AA203
Optimal and Learning-based Control

Intro to reinforcement learning; dual control; LQG

(%) Stanford ASET
_. % Universi ty .

Roadmap

Control

.

v

Feedback control

Adaptive control

Adaptive
optimal control

\ 4

Optimal and
learning control

Model-free RL

Model-based RL

A\ 4

Open-loop

A 4

A 4

Indirect
methods

Direct
methods

4/20/22

MPC

A 4

Closed-loop

AA 203 | Lecture 8

A 4

DP

HJB / HJI

What is Reinforcement Learning?

Learning how to make good decisions by interaction.

action
a,

LTS
o "
" s | Environment

4/20/22 AA 203 | Lecture 8 3

Why Reinforcement Learning?

* Only need to specify a reward function.
Agent learns everything else!

* Successes in
* Helicopter acrobatics

* Superhuman Gameplay: Backgammon, Go, Atari
* Investment portfolio management

* Making a humanoid robot walk

4/20/22 AA 203 | Lecture 8 4

Why Reinforcement Learning?

* Only need to specify a reward function. Agent learns everything
else!

* Successes in
* Helicopter acrobatics
* positive for following desired traj, negative for crashing
* Superhuman Gameplay: Backgammon, Go, Atari
* positive/negative for winning/losing the game
* Investment portfolio management
* positive reward for 5

* Making a humanoid robot walk
* positive for forward motion, negative for falling

4/20/22 AA 203 | Lecture 8 5

Infinite Horizon MDPs

State: x €X (oftens € §)

Action: ueu (often a € A)
Transition Function: T(xp |x—1,up—q) = p(xe|xp_1, Up_1)
Reward Function: r: = R(x¢uUy)

Discount Factor: y

MDP: M=, UT,R,y)

4/20/22 AA 203 | Lecture 8 6

e
Infinite Horizon MDPs

MDP: M=X,UT,R,y)

Stationary policy: uy = m(xe)

Goal: Choose policy that maximizes cumulative (discounted) reward

S it

t=0

V* = max E
T

> vR(x, n(xt))]

t=0

n* =arg max E
T

4/20/22 AA 203 | Lecture 8

Infinite Horizon MDPs

* The optimal value function V*(x) satisfies Bellman’s equation

V*(x) = max R(x,u) +y z T(x"|x,u)V*(x")

x'ex
N J

-
Q" (x,u)

» For any stationary policy 7, the value V, (x) = E[Y ;50 ¥ R(x:, m(x;))] is the
unique solution to the equation

Vo) = RG () +7) T, m(@) V()

4
C X' €EX y

0 (6, ()

4/20/22 AA 203 | Lecture 8 8

Infinite Horizon MDPs

* The optimal state-action value function (Q function) Q*(x, u) satisfies
Bellman’s equation

Q*(x,u) =R(x,u) +y z T(x'|x,u) max Q*(x',u')

x'eXx

* For any stationary policy m, the corresponding Q function satisfies

0r(x,w) = R W) +y) T(x'|x,w) Q' m(x"))

x'ex

4/20/22 AA 203 | Lecture 8 9

Solving infinite-horizon MDPs

If you know the model (i.e., the transition function T and reward
function R), use ideas from dynamic programming

* Value Iteration / Policy Iteration

Reinforcement Learning: learning from interaction
* Model-based (related to system ID -- will see more later)

* Model-free
* Value based (today) - SARSA, Q-learning, etc.
* Policy based - policy gradient methods

4/20/22 AA 203 | Lecture 8 10

Learning from Experience

» Without access to the model, agent needs to optimize a policy from
interaction with an MDP

Agent

* Only have access to trajectories in MDP:

state
*T = (XO,UO,TO,Xl, "'iuH—lirH—lva) .

reward action
4 a,

:4 Fes .
s | Environment

4/20/22 AA 203 | Lecture 8 11

Learning from Experience

How to use trajectory data?

* Model-based approach: estimate T (x’|x, u), then use model to plan

* Model-free:
 Value based approach: estimate optimal value (or Q) function from data

* Policy based approach: use data to determine how to improve policy
 Actor Critic approach: learn both a policy and a value/Q function

4/20/22 AA 203 | Lecture 8 12

Temporal difference (TD) learning

* Main idea: use bootstrapped Bellman equation to update value
estimates

* Bootstrapping: use learned value for next state to estimate value at
current state

* Combines Monte Carlo and dynamic programming; aim to enforce
consistency with respect to Bellman’s equation:

E[Qr(xp, up) — (e + ¥ Qr(Xg41, Uk4+1)] = 0

& J
Y

Temporal Difference (TD) error

4/20/22 AA 203 | Lecture 8 13

TD policy evaluation

Suppose we have a policy r; we want to compute an estimate of Q.
With step size a € (0,1), loop:
1. Sample (xk,uk,rk,xk+1) from MDP

2. @(Xk»uk) N @(Xk»uk) +a (Tk + V@(Xk+1»uk+1) — Q(xk»uk))

Notes:
» Can consider a decreasing sequence of step sizes to ensure convergence
* TD-Gammon: the AlphaGo of the early 90s!

4/20/22 AA 203 | Lecture 8 14

Generalized policy iteration

Loop:

1. Perform policy evaluation step to estimate Q.

2. Perform policy improvement step using Q. to yield r’
3. Setm « 1’

4/20/22 AA 203 | Lecture 8 15

SARSA (state-action-reward-next state-next action)

Online (on-policy) learning algorithm; while sampling from MDP using a
policy , combine

1. TD policy evaluation step
with
2. Policy improvement step:

m'(x) = argmax, Q,(x,u)

Greedy (with respect to Q function) policy improvement at each time step.

4/20/22 AA 203 | Lecture 8 16

Q-learning

Instead of estimating Q, try to estimate Q* via
Q(xp, u) <« Qlxp, ug) + a (Tk +y max Q(Xp41,U) — Q(xk;uk)>

(using the TD error for the optimal policy 7, instead of m).

Thus, we aim to estimate Q* from a (possibly sub-optimal)
demonstration policy . This property is known as off-policy learning.

4/20/22 AA 203 | Lecture 8 17

Exploration vs. Exploitation

In contrast to standard machine learning on fixed data sets, in RL we
actively gather the data we use to learn.

* We can only learn about states we visit and actions we take
* Need to explore to ensure we get the data we need
* Efficient exploration is a fundamental challenge in RL!

Simple strategy: add noise to the policy.

e-greedy exploration:

* With some small probability €, take a random action; otherwise take the
most promising action

4/20/22 AA 203 | Lecture 8 18

-
On-policy Q-learning algorithm

Initialize Q(x, u) for all states and actions.
Let m(x) be an e-greedy policy according to Q, i.e.,
(x) = {UniformRandom(‘U) with probability €
argmax,, Q (x, u) with probability (1 — €)
Loop:
1. Takeaction:uy ~ m(x).
2. Observe reward and next state: (1, Xx+1)-
3. Update Q to minimize TD error:

Q(xp, ug) « QUxp,up) +a|m + max Q(xps1,u) — Q(Xk»uk)>

4/20/22 AA 203 | Lecture 8 19

-
Fitted Q Learning

How to deal with large/continuous state/action spaces?
Use parametric model for Q function: Qg (x, u) (e.g., Qg (x,u) = 8T p(x,u))

Stochastic gradient descent on squared TD error to update 6:

0<0+a (Tk Ty max Qo(xk4+1,u) — Qg (xk;uk)) Vg Qp (g, Ug)

|)
/ |)
v Y

learning rate d(Squared TD Error) d_Q
dQ do

4/20/22 AA 203 | Lecture 8 20

-
Q Learning Recap

Pros:

 Can learn Q function from any interaction data, not just trajectories gathered
using the current policy (“off-policy’ algorithm)

* Relatively data-efficient compared to SARSA (can reuse old interaction data)

Cons:
* Need to optimize over actions: hard to apply to continuous action spaces

* Optimal Q function can be complicated, hard to learn
* Optimal policy might be much simpler!

4/20/22 AA 203 | Lecture 8 21

Problems with imperfect state information

Motivating question: can we devise a notion of optimal exploration?

Consider a more general problem setup:

* Now the controller, instead of having perfect knowledge of the
state, has access to observations z;, of the form
zy = ho(xg, V), z;, = h(xy, uy, vy)
* The random observation disturbance is characterized by a given

probability distribution
ka(- | X1y ooy X0 W1y eey Uy W1y weey W0, Vke—1, oee» Vg)

* The initial state x,, is also random and characterized by given Py

4/20/22 AA 203 | Lecture 8 22

Partially Observed MDP (POMDP)

 MDP with observation model H(z|x, u)

* Observations do not have Markov property: current observation
does not provide same amount of info as history of all observations

=>» DP methods aren’t strictly applicable (Bellman’s equation holds only for
Markovian systems)

* Includes systems with unknown parameters
* Unknown parameters fixed in time: Bayes-adaptive MDP

4/20/22 AA 203 | Lecture 8 23

Reduction to fully observed case

* Define the information vector as
Ik — (Zo,...,zk,u(),...,uk_l), IO=ZO

* Focus is now on policies m; (I;,) € Uy, i.e., we want to find a policy
that minimizes

N-1
Jn = E xowrvr |gn(xy) + z i (X, T (I), Wi)
k=0,..,N—1 £

4/20/22 AA 203 | Lecture 8 24

Solution strategies

1. Reformulation as a perfect state information problem (main idea:
make the information vector the state of the system)

* Main drawback: state has expanding dimension!

2. Reason in terms of sufficient statistics, i.e., quantities that ideally are
smaller than I, and yet summarize all its essential content
* Main example: filtering to maintain a conditional probability distribution Py 1, ;
the belief distribution over the state (assuming vy ~P,,, (* [X1, Ug—1, Wi—1))

 Conditional probability distribution leads to a decomposition of the optimal
controller in two parts:
T[k(ka“k)

™~

Actuator Estimator

4/20/22 AA 203 | Lecture 8 25

Dual control

* By performing DP in this “hyperstate” I, one can find a controller
that optimally probes/explores the system

* Practically, designing dual controllers is difficult, so sub-optimal
exploration heuristics are used

* Active area of research: see Wittenmark, B. “Adaptive dual control,”
(2008) for an introduction

4/20/22 AA 203 | Lecture 8 26

Special case: Linear Quadratic Gaussian (LQG) control

Discrete LQG: find control pollcy that minimizes

E|xLQxy + 2 (xFQx) + uj,Ruy)

subject to
* the dynamics x5, .1 = Ax;, + Bu;, + wy,

* the measurement equation z, = Cx;, + vy,

and with x,, {w}, {vi}, independent and Gaussian vectors (and in
addition {w; }, {v, } zero mean)

4/20/22 AA 203 | Lecture 8 27

E————————
LQG

* LQG separation principle (see notes Section 3.4.1):
Estimation error x;, — E[x;|I;] is independent of control actions uy.; 4

* Briefly, linearity makes it so that there is no such thing as active exploration;
information gain is the same from anywhere in the state space

* Upshot is that state estimator and controller can be designed independently

* Specifically, the solution results in:
* X = E[x;|I;] computed via Kalman filter (optimal linear quadratic estimator)
e Optimal feedback u;, = F;, Xy; Fj, same asin LQR case

* We can design state estimator and controller independently

 Certainty-equivalent LQR control on estimated state is optimal dual
controller - certainly not true in general!

4/20/22 AA 203 | Lecture 8 28

https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf

Next time

* Nonlinearity: trajectory optimization, iterative LQR and DDP

4/20/22 AA 203 | Lecture 8 29

