
AA203
Optimal and Learning-based Control

Intro to reinforcement learning; dual control; LQG



Roadmap

Open-loop

Indirect 
methods

Direct 
methods

Closed-loop

DP HJB / HJI

MPC

Adaptive
optimal control

Model-based RL

Model-free RL

Control

Optimal and 
learning control

Adaptive controlFeedback control

4/20/22 AA 203 | Lecture 8 2



What is Reinforcement Learning?

Learning how to make good decisions by interaction.

4/20/22 AA 203 | Lecture 8 3



Why Reinforcement Learning?

• Only need to specify a reward function.
Agent learns everything else!

• Successes in
• Helicopter acrobatics

• Superhuman Gameplay: Backgammon, Go, Atari

• Investment portfolio management

• Making a humanoid robot walk

4/20/22 AA 203 | Lecture 8 4



Why Reinforcement Learning?

• Only need to specify a reward function. Agent learns everything 
else!

• Successes in
• Helicopter acrobatics

• positive for following desired traj, negative for crashing

• Superhuman Gameplay: Backgammon, Go, Atari
• positive/negative for winning/losing the game

• Investment portfolio management
• positive reward for $$$

• Making a humanoid robot walk
• positive for forward motion, negative for falling

4/20/22 AA 203 | Lecture 8 5



Infinite Horizon MDPs

State: 𝑥 ∈ 𝒳 (often 𝑠 ∈ 𝒮)

Action: 𝑢 ∈ 𝒰 (often 𝑎 ∈ 𝒜)

Transition Function: 𝑇 𝑥𝑡 𝑥𝑡−1 , 𝑢𝑡−1) = 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1)

Reward Function: 𝑟𝑡 = 𝑅(𝑥𝑡, 𝑢𝑡)

Discount Factor: 𝛾

MDP: ℳ = (𝒳,𝒰, 𝑇, 𝑅, 𝛾)

4/20/22 AA 203 | Lecture 8 6



Infinite Horizon MDPs

MDP: ℳ = (𝒳,𝒰, 𝑇, 𝑅, 𝛾)

Stationary policy: 𝑢𝑡 = 𝜋(𝑥𝑡)

Goal: Choose policy that maximizes cumulative (discounted) reward

𝑉∗ = max
𝜋

𝐸 ෍

𝑡≥0

𝛾𝑡𝑅 𝑥𝑡 , 𝜋 𝑥𝑡 ;

𝜋∗ = arg max
𝜋

𝐸 ෍

𝑡≥0

𝛾𝑡𝑅 𝑥𝑡 , 𝜋 𝑥𝑡

4/20/22 AA 203 | Lecture 8 7



Infinite Horizon MDPs

• The optimal value function 𝑉∗(𝑥) satisfies Bellman’s equation 

𝑉∗(𝑥) = max
𝑢

𝑅 𝑥, 𝑢 + 𝛾 ෍

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝑢 𝑉∗ 𝑥′

• For any stationary policy 𝜋, the value V𝜋 𝑥 ≔ 𝐸 σ𝑡≥0 𝛾
𝑡𝑅 𝑥𝑡 , 𝜋 𝑥𝑡 is the 

unique solution to the equation 

𝑉𝜋(𝑥) = 𝑅 𝑥, 𝜋(𝑥) + 𝛾 ෍

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝜋(𝑥) 𝑉𝜋 𝑥′

𝑄∗(𝑥, 𝑢)

𝑄𝜋(𝑥, 𝜋(𝑥))

4/20/22 AA 203 | Lecture 8 8



Infinite Horizon MDPs

• The optimal state-action value function (Q function) 𝑄∗(𝑥, 𝑢) satisfies 
Bellman’s equation 

𝑄∗ 𝑥, 𝑢 = 𝑅 𝑥, 𝑢 + 𝛾 ෍

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝑢 max
𝑢′

𝑄∗ 𝑥′, 𝑢′

• For any stationary policy 𝜋, the corresponding Q function satisfies

𝑄𝜋(𝑥, 𝑢) = 𝑅 𝑥, 𝑢 + 𝛾 ෍

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝑢 𝑄𝜋 𝑥′, 𝜋(𝑥′)

4/20/22 AA 203 | Lecture 8 9



Solving infinite-horizon MDPs

If you know the model (i.e., the transition function 𝑇 and reward 
function 𝑅), use ideas from dynamic programming

• Value Iteration / Policy Iteration

Reinforcement Learning: learning from interaction

• Model-based (related to system ID -- will see more later)

• Model-free
• Value based (today) – SARSA, Q-learning, etc.

• Policy based – policy gradient methods

4/20/22 AA 203 | Lecture 8 10



Learning from Experience

• Without access to the model, agent needs to optimize a policy from 
interaction with an MDP

• Only have access to trajectories in MDP:

• 𝜏 = (𝑥0, 𝑢0, 𝑟0, 𝑥1, … , 𝑢𝐻−1, 𝑟𝐻−1, 𝑥𝐻)

4/20/22 AA 203 | Lecture 8 11



Learning from Experience

How to use trajectory data?

• Model-based approach: estimate 𝑇(𝑥’|𝑥, 𝑢), then use model to plan

• Model-free:
• Value based approach: estimate optimal value (or Q) function from data

• Policy based approach: use data to determine how to improve policy

• Actor Critic approach: learn both a policy and a value/Q function

4/20/22 AA 203 | Lecture 8 12



Temporal difference (TD) learning

• Main idea: use bootstrapped Bellman equation to update value 
estimates

• Bootstrapping: use learned value for next state to estimate value at 
current state
• Combines Monte Carlo and dynamic programming; aim to enforce 

consistency with respect to Bellman’s equation:

E 𝑄𝜋 𝑥𝑘 , 𝑢𝑘 − 𝑟𝑘 + 𝛾𝑄𝜋(𝑥𝑘+1, 𝑢𝑘+1 = 0

Temporal Difference (TD) error

4/20/22 AA 203 | Lecture 8 13



TD policy evaluation

Suppose we have a policy 𝜋; we want to compute an estimate of 𝑄𝜋.

With step size 𝛼 ∈ 0,1 , loop:

1. Sample (𝑥𝑘 , 𝑢𝑘 , 𝑟𝑘 , 𝑥𝑘+1) from MDP

2. ෠𝑄 𝑥𝑘 , 𝑢𝑘 ← ෠𝑄 𝑥𝑘 , 𝑢𝑘 + 𝛼 𝑟𝑘 + 𝛾 ෠𝑄 𝑥𝑘+1, 𝑢𝑘+1 − ෠𝑄 𝑥𝑘, 𝑢𝑘

Notes:

• Can consider a decreasing sequence of step sizes to ensure convergence

• TD-Gammon: the AlphaGo of the early 90s!

4/20/22 AA 203 | Lecture 8 14



Generalized policy iteration

Loop:

1. Perform policy evaluation step to estimate 𝑄𝜋
2. Perform policy improvement step using 𝑄𝜋 to yield 𝜋′

3. Set 𝜋 ← 𝜋′

4/20/22 AA 203 | Lecture 8 15



SARSA (state-action-reward-next state-next action)

Online (on-policy) learning algorithm; while sampling from MDP using a 
policy 𝜋, combine

1. TD policy evaluation step

with

2. Policy improvement step:

𝜋′ 𝑥 = argmax𝑢 𝑄𝜋 𝑥, 𝑢

Greedy (with respect to Q function) policy improvement at each time step. 

4/20/22 AA 203 | Lecture 8 16



Q-learning

Instead of estimating 𝑄𝜋, try to estimate 𝑄∗ via

𝑄 𝑥𝑘 , 𝑢𝑘 ← 𝑄 𝑥𝑘 , 𝑢𝑘 + 𝛼 𝑟𝑘 + 𝛾max
u

𝑄 𝑥𝑘+1, 𝑢 − 𝑄 𝑥𝑘 , 𝑢𝑘

(using the TD error for the optimal policy 𝜋∗, instead of 𝜋).

Thus, we aim to estimate 𝑄∗ from a (possibly sub-optimal) 
demonstration policy 𝜋. This property is known as off-policy learning. 

4/20/22 AA 203 | Lecture 8 17



Exploration vs. Exploitation

In contrast to standard machine learning on fixed data sets, in RL we 
actively gather the data we use to learn.

• We can only learn about states we visit and actions we take

• Need to explore to ensure we get the data we need

• Efficient exploration is a fundamental challenge in RL!

Simple strategy: add noise to the policy.

𝜖-greedy exploration: 
• With some small probability 𝜖, take a random action; otherwise take the 

most promising action

4/20/22 AA 203 | Lecture 8 18



On-policy Q-learning algorithm

Initialize 𝑄(𝑥, 𝑢) for all states and actions.

Let 𝜋(𝑥) be an 𝜖-greedy policy according to 𝑄, i.e.,

𝜋 𝑥 = ൝
UniformRandom 𝒰
argmax𝑢𝑄 𝑥, 𝑢

with probability 𝜖

with probability (1 − 𝜖)

Loop:

1. Take action: 𝑢𝑘 ∼ 𝜋(𝑥𝑘).

2. Observe reward and next state: (𝑟𝑘 , 𝑥𝑘+1).

3. Update Q to minimize TD error:

𝑄 𝑥𝑘 , 𝑢𝑘 ← 𝑄 𝑥𝑘 , 𝑢𝑘 + 𝛼 𝑟𝑘 +max
𝑢

𝑄 𝑥𝑘+1, 𝑢 − 𝑄 𝑥𝑘 , 𝑢𝑘

4/20/22 AA 203 | Lecture 8 19



Fitted Q Learning

How to deal with large/continuous state/action spaces?

Use parametric model for Q function: 𝑄𝜃(𝑥, 𝑢) (e.g., 𝑄𝜃 𝑥, 𝑢 = 𝜃𝑇𝜙(𝑥, 𝑢))

Stochastic gradient descent on squared TD error to update 𝜃:

𝜃 ← 𝜃 + 𝛼 𝑟𝑘 + 𝛾max
𝑢

𝑄𝜃 𝑥𝑘+1, 𝑢 − 𝑄𝜃 𝑥𝑘 , 𝑢𝑘 ∇𝜃𝑄𝜃(𝑥𝑘 , 𝑢𝑘)

learning rate 𝒅(𝑺𝒒𝒖𝒂𝒓𝒆𝒅 𝑻𝑫 𝑬𝒓𝒓𝒐𝒓)

𝒅𝑸

𝒅𝑸

𝒅𝜽

4/20/22 AA 203 | Lecture 8 20



Q Learning Recap

Pros:

• Can learn Q function from any interaction data, not just trajectories gathered 
using the current policy (“off-policy” algorithm)

• Relatively data-efficient compared to SARSA (can reuse old interaction data)

Cons:

• Need to optimize over actions: hard to apply to continuous action spaces

• Optimal Q function can be complicated, hard to learn

• Optimal policy might be much simpler!

4/20/22 AA 203 | Lecture 8 21



Problems with imperfect state information

Motivating question: can we devise a notion of optimal exploration?

Consider a more general problem setup:

• Now the controller, instead of having perfect knowledge of the 
state, has access to observations 𝒛𝑘 of the form

𝒛0 = ℎ0 𝒙0, 𝒗0 , 𝒛𝑘= ℎ 𝒙𝑘 , 𝒖𝑘 , 𝒗𝑘
• The random observation disturbance is characterized by a given 

probability distribution
𝑃𝒗𝑘 ⋅ 𝒙𝑘 , … , 𝒙0, 𝒖𝑘−1, … , 𝒖0, 𝒘𝑘−1, … ,𝒘0, 𝒗𝑘−1, … , 𝒗0

• The initial state 𝒙0 is also random and characterized by given 𝑃𝒙0

4/20/22 AA 203 | Lecture 8 22



Partially Observed MDP (POMDP)

• MDP with observation model 𝐻 𝑧 𝑥, 𝑢

• Observations do not have Markov property: current observation 
does not provide same amount of info as history of all observations
➔ DP methods aren’t strictly applicable (Bellman’s equation holds only for 

Markovian systems)

• Includes systems with unknown parameters
• Unknown parameters fixed in time: Bayes-adaptive MDP

4/20/22 AA 203 | Lecture 8 23



Reduction to fully observed case

• Define the information vector as 
𝑰𝑘 = 𝒛0, … , 𝒛𝑘 , 𝒖0, … , 𝒖𝑘−1 , 𝑰0= 𝒛0

• Focus is now on policies 𝜋𝑘 𝑰𝑘 ∈ 𝑈𝑘, i.e., we want to find a policy 
that minimizes

𝐽𝜋 = 𝐸 𝒙0,𝒘𝑘,𝒗𝑘
𝑘=0,…,𝑁−1

𝑔𝑁 𝒙𝑁 + ෍

𝑘=0

𝑁−1

𝑔𝑘 𝒙𝑘 , 𝜋𝑘 𝑰𝑘 , 𝒘𝑘

4/20/22 AA 203 | Lecture 8 24



Solution strategies

1. Reformulation as a perfect state information problem (main idea: 
make the information vector the state of the system)
• Main drawback: state has expanding dimension!

2. Reason in terms of sufficient statistics, i.e., quantities that ideally are 
smaller than 𝑰𝑘 and yet summarize all its essential content
• Main example: filtering to maintain a conditional probability distribution 𝑃𝒙𝑘|𝑰𝑘; 

the belief distribution over the state (assuming 𝒗𝑘~𝑃𝒗𝑘 ⋅ 𝒙𝑘−1, 𝒖𝑘−1, 𝒘𝑘−1 )

• Conditional probability distribution leads to a decomposition of the optimal 
controller in two parts:

𝜋𝑘 𝑃𝒙𝑘|𝑰𝑘

Actuator Estimator

4/20/22 AA 203 | Lecture 8 25



Dual control

• By performing DP in this “hyperstate” 𝑰𝑘, one can find a controller 
that optimally probes/explores the system

• Practically, designing dual controllers is difficult, so sub-optimal 
exploration heuristics are used

• Active area of research: see Wittenmark, B. “Adaptive dual control,” 
(2008) for an introduction

4/20/22 AA 203 | Lecture 8 26



Special case: Linear Quadratic Gaussian (LQG) control

Discrete LQG: find control policy that minimizes

𝐸 𝒙𝑁
𝑇𝑄𝒙𝑁 + ෍

𝑘=0

𝑁−1

𝒙𝑘
𝑇𝑄𝒙𝑘 + 𝒖𝑘

𝑇𝑅𝒖𝑘

subject to 

• the dynamics 𝒙𝑘+1 = 𝐴𝒙𝑘 + 𝐵𝒖𝑘 +𝒘𝑘

• the measurement equation 𝒛𝑘 = 𝐶𝒙𝑘 + 𝒗𝑘
and with 𝒙0, 𝒘𝑘 , {𝒗𝑘}, independent and Gaussian vectors (and in 
addition 𝒘𝑘 , {𝒗𝑘} zero mean)

4/20/22 AA 203 | Lecture 8 27



LQG

• LQG separation principle (see notes Section 3.4.1):
Estimation error 𝑥𝑘 − 𝐸[𝑥𝑘|𝐼𝑘] is independent of control actions 𝑢0:𝑘−1
• Briefly, linearity makes it so that there is no such thing as active exploration; 

information gain is the same from anywhere in the state space
• Upshot is that state estimator and controller can be designed independently

• Specifically, the solution results in:
• ො𝑥𝑘 = 𝐸[𝑥𝑘|𝐼𝑘] computed via Kalman filter (optimal linear quadratic estimator)
• Optimal feedback 𝑢𝑘 = 𝐹𝑘 ො𝑥𝑘; 𝐹𝑘 same as in LQR case

• We can design state estimator and controller independently 

• Certainty-equivalent LQR control on estimated state is optimal dual 
controller – certainly not true in general!

4/20/22 AA 203 | Lecture 8 28

https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf


Next time

• Nonlinearity: trajectory optimization, iterative LQR and DDP

4/20/22 AA 203 | Lecture 8 29


