
AA203
Optimal and Learning-based Control

Discrete LQR, stochastic DP, value iteration, policy iteration

Roadmap

Open-loop

Indirect
methods

Direct
methods

Closed-loop

DP HJB / HJI

MPC

Adaptive
optimal control

Model-based RL

Model-free RL

Control

Optimal and
learning control

Adaptive controlFeedback control

4/18/2022 AA 203 | Lecture 7 2

Dynamic programming
• Model: 𝐱𝑘+1 = 𝑓 𝐱𝑘 , 𝐮𝑘 , 𝑘 , 𝐮𝑘∈ 𝑈(𝐱𝑘)

• Cost: 𝐽(𝐱0) = ℎ𝑁 𝐱𝑵 + σ𝑘=0
𝑁−1𝑔 𝐱𝑘 , 𝜋𝑘(𝐱𝑘), 𝑘

DP Algorithm: For every initial state 𝐱0, the optimal cost 𝐽∗(𝐱0) is equal to 𝐽0
∗(𝐱0),

given by the last step of the following algorithm, which proceeds backward in
time from stage 𝑁 − 1 to stage 0:

𝐽𝑁
∗ (𝐱𝑁) = ℎ𝑁(𝐱𝑁)

𝐽𝑘
∗ 𝐱𝑘 = min

𝐮𝑘∈𝑈(𝐱𝑘)
𝑔 𝐱𝑘 , 𝐮𝑘 , 𝑘 + 𝐽𝑘+1

∗ 𝑓 𝐱𝑘 , 𝐮𝑘 , 𝑘 , 𝑘 = 0,… ,𝑁 − 1

Furthermore, if 𝐮𝑘
∗ = 𝜋𝑘

∗(𝐱𝑘) minimizes the right hand side of the above equation
for each 𝐱𝑘 and 𝑘, the policy {𝜋0

∗, 𝜋1
∗, … , 𝜋𝑁−1

∗ } is optimal

4/18/2022 AA 203 | Lecture 7 3

Discrete LQR

• Canonical application of dynamic programming for control

• One case where DP can be solved analytically (in general, DP
algorithm must be performed numerically)

Discrete (Deterministic) LQR: select control inputs to minimize

subject to the dynamics

assuming

4/18/2022 AA 203 | Lecture 7 4

Discrete LQR

4/18/2022 AA 203 | Lecture 7 5

Many important extensions, some of
which we’ll cover later in this class

• Tracking LQR: 𝐱𝑘 , 𝐮𝑘 represent small
deviations (“errors”) from a nominal
trajectory (possibly with nonlinear
dynamics)

• Cost with linear terms, affine dynamics:
can consider today’s analysis with
augmented dynamics

Discrete LQR – trajectory optimization

4/18/2022 AA 203 | Lecture 7 6

Rewrite the minimization of

subject to dynamics

as…

Discrete LQR – trajectory optimization

4/18/2022 AA 203 | Lecture 7 7

Discrete LQR – trajectory optimization

Defining suitable notation, this is

with solution from applying NOC
(also SOC in this case, due to
problem convexity):

4/18/2022 AA 203 | Lecture 7 8

Discrete LQR – dynamic programming

First step:

Proceeding backward in time:

4/18/2022 AA 203 | Lecture 7 9

Discrete LQR – dynamic programming

Unconstrained NOC:

Note also that SOC hold:

4/18/2022 AA 203 | Lecture 7 10

Discrete LQR – dynamic programming

Plugging in the optimal policy:

Algebraic details aside:

• Cost-to-go (equivalently, “value function”) is a
quadratic function of the state at each step

• Optimal policy is a time-varying linear
feedback policy

4/18/2022 AA 203 | Lecture 7 11

Discrete LQR – dynamic programming

Proceeding by induction, we derive the Riccati recursion:

1.

2.

3.

4.

5.

Compute policy backwards in time, apply policy forward in time.

4/18/2022 AA 203 | Lecture 7 12

Stochastic optimal control problem:
Markov Decision Problem (MDP)
• System: 𝒙𝑘+1 = 𝑓𝑘(𝒙𝑘 , 𝒖𝑘 , 𝒘𝑘), 𝑘 = 0,… ,𝑁 − 1
• Control constraints: 𝒖𝑘 ∈ 𝑈(𝒙𝑘)
• Probability distribution: 𝒘𝑘 ~ 𝑃𝑘(⋅ |𝒙𝑘 , 𝒖𝑘)
• Policies: 𝜋 = {𝜋0 … , 𝜋𝑁−1}, where 𝒖𝑘 = 𝜋𝑘(𝒙𝑘)
• Expected Cost:

𝐽𝜋 𝒙0 = 𝐸𝒘𝑘,𝑘=0,…,𝑁−1 𝑔𝑁 𝒙𝑁 +

𝑘=0

𝑁−1

𝑔𝑘 𝒙𝑘 , 𝜋𝑘 𝒙𝑘 , 𝒘𝑘

• Stochastic optimal control problem
𝐽∗ 𝑥0 = min

𝜋
𝐽𝜋(𝒙0)

4/18/2022 AA 203 | Lecture 7 13

Key points

• Discrete-time model

• Markovian model

• Objective: find optimal closed-loop policy

• Additive cost (central assumption)

• Risk-neutral formulation

4/18/2022 AA 203 | Lecture 7 14

Key points

• Discrete-time model

• Markovian model

• Objective: find optimal closed-loop policy

• Additive cost (central assumption)

• Risk-neutral formulation

Other communities use different notation: Powell, W. B. AI, OR and
control theory: A Rosetta Stone for stochastic optimization. Princeton
University, 2012.

4/18/2022 AA 203 | Lecture 7 15

Principle of optimality

• Let 𝜋∗ = {𝜋0
∗, 𝜋1

∗, … , 𝜋𝑁−1
∗ } be an optimal policy

• Consider tail subproblem

𝐸 𝑔𝑁(𝒙𝑁) +

𝑘=𝑖

𝑁−1

𝑔𝑘(𝒙𝑘 , 𝜋𝑘(𝒙𝑘),𝒘𝑘)

and the tail policy {𝜋𝑖
∗, … , 𝜋𝑁−1

∗ }

Principle of optimality: The tail policy is optimal for the tail
subproblem

4/18/2022 AA 203 | Lecture 7 16

The DP algorithm (stochastic case)

Intuition

• DP first solves ALL tail subproblems at the final stage

• At generic step, it solves ALL tail subproblems of a given time
length, using solution of tail subproblems of shorter length

4/18/2022 AA 203 | Lecture 7 17

The DP algorithm (stochastic case)

The DP algorithm

• Start with
𝐽𝑁(𝒙𝑁) = 𝑔𝑁(𝒙𝑁)

and go backwards using
𝐽𝑘 𝒙𝑘 = min

𝒖𝑘∈𝑈(𝒙𝑘)
𝐸𝑤𝑘

𝑔𝑘 𝒙𝑘 , 𝒖𝑘 , 𝒘𝑘 + 𝐽𝑘+1 (𝑓 𝒙𝑘 , 𝒖𝑘 , 𝒘𝑘)

for 𝑘 = 0, 1,… , 𝑁 − 1

• Then 𝐽∗(𝒙0) = 𝐽0(𝒙0) and optimal policy is constructed by setting
𝜋𝑘
∗(𝒙𝑘) = argmin

𝒖𝑘∈𝑈(𝒙𝑘)
𝐸𝑤𝑘

𝑔𝑘 𝒙𝑘 , 𝒖𝑘 , 𝒘𝑘 + 𝐽𝑘+1 (𝑓 𝒙𝑘 , 𝒖𝑘 , 𝒘𝑘)

4/18/2022 AA 203 | Lecture 7 18

Example: Inventory Control Problem

• Stock available 𝑥𝑘 ∈ ℕ, inventory 𝑢𝑘 ∈ ℕ, and
demand 𝑤𝑘 ∈ ℕ

• Dynamics: 𝑥𝑘+1 = max(0, 𝑥𝑘 + 𝑢𝑘 −𝑤𝑘)

• Constraints: 𝑥𝑘 + 𝑢𝑘 ≤ 2

• Probabilistic structure: 𝑝(𝑤𝑘 = 0) = 0.1, 𝑝(𝑤𝑘 =
1) = 0.7, and 𝑝(𝑤𝑘 = 2) = 0.2

• Cost

𝐸 0 +

𝑘=0

2

(𝑢𝑘 + 𝑥𝑘 + 𝑢𝑘 − 𝑤𝑘
2)

𝑔3(𝑥3) 𝑔𝑘(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘)

4/18/2022 AA 203 | Lecture 7 19

Example: Inventory Control Problem

• Stock available 𝑥𝑘 ∈ ℕ, inventory 𝑢𝑘 ∈ ℕ, and
demand 𝑤𝑘 ∈ ℕ

• Dynamics: 𝑥𝑘+1 = max(0, 𝑥𝑘 + 𝑢𝑘 −𝑤𝑘)

• Constraints: 𝑥𝑘 + 𝑢𝑘 ≤ 2

• Probabilistic structure: 𝑝(𝑤𝑘 = 0) = 0.1, 𝑝(𝑤𝑘 =
1) = 0.7, and 𝑝(𝑤𝑘 = 2) = 0.2

• Cost

𝐸 0 +

𝑘=0

2

(𝑢𝑘 + 𝑥𝑘 + 𝑢𝑘 − 𝑤𝑘
2)

𝑔3(𝑥3) 𝑔𝑘(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘)

4/18/2022 AA 203 | Lecture 7 20

More generally, could imagine
costs:
• 𝐻(𝑥𝑘) – holding inventory
• 𝐵(𝑢𝑘) – buying inventory
• 𝑆(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘) – selling

(matching stock with demand)

Example: Inventory Control Problem

• Algorithm takes form
𝐽𝑘 𝑥𝑘 = min

0≤ 𝑢𝑘≤ 2−𝑥𝑘
𝐸𝑤𝑘

[𝑢𝑘 + 𝑥𝑘 + 𝑢𝑘 − 𝑤𝑘
2

+𝐽𝑘+1 max(0, 𝑥𝑘 + 𝑢𝑘 − 𝑤𝑘))

for 𝑘 = 0, 1, 2

• For example

𝐽2 0 = min
𝑢2=0,1,2

𝐸𝑤2
𝑢2 + 𝑢2 − 𝑤2

2 =

min
𝑢2=0,1,2

𝑢2 + 0.1 𝑢2
2 + 0.7 𝑢2 − 1 2 + 0.2 𝑢2 − 2 2

which yields 𝐽2(0) = 1.3, and 𝜋2
∗(0) = 1

4/18/2022 AA 203 | Lecture 7 21

Example: Inventory Control Problem

Final solution:

• 𝐽0(0) = 3.7,

• 𝐽0(1) = 2.7, and

• 𝐽0(2) = 2.818

(see this spreadsheet)

4/18/2022 AA 203 | Lecture 7 22

https://docs.google.com/spreadsheets/d/1CNFM2p74SWaM5mCrYrNB4cbYTwB0PifAo6wTBp0qNxI/edit?usp=sharing

Stochastic LQR

Find control policy that minimizes

𝐸
1

2
𝒙𝑁
𝑇𝑄𝒙𝑁 +

1

2

𝑘=0

𝑁−1

𝒙𝑘
𝑇𝑄𝑘𝒙𝑘 + 𝒖𝑘

𝑇𝑅𝑘𝒖𝑘

subject to

• dynamics 𝒙𝑘+1 = 𝐴𝑘𝒙𝑘 + 𝐵𝑘𝒖𝑘 +𝒘𝑘

with 𝒙0 ~𝒩(𝒙0, Σ𝒙0), 𝒘𝑘~𝒩(𝟎, Σ𝒘𝑘
) independent and Gaussian

vectors

4/18/2022 AA 203 | Lecture 7 23

Stochastic LQR
As before, let’s suppose . Then:

4/18/2022 AA 203 | Lecture 7 24

Stochastic LQR
As before, let’s suppose . Then:

➔ optimal policy is the same as in the deterministic case; cost-to-go
is increased by some constant related to magnitude of noise
4/18/2022 AA 203 | Lecture 7 25

Infinite Horizon MDPs

State: 𝑥 ∈ 𝒳 (often 𝑠 ∈ 𝒮)

Action: 𝑢 ∈ 𝒰 (often 𝑎 ∈ 𝒜)

Transition Function: 𝑇 𝑥𝑡 𝑥𝑡−1 , 𝑢𝑡−1) = 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1)

Reward Function: 𝑟𝑡 = 𝑅(𝑥𝑡, 𝑢𝑡)

Discount Factor: 𝛾

MDP: ℳ = (𝒳,𝒰, 𝑇, 𝑅, 𝛾)

4/18/2022 AA 203 | Lecture 7 26

Infinite Horizon MDPs

MDP: ℳ = (𝒳,𝒰, 𝑇, 𝑅, 𝛾)

Stationary policy: 𝑢𝑡 = 𝜋(𝑥𝑡)

Goal: Choose policy that maximizes cumulative (discounted) reward

𝑉∗ = max
𝜋

𝐸

𝑡≥0

𝛾𝑡𝑅 𝑥𝑡 , 𝜋 𝑥𝑡 ;

𝜋∗ = arg max
𝜋

𝐸

𝑡≥0

𝛾𝑡𝑅 𝑥𝑡 , 𝜋 𝑥𝑡

4/18/2022 AA 203 | Lecture 7 27

Infinite Horizon MDPs

• The optimal value function 𝑉∗(𝑥) satisfies Bellman’s equation

𝑉∗(𝑥) = max
𝑢

𝑅 𝑥, 𝑢 + 𝛾

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝑢 𝑉∗ 𝑥′

• For any stationary policy 𝜋, the value V𝜋 𝑥 ≔ 𝐸 σ𝑡≥0 𝛾
𝑡𝑅 𝑥𝑡 , 𝜋 𝑥𝑡

is the unique solution to the equation

V𝜋(𝑥) = 𝑅 𝑥, 𝜋(𝑥) + 𝛾

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝜋(𝑥) V𝜋 𝑥′

4/18/2022 AA 203 | Lecture 7 28

Solving infinite-horizon MDPs

If you know the model, use DP-ideas

• Value Iteration / Policy Iteration

RL: Learning from interaction

• Model-Based

• Model-free
• Value based

• Policy based

4/18/2022 AA 203 | Lecture 7 29

Value Iteration

• Initialize 𝑉0(𝑥) = 0 for all states 𝑥

• Loop until finite horizon / convergence:

𝑉𝑘+1 (𝑥) = max
𝑢

𝑅 𝑥, 𝑢 + 𝛾

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝑢 𝑉𝑘 𝑥′

4/18/2022 AA 203 | Lecture 7 30

State-action value functions (Q functions)

• The expected cumulative discounted reward starting from 𝑥, applying 𝑢,
and following the optimal policy thereafter

𝑉∗(𝑥) = max
𝑢

𝑅 𝑥, 𝑢 + 𝛾

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝑢 𝑉∗ 𝑥′

𝑉∗(𝑥) = max
𝑢

𝑄∗(𝑥, 𝑢)

• Value iteration for Q functions

𝑄𝑘+1 𝑥, 𝑢 = 𝑅 𝑥, 𝑢 + 𝛾

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝑢 max
𝑢′

𝑄𝑘 𝑥′, 𝑢′

4/18/2022 AA 203 | Lecture 7 31

Policy Iteration

Starting with a policy 𝜋𝑘 𝑥 , alternate two steps:

1. Policy Evaluation
Compute 𝑉𝜋𝑘(𝑥) as the solution of

V𝜋(𝑥) = 𝑅 𝑥, 𝜋(𝑥) + 𝛾

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝜋(𝑥) V𝜋 𝑥′

2. Policy Improvement

Define 𝜋𝑘+1 𝑥 = argmax
𝑢

𝑅 𝑥, 𝑢 + 𝛾σ𝑥′∈𝒳 𝑇 𝑥′ 𝑥, 𝑢 V𝜋𝑘 𝑥′

Proposition: 𝑉𝜋𝑘+1 𝑥 ≥ 𝑉𝜋𝑘 𝑥 ∀ 𝑥 ∈ 𝒳

Inequality is strict if 𝜋𝑘 is suboptimal

Use this procedure to iteratively improve policy until convergence

4/18/2022 AA 203 | Lecture 7 32

Recap

• Value Iteration
• Estimate optimal value function

• Compute optimal policy from optimal value function

• Policy Iteration
• Start with random policy

• Iteratively improve it until convergence to optimal policy

• Require model of MDP to work!

4/18/2022 AA 203 | Lecture 7 33

Next time

4/18/2022 AA 203 | Lecture 7 34

• Intro to reinforcement learning

• Belief space MDPs

• Dual control

• LQG

