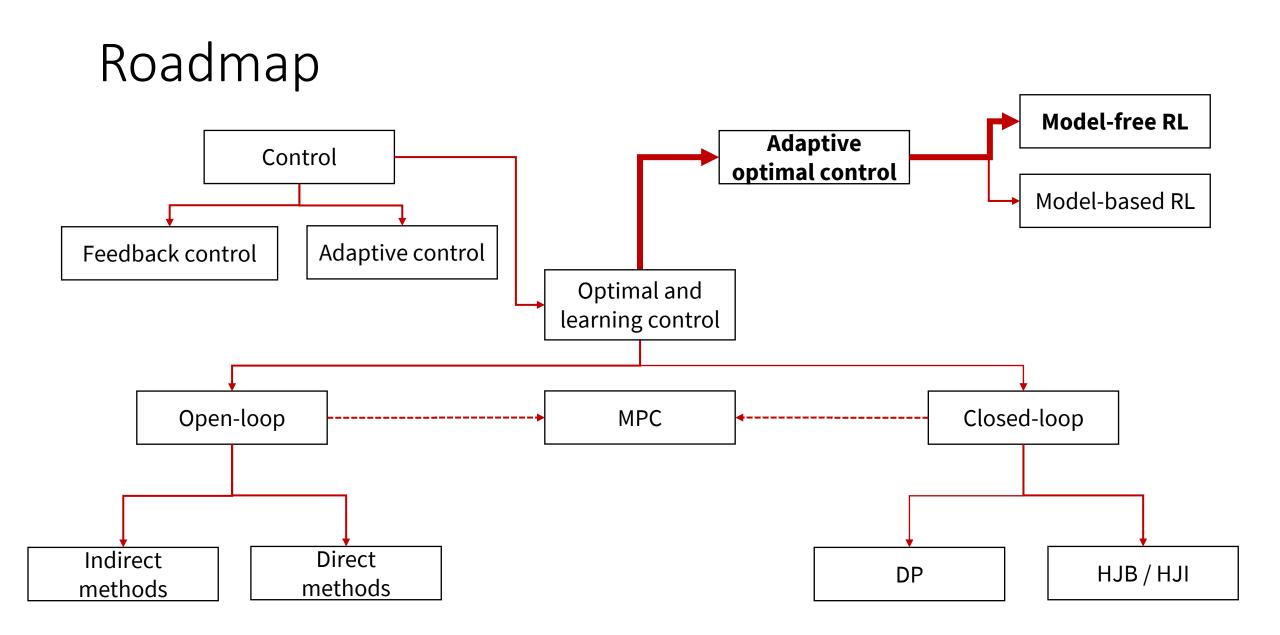
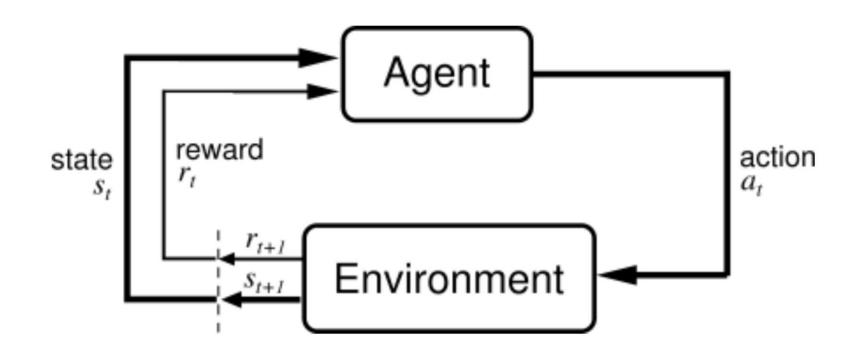
AA203 Optimal and Learning-based Control

Intro to reinforcement learning; dual control; LQG



What is Reinforcement Learning?

Learning how to make good decisions by interaction.



Why Reinforcement Learning?

- Only need to specify a **reward function**. Agent learns everything else!
- Successes in
 - Helicopter acrobatics
 - Superhuman Gameplay: Backgammon, Go, Atari
 - Investment portfolio management
 - Making a humanoid robot walk

Why Reinforcement Learning?

- Only need to specify a reward function. Agent learns everything else!
- Successes in
 - Helicopter acrobatics
 - positive for following desired traj, negative for crashing
 - Superhuman Gameplay: Backgammon, Go, Atari
 - positive/negative for winning/losing the game
 - Investment portfolio management
 - positive reward for \$\$\$
 - Making a humanoid robot walk
 - positive for forward motion, negative for falling

State: Action: Transition Function: Reward Function: Discount Factor:

$$\begin{aligned} x \in \mathcal{X} & (\text{often } s \in \mathcal{S}) \\ u \in \mathcal{U} & (\text{often } a \in \mathcal{A}) \\ T(x_t \mid x_{t-1}, u_{t-1}) = p(x_t \mid x_{t-1}, u_{t-1}) \\ r_t = R(x_t, u_t) \\ \gamma \end{aligned}$$

MDP:

$$\mathcal{M} = (\mathcal{X}, \mathcal{U}, T, R, \gamma)$$

MDP: $\mathcal{M} = (\mathcal{X}, \mathcal{U}, T, R, \gamma)$

Stationary policy: $u_t = \pi(x_t)$

Goal: Choose policy that maximizes cumulative (discounted) reward

$$V^* = \max_{\pi} E\left[\sum_{t\geq 0} \gamma^t R(x_t, \pi(x_t))\right];$$
$$\pi^* = \arg\max_{\pi} E\left[\sum_{t\geq 0} \gamma^t R(x_t, \pi(x_t))\right]$$

• The optimal value function $V_{\prime}^{*}(x)$ satisfies Bellman's equation \langle

$$V^*(x) = \max_u \left(R(x,u) + \gamma \sum_{x' \in \mathcal{X}} T(x'|x,u) V^*(x') \right)$$
$$Q^*(x,u)$$

• For any stationary policy π , the value $V_{\pi}(x) \coloneqq E\left[\sum_{t\geq 0} \gamma^t R(x_t, \pi(x_t))\right]$ is the unique solution to the equation

$$V_{\pi}(x) = R(x, \pi(x)) + \gamma \sum_{x' \in \mathcal{X}} T(x'|x, \pi(x)) V_{\pi}(x'|x, \pi(x))$$

$$Q_{\pi}(x, \pi(x))$$

• The optimal state-action value function (Q function) $Q^*(x, u)$ satisfies Bellman's equation

$$Q^{*}(x,u) = R(x,u) + \gamma \sum_{x' \in \mathcal{X}} T(x'|x,u) \max_{u'} Q^{*}(x',u')$$

• For any stationary policy π , the corresponding Q function satisfies $Q_{\pi}(x,u) = R(x,u) + \gamma \sum_{x' \in \chi} T(x'|x,u) Q_{\pi}(x',\pi(x'))$

Solving infinite-horizon MDPs

If you know the model (i.e., the transition function *T* and reward function *R*), use ideas from dynamic programming

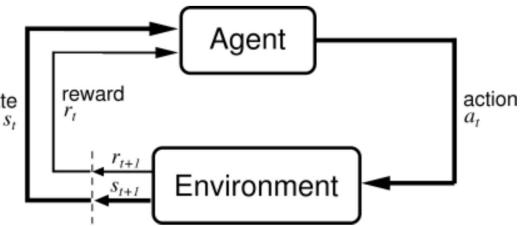
• Value Iteration / Policy Iteration

Reinforcement Learning: learning from interaction

- Model-based (related to system ID -- will see more later)
- Model-free
 - Value based (today) SARSA, Q-learning, etc.
 - Policy based policy gradient methods

Learning from Experience

- Without access to the model, agent needs to optimize a policy from interaction with an MDP
- Only have access to trajectories in MDP:
- $\tau = (x_0, u_0, r_0, x_1, \dots, u_{H-1}, r_{H-1}, x_H)$ state s_t



Learning from Experience

How to use trajectory data?

- Model-based approach: estimate T(x'|x, u), then use model to plan
- Model-free:
 - Value based approach: estimate optimal value (or Q) function from data
 - Policy based approach: use data to determine how to improve policy
 - Actor Critic approach: learn both a policy and a value/Q function

Temporal difference (TD) learning

- Main idea: use *bootstrapped* Bellman equation to update value estimates
- *Bootstrapping*: use learned value for next state to estimate value at current state
 - Combines Monte Carlo and dynamic programming; aim to enforce consistency with respect to Bellman's equation:

$$E[Q_{\pi}(x_{k}, u_{k}) - (r_{k} + \gamma Q_{\pi}(x_{k+1}, u_{k+1}))] = 0$$

Temporal Difference (TD) error

TD policy evaluation

Suppose we have a policy π ; we want to compute an estimate of Q_{π} . With step size $\alpha \in (0,1)$, loop:

1. Sample (x_k, u_k, r_k, x_{k+1}) from MDP

2.
$$\hat{Q}(x_k, u_k) \leftarrow \hat{Q}(x_k, u_k) + \alpha \left(r_k + \gamma \hat{Q}(x_{k+1}, u_{k+1}) - \hat{Q}(x_k, u_k)\right)$$

Notes:

- Can consider a decreasing sequence of step sizes to ensure convergence
- TD-Gammon: the AlphaGo of the early 90s!

Generalized policy iteration

Loop:

- 1. Perform *policy evaluation* step to estimate Q_{π}
- 2. Perform *policy improvement* step using Q_{π} to yield π'
- 3. Set $\pi \leftarrow \pi'$

SARSA (state-action-reward-next state-next action)

Online (*on-policy*) learning algorithm; while sampling from MDP using a policy π , combine

- 1. TD policy evaluation step with
- 2. Policy improvement step:

 $\pi'(x) = \operatorname{argmax}_u Q_{\pi}(x, u)$

Greedy (with respect to Q function) policy improvement at each time step.

Q-learning

Instead of estimating Q_{π} , try to estimate Q^* via

$$Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha \left(r_k + \gamma \max_{u} Q(x_{k+1}, u) - Q(x_k, u_k) \right)$$

(using the TD error for the optimal policy π^* , instead of π).

Thus, we aim to estimate Q^* from a (possibly sub-optimal) demonstration policy π . This property is known as *off-policy* learning.

Exploration vs. Exploitation

In contrast to standard machine learning on fixed data sets, in RL we **actively gather the data we use to learn.**

- We can only learn about states we visit and actions we take
- Need to **explore** to ensure we get the data we need
- Efficient exploration is a fundamental challenge in RL!

Simple strategy: add noise to the policy.

 ϵ -greedy exploration:

- With some small probability ϵ , take a random action; otherwise take the most promising action

On-policy Q-learning algorithm

Initialize Q(x, u) for all states and actions.

Let $\pi(x)$ be an ϵ -greedy policy according to Q, i.e., $\pi(x) = \begin{cases} \text{UniformRandom}(\mathcal{U}) & \text{with probability } \epsilon \\ \text{argmax}_u Q(x, u) & \text{with probability } (1 - \epsilon) \end{cases}$

Loop:

- Take action: $u_k \sim \pi(x_k)$. 1.
- 2. Observe reward and next state: (r_k, x_{k+1}) .
- Update Q to minimize TD error: 3.

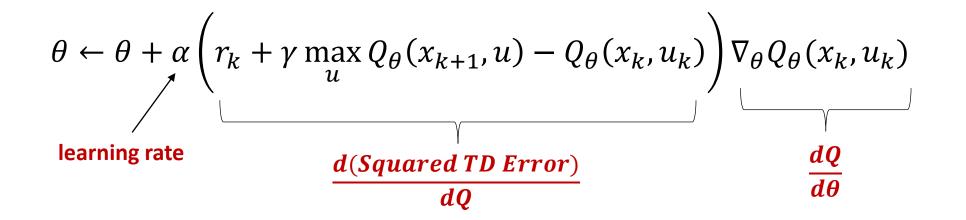
$$Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha \left(r_k + \max_u Q(x_{k+1}, u) - Q(x_k, u_k) \right)$$

Fitted Q Learning

How to deal with large/continuous state/action spaces?

Use parametric model for Q function: $Q_{\theta}(x, u)$ (e.g., $Q_{\theta}(x, u) = \theta^T \phi(x, u)$)

Stochastic gradient descent on squared TD error to update θ :



Q Learning Recap

Pros:

- Can learn Q function from any interaction data, not just trajectories gathered using the current policy ("**off-policy**" **algorithm**)
- Relatively data-efficient compared to SARSA (can reuse old interaction data)

Cons:

- Need to optimize over actions: hard to apply to continuous action spaces
- Optimal Q function can be complicated, hard to learn
- Optimal policy might be much simpler!

Problems with imperfect state information

Motivating question: can we devise a notion of optimal exploration? Consider a more general problem setup:

- Now the controller, instead of having perfect knowledge of the state, has access to observations z_k of the form $z_0 = h_0(x_0, v_0), \qquad z_k = h(x_k, u_k, v_k)$
- The random observation disturbance is characterized by a given probability distribution

$$P_{v_k}(\cdot | x_k, ..., x_0, u_{k-1}, ..., u_0, w_{k-1}, ..., w_0, v_{k-1}, ..., v_0)$$

• The initial state x_0 is also random and characterized by given P_{x_0}

Partially Observed MDP (POMDP)

- MDP with observation model H(z|x, u)
- Observations do not have Markov property: current observation does not provide same amount of info as history of all observations
 - ➔ DP methods aren't strictly applicable (Bellman's equation holds only for Markovian systems)
- Includes systems with unknown parameters
 - Unknown parameters fixed in time: *Bayes-adaptive MDP*

Reduction to fully observed case

• Define the *information vector* as

$$\boldsymbol{I}_k = (\boldsymbol{z}_0, \dots, \boldsymbol{z}_k, \boldsymbol{u}_0, \dots, \boldsymbol{u}_{k-1}), \qquad \boldsymbol{I}_0 = \boldsymbol{z}_0$$

• Focus is now on policies $\pi_k(I_k) \in U_k$, i.e., we want to find a policy that minimizes

$$J_{\pi} = E_{\substack{x_0, w_k, v_k \\ k=0, \dots, N-1}} \left[g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \pi_k(I_k), w_k) \right]$$

Solution strategies

- 1. Reformulation as a perfect state information problem (main idea: make the information vector the state of the system)
 - Main drawback: state has *expanding* dimension!
- 2. Reason in terms of sufficient statistics, i.e., quantities that ideally are smaller than I_k and yet summarize all its essential content
 - Main example: filtering to maintain a conditional probability distribution $P_{x_k|I_k}$; the belief distribution over the state (assuming $v_k \sim P_{v_k}(\cdot | x_{k-1}, u_{k-1}, w_{k-1}))$
 - Conditional probability distribution leads to a decomposition of the optimal controller in two parts:

 $\pi_k(P_{\boldsymbol{x}_k|\boldsymbol{I}_k})$ Estimator Actuator

AA 203 | Lecture 8

Dual control

- By performing DP in this "hyperstate" *I*_k, one can find a controller that optimally probes/explores the system
- Practically, designing dual controllers is difficult, so sub-optimal exploration heuristics are used
- Active area of research: see Wittenmark, B. "Adaptive dual control," (2008) for an introduction

Special case: Linear Quadratic Gaussian (LQG) control

Discrete LQG: find control policy that minimizes $E\left[x_{N}^{T}Qx_{N} + \sum_{k=0}^{N-1} (x_{k}^{T}Qx_{k} + u_{k}^{T}Ru_{k})\right]$

subject to

- the dynamics $\boldsymbol{x}_{k+1} = A\boldsymbol{x}_k + B\boldsymbol{u}_k + \boldsymbol{w}_k$
- the measurement equation $z_k = C x_k + v_k$ and with $x_0, \{w_k\}, \{v_k\}$, independent and Gaussian vectors (and in addition $\{w_k\}, \{v_k\}$ zero mean)

LQG

- LQG separation principle (see <u>notes Section 3.4.1</u>): Estimation error $x_k - E[x_k|I_k]$ is independent of control actions $u_{0:k-1}$
 - Briefly, linearity makes it so that there is no such thing as active exploration; information gain is the same from anywhere in the state space
 - Upshot is that state estimator and controller can be designed independently
- Specifically, the solution results in:
 - $\hat{x}_k = E[x_k|I_k]$ computed via Kalman filter (optimal linear quadratic estimator)
 - Optimal feedback $u_k = F_k \hat{x}_k$; F_k same as in LQR case
- We can design *state estimator* and *controller* independently
- Certainty-equivalent LQR control on estimated state is optimal dual controller – certainly not true in general!

Next time

• Nonlinearity: trajectory optimization, iterative LQR and DDP