ 0, 𝑅 = 𝑅𝑇 ≻ 0, 𝑃 ≻ 0

A1: Sets 𝑋, 𝑋𝑓, and 𝑈 contain the origin in their interior and are closed

A2: 𝑋𝑓 ⊆ 𝑋 is control invariant and bounded

A3: min
𝐮∈𝑈, 𝐴𝐱+𝐵𝐮 ∈ 𝑋𝑓

−𝑝 𝐱 + 𝑐 𝐱, 𝐮 + 𝑝 𝐴𝐱 + 𝐵𝐮 ≤ 0, ∀𝐱 ∈ 𝑋𝑓

Then, the origin of the closed-loop system is asymptotically stable 
with domain of attraction 𝑋0.
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MPC stability theorem

• Proof: 

1. Note that, by assumption A2, persistent feasibility is guaranteed for 
any 𝑃, 𝑄, 𝑅

2. We want to show that 𝐽0
∗ is a Lyapunov function for the closed-loop 

system 𝐱 𝑡 + 1 = 𝐟cl(𝐱 𝑡 ), with respect to the equilibrium 𝐟cl 𝟎 =
𝟎 (the origin is indeed an equilibrium as 𝟎 ∈ 𝑋, 𝟎 ∈ 𝑈, and the cost is 
positive for any non-zero control sequence)

3. 𝑋0 is bounded and closed (follows from assumption on 𝑋𝑓)

4. 𝐽0
∗ 𝟎 = 0 (value is nonnegative by construction, and 0 is achievable)
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MPC stability theorem

• Proof: 

5. 𝐽0
∗ 𝐱 > 0 for all 𝐱 ∈ 𝑋0 ∖ {𝟎}

6. Next we show the decay property. Since the setup is time-invariant, 
we can study the decay property between 𝑡 = 0 and 𝑡 = 1

• Let 𝐱 0 ∈ 𝑋0, let 𝑈0
[0]

= [𝐮0
0
, 𝐮1

0
, … , 𝐮𝑁−1

0
] be the optimal control sequence, 

and let [𝐱(0), 𝐱1
0
, … , 𝐱𝑁

0
] be the corresponding trajectory 

• After applying 𝐮0
0

, one obtains 𝐱 1 = 𝐴𝐱 0 + 𝐵𝐮0
0

• Consider the sequence of controls [𝐮1
0
, 𝐮2

0
, … , 𝐮𝑁−1

0
, 𝐯], where 𝐯 ∈ 𝑈, and the 

corresponding state trajectory is [𝐱(1), 𝐱2
0
, … , 𝐱𝑁

0
, 𝐴𝐱𝑁

0
+ 𝐵𝐯]
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MPC stability theorem

• Since 𝐱𝑁
0
∈ 𝑋𝑓(by terminal constraint), and since 𝑋𝑓 is control invariant, 

∃ത𝐯 ∈ 𝑈 such that 𝐴𝐱𝑁
0
+ 𝐵ത𝐯 ∈ 𝑋𝑓

• With such a choice of ത𝐯, the sequence [𝐮1
0
, 𝐮2

0
, … , 𝐮𝑁−1

0
, ത𝐯] is feasible for the 

MPC optimization problem at time 𝑡 = 1

• Since this sequence is not necessarily optimal

𝐽0
∗ 𝐱 1 ≤ 𝑝 𝐴𝐱𝑁

0
+ 𝐵ത𝐯 + 

𝑘=1

𝑁−1

𝑐 𝐱𝑘
0
, 𝐮𝑘

0
+ 𝑐 𝐱𝑁

0
, ത𝐯
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MPC stability theorem

• Since 𝐱𝑁
0
∈ 𝑋𝑓(by terminal constraint), and since 𝑋𝑓 is control invariant, 

∃ത𝐯 ∈ 𝑈 such that 𝐴𝐱𝑁
0
+ 𝐵ത𝐯 ∈ 𝑋𝑓

• With such a choice of ത𝐯, the sequence [𝐮1
0
, 𝐮2

0
, … , 𝐮𝑁−1

0
, ത𝐯] is feasible for the 

MPC optimization problem at time 𝑡 = 1

• Since this sequence is not necessarily optimal

𝐽0
∗ 𝐱 1 ≤ 𝑝 𝐴𝐱𝑁

0
+ 𝐵ത𝐯 + 

𝑘=1

𝑁−1

𝑐 𝐱𝑘
0
, 𝐮𝑘

0
+ 𝑐 𝐱𝑁

0
, ത𝐯

+ 𝑝 𝐱𝑁
0

− 𝑝 𝐱𝑁
0

+ 𝑐 𝐱 0 , 𝐮0
0

− 𝑐 𝐱(0), 𝐮0
0
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MPC stability theorem

• Equivalently 

𝐽0
∗ 𝐱 1 ≤ 𝑝 𝐴𝐱𝑁

0
+ 𝐵ത𝐯 + 𝐽0

∗ 𝐱 0 − 𝑝 𝐱𝑁
0

− 𝑐 𝐱(0), 𝐮0
0

+ 𝑐(𝐱𝑁
0
, ത𝐯)

• Since 𝐱𝑁
0
∈ 𝑋𝑓, by assumption A3, we can select ത𝐯 such that 

𝐽0
∗ 𝐱 1 ≤ 𝐽0

∗ 𝐱 0 − 𝑐 𝐱(0), 𝐮0
0

• Since 𝑐 𝐱(0), 𝐮0
0

> 0 for all 𝐱 0 ∈ 𝑋0 ∖ {0},

𝐽0
∗ 𝐱 1 − 𝐽0

∗ 𝐱 0 < 0

• The last step is to prove continuity; details are omitted and can be 
found in Borrelli, Bemporad, Morari, 2017

• Note: A2 is used to guarantee persistent feasibility; this assumption 
can be replaced with an assumption on the horizon 𝑁
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How to choose 𝑋𝑓 and 𝑃?

• Case 1: assume 𝐴 is asymptotically stable 
• Set 𝑋𝑓 as the maximally positive invariant set 𝑂∞ for system 𝐱 𝑡 + 1 =
𝐴𝐱 𝑡 , 𝐱 𝑡 ∈ 𝑋

• 𝑋𝑓 is a control invariant set for system 𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝐮(𝑡), as 𝐮 =
0 is a feasible control 

• As for stability, 𝐮 = 0 is feasible and 𝐴𝐱 ∈ 𝑋𝑓 if 𝐱 ∈ 𝑋𝑓, thus assumption A3 
becomes 

−𝐱𝑇𝑃𝐱 + 𝐱𝑇𝑄𝐱 + 𝐱𝑇𝐴𝑇𝑃𝐴𝐱 ≤ 0, for all 𝐱 ∈ 𝑋𝑓,

which is true since, due to the fact that 𝐴 is asymptotically stable, 

∃𝑃 ≻ 0 | − 𝑃 + 𝑄 + 𝐴𝑇𝑃𝐴 = 0
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(Lyapunov Equation)
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How to choose 𝑋𝑓 and 𝑃?

• Case 2: general case (e.g., if 𝐴 is open-loop unstable)
• Let 𝐹∞ be the optimal gain for the infinite-horizon LQR controller

• Set 𝑋𝑓 as the maximal positive invariant set for system

𝐱 𝑡 + 1 = 𝐴 + 𝐵𝐹∞ 𝐱 𝑡

(with constraints 𝐱 𝑡 ∈ 𝑋, and 𝐹∞𝐱 𝑡 ∈ 𝑈)

• Set 𝑃 as the solution 𝑃∞ to the discrete-time Riccati equation, i.e., the value 
function via LQR

−𝑃 + 𝑄 + 𝐴𝑇𝑃𝐴 − 𝐴𝑇𝑃𝐵 𝑅 + 𝐵𝑇𝑃𝐵 −1(𝐵𝑇𝑃𝐴) = 0
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How to choose 𝑋𝑓 and 𝑃?

• Case 2: general case (e.g., if 𝐴 is open-loop unstable)
• Let 𝐹∞ be the optimal gain for the infinite-horizon LQR controller

• Set 𝑋𝑓 as the maximal positive invariant set for system

𝐱 𝑡 + 1 = 𝐴 + 𝐵𝐹∞ 𝐱 𝑡

(with constraints 𝐱 𝑡 ∈ 𝑋, and 𝐹∞𝐱 𝑡 ∈ 𝑈)

• Set 𝑃 as the solution 𝑃∞ to the discrete-time Riccati equation, i.e., the value 
function via LQR

−𝑃 + 𝑄 + 𝐴𝑇𝑃𝐴 − 𝐴𝑇𝑃𝐵 𝑅 + 𝐵𝑇𝑃𝐵 −1(𝐵𝑇𝑃𝐴) = 0

• Note: both cases as presented are just (suboptimal) choices!
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Explicit MPC

• In some cases, the MPC law can be pre-computed → no need for 
online optimization

• Important case: constrained LQR
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𝐽0
∗ 𝐱 = min

𝐮0,…,𝐮𝑁−1
𝐱𝑁
𝑇𝑃𝐱𝑁 +

𝑘=0

𝑁−1

𝐱𝑘
𝑇𝑄𝐱𝑘 + 𝐮𝑘

𝑇𝑅𝐮𝑘

subject to 𝐱𝑘+1= 𝐴𝐱𝑘 + 𝐵𝐮𝑘 , 𝑘 = 0,… ,𝑁 − 1

𝐱𝑘∈ 𝑋, 𝐮𝑘∈ 𝑈, 𝑘 = 0,… ,𝑁 − 1

𝐱𝑁∈ 𝑋𝑓

𝐱0= 𝐱



Explicit MPC

• The solution to the constrained LQR problem is a control which is a 
continuous piecewise affine function on polyhedral partition of the 
state space 𝑋, that is 𝐮𝑘

∗ = 𝜋𝑘(𝐱𝑘) where 

𝜋𝑘 𝐱 = 𝐹𝑘
𝑗
𝐱 + 𝑔𝑘

𝑗
if   𝐻𝑘

𝑗
𝐱 ≤ 𝐾𝑘

𝑗
,   𝑗 = 1,… ,𝑁𝑘

𝑟

• Thus, online, one has to locate in which cell of the polyhedral 
partition the state 𝐱 lies, and then one obtains the optimal control 
via a look-up table query
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Tuning and practical use 

• At present there is no other technique than MPC to design controllers 
for general large linear multivariable systems with input and output 
constraints with a stability guarantee

• Design approach (for squared 2-norm cost):
• Choose horizon length 𝑁 and the control invariant target set 𝑋𝑓
• Control invariant target set 𝑋𝑓 should be as large as possible for performance 
• Choose the parameters 𝑄 and 𝑅 freely to affect the control performance 
• Adjust 𝑃 as per the stability theorem 
• Useful toolbox (MATLAB): https://www.mpt3.org/

• In practice, sometimes choosing a good terminal cost is enough (i.e., 
don’t need to enforce a terminal control invariant condition), though 
you may be sacrificing guarantees
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https://www.mpt3.org/


MPC for reference tracking

• Usual cost 

σ𝑘=0
𝑁−1 𝐱𝑘

𝑇𝑄𝐱𝑘 + 𝐮𝑘
𝑇𝑅𝐮𝑘

does not work, as in steady state control does not need to be zero 

• 𝛿𝐮- formulation: reason in terms of control changes 

𝐮𝑘 = 𝐮𝑘−1 + 𝛿𝐮𝑘
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MPC for reference tracking

• The MPC problem is readily modified to

• The control input is then 𝐮 𝑡 = 𝛿𝐮0
∗ + 𝐮(𝑡 − 1)
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𝐽0
∗ 𝐱 𝑡 = min

𝛿𝐮0,…,𝛿𝐮𝑁−1


𝑘

𝐲𝑘 − 𝐫𝑘 𝑄
2 + 𝛿𝐮𝑘 𝑅

2

subject to 𝐱𝑘+1= 𝐴𝐱𝑘 + 𝐵𝐮𝑘 , 𝑘 = 0,… ,𝑁 − 1

𝐱𝑘∈ 𝑋, 𝐮𝑘∈ 𝑈, 𝑘 = 0,… ,𝑁 − 1

𝐱𝑁∈ 𝑋𝑓

𝐱0= 𝐱 𝑡 , 𝐮−1= 𝐮(𝑡 − 1)

𝐲𝑘= 𝐶𝐱𝑘 , 𝑘 = 0,… ,𝑁 − 1

𝐮𝑘 = 𝐮𝑘−1 + 𝛿𝐮𝑘 , 𝑘 = 0,… ,𝑁 − 1



Robust MPC 

• We have so far not explicitly considered disturbances in constraint 
satisfaction

• Consider system of the form 
𝐱𝑘+1 = 𝐴𝐱𝑘 + 𝐵𝐮𝑘 +𝐰𝑘

𝐰𝑘 ∈ 𝑊 ∀𝑘

with constraints 𝐱 ∈ 𝑋, 𝐮 ∈ 𝑈, and 𝑊 is bounded.

• Can we guarantee stability and persistent feasibility for this system?
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Robust optimal control problem 
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𝐽0
∗ 𝐱 𝑡 = max

𝐰0,…,𝐰𝑁−1

min
𝐮0,…,𝐮𝑁−1

𝑝 𝐱𝑁 +

𝑘=0

𝑁−1

𝑐(𝐱𝑘 , 𝐮𝑘)

subject to 𝐱𝑘+1= 𝐴𝐱𝑘 + 𝐵𝐮𝑘 +𝐰𝑘, 𝑘 = 0,… ,𝑁 − 1

𝐱𝑘∈ 𝑋, 𝐮𝑘∈ 𝑈, 𝐰𝑘 ∈ 𝑊 𝑘 = 0,… ,𝑁 − 1

𝐱𝑁∈ 𝑋𝑓

𝐱0= 𝐱(𝑡)



Robust MPC

• Key idea: consider forward reachable sets at each  time

𝑆0(𝐱0) = {𝐱 0 }
𝑆𝑘 𝐱0, 𝐮0:𝑘−1 = 𝐴𝑆𝑘−1 𝐱0, 𝐮0:𝑘−2 + 𝐵𝐮𝑘−1 +𝑊

All trajectories in these “tubes” must satisfy constraints. 
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Robust MPC
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𝐽0
∗ 𝐱 𝑡 = max

𝐰0,…,𝐰N−1

min
𝐮0,…,𝐮𝑁−1

𝑝 𝐱𝑁 +

𝑘=0

𝑁−1

𝑐(𝐱𝑘 , 𝐮𝑘)

subject to 𝐱𝑘+1= 𝐴𝐱𝑘 + 𝐵𝐮𝑘 +𝐰𝑘, 𝑘 = 0,… ,𝑁 − 1

𝑆𝑘 ∈ 𝑋, 𝐮𝑘∈ 𝑈, 𝐰𝑘 ∈ 𝑊 𝑘 = 0,… ,𝑁 − 1

𝑆𝑁 ∈ 𝑋𝑓

𝐱0= 𝐱(𝑡)

Where 𝑝 𝐱𝑁 is robustly stable and 𝑋𝑓 is robust control invariant.



Tube MPC

• Forward tubes in robust MPC can be 
prohibitively large, motivating 
techniques to reduce their size

• Introduce nominal trajectory:

Nominal trajectory: ത𝐱𝑘+1 = 𝐴ത𝐱𝑘 + 𝐵𝐮𝑘
Error: 𝐞𝑘 = 𝐱𝑘 − ത𝐱𝑘
Yields dynamics: 𝐞𝑘+1 = 𝐴𝐞𝑘 +𝐰𝑘

• Consider feedback law: 𝐮𝒌 = ഥ𝐮𝑘 + 𝐹∞𝐞𝑘
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Tube MPC

• Adding error feedback gives dynamics 

ത𝐱𝑘+1 = 𝐴ത𝐱𝑘 + 𝐵ഥ𝐮𝑘
𝐞𝑘+1 = 𝐴 + 𝐵𝐹∞ 𝐞𝑘 +𝐰𝑘

Must choose ഥ𝐮𝑘 to guarantee that ത𝐱𝑘 + 𝐞𝑘 satisfy state, action, and 
terminal constraints for 𝑘 = 1,… ,𝑁.
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What about nonlinearity?

• A very active field of research today!

• Control Barrier Functions (CBFs)
• Analogous to Control Lyapunov Functions (CLFs) but for constraints
• For general nonlinear dynamics ሶ𝐱 = 𝑓 𝐱, 𝐮 , if we can construct a function 𝐵 𝐱

satisfying
max
𝐮∈𝑈

∇𝐱B 𝐱 T𝑓 𝐱, 𝐮 ≥ −𝛼 𝐵 𝐱

then 𝐶 ≔ 𝐱 ∈ ℝn B 𝐱 ≥ 0} is control invariant.

• Combining CBFs for persistent feasibility, CLFs for stability, horizon 𝑁 = 1
results in a quadratic program for control-affine systems: CLF-CBF QPs
• Ames, et al., “Control Barrier Function Based Quadratic Programs for Safety Critical 

Systems,” TAC, 2017.

• In practice, guarantees of persistent feasibility or stability are often 
sacrificed; heuristic choices of terminal constraint, cost are employed
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Next time

• Back to learning!
Learning and adaptive MPC
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