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Necessary conditions for optimal control 
(with unbounded controls)

• The problem is to find an admissible control u∗

which causes the system

ሶ𝐱 𝑡 = 𝐟(𝐱 𝑡 , 𝐮 𝑡 , 𝑡)

to follow an admissible trajectory x∗ that minimizes
the functional

𝐽 𝐮 = ℎ 𝐱 𝑡𝑓 , 𝑡𝑓 + 𝑡0׬
𝑡𝑓 𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 𝑑𝑡

• Assumptions: ℎ ∈ 𝐶2, state and control regions 
are unbounded, 𝑡0 and 𝐱(0) are fixed
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Necessary conditions for optimal control 
(with unbounded controls)

• Define the Hamiltonian

𝐻 𝐱 𝑡 , 𝐮 𝑡 , 𝐩 𝑡 , 𝑡 ≔ 𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 + 𝐩 𝑡 𝑇𝐟(𝐱 𝑡 , 𝐮 𝑡 , 𝑡)

• The necessary conditions for optimality (proof to follow) are
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ሶ𝐱∗ 𝑡 =
𝜕𝐻

𝜕𝐩
𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

ሶ𝐩∗ 𝑡 = −
𝜕𝐻

𝜕𝐱
𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

𝟎 =
𝜕𝐻

𝜕𝐮
𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

for all 𝑡 ∈ [𝑡0, 𝑡𝑓]
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with boundary conditions
𝜕ℎ

𝜕𝐱
𝐱∗ 𝑡𝑓 , 𝑡𝑓 − 𝐩∗ 𝑡𝑓

𝑇

𝛿𝐱𝑓 + 𝐻 𝐱∗ 𝑡𝑓 , 𝐮∗ 𝑡𝑓 , 𝐩∗ 𝑡𝑓 , 𝑡𝑓 +
𝜕ℎ

𝜕𝑡
𝐱∗ 𝑡𝑓 , 𝑡𝑓 𝛿𝑡𝑓 = 0



Necessary conditions for optimal control 
(with bounded controls)

• So far, we have assumed that the admissible 
controls and states are not constrained by any 
boundaries

• However, in realistic systems, such constraints 
do commonly occur
• control constraints often occur due to actuation limits

• state constraints often occur due to safety 
considerations 

• We will now consider the case with control 
constraints, which will lead to the statement of 
the Pontryagin’s minimum principle
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Why do control constraints complicate the analysis?

• By definition, the control 𝐮∗ causes the functional 𝐽
to have a relative minimum if

𝐽 𝐮 − 𝐽 𝐮∗ = Δ𝐽 ≥ 0

for all admissible controls “close” to 𝐮∗

• If we let 𝐮 = 𝐮∗ + 𝛿𝐮, the increment in 𝐽 can be 
expressed as 

Δ𝐽 𝐮∗, 𝛿𝐮 = 𝛿𝐽 𝐮∗, 𝛿𝐮 + higher order terms 

• The variation 𝛿𝐮 is arbitrary only if the extremal 
control is strictly within the boundary for all time in 
the interval [𝑡0, 𝑡𝑓]

• In general, however, an extremal control lies on a 
boundary during at least one subinterval of the 
interval [𝑡0, 𝑡𝑓]
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• As a consequence, admissible control variations 𝛿𝐮 exist 
whose negatives (−𝛿𝐮) are not admissible  

• This implies that a necessary condition for 𝐮∗to minimize 𝐽 is 
𝛿𝐽 𝐮∗, 𝛿𝐮 ≥ 0

for all admissible variations with 𝛿𝐮 small enough
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Why do control constraints complicate the analysis?



Pontryagin’s minimum principle

• Assuming bounded controls 𝐮 ∈ 𝑈, the necessary optimality conditions 
are (𝐻 is the Hamiltonian) 

along with the boundary conditions:

𝜕ℎ

𝜕𝐱
𝐱∗ 𝑡𝑓 , 𝑡𝑓 − 𝐩∗ 𝑡𝑓

𝑇

𝛿𝐱𝑓 + 𝐻 𝐱∗ 𝑡𝑓 , 𝐮∗ 𝑡𝑓 , 𝐩∗ 𝑡𝑓 , 𝑡𝑓 +
𝜕ℎ

𝜕𝑡
𝐱∗ 𝑡𝑓 , 𝑡𝑓 𝛿𝑡𝑓 = 0
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ሶ𝐱∗ 𝑡 =
𝜕𝐻

𝜕𝐩
𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

ሶ𝐩∗ 𝑡 = −
𝜕𝐻

𝜕𝐱
𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

𝐻 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡 ≤ 𝐻 𝐱∗ 𝑡 , 𝐮 𝑡 , 𝐩∗ 𝑡 , 𝑡 , for all 𝐮(𝑡) ∈ 𝑈

for all
𝑡 ∈ [𝑡0, 𝑡𝑓]
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Pontryagin’s minimum principle

• 𝐮∗ 𝑡 is a control that causes 𝐻 𝐱∗ 𝑡 , 𝐮 𝑡 , 𝐩∗ 𝑡 , 𝑡
to assume its global minimum 

• Harder condition in general to analyze

• Example: consider the system having dynamics:

ሶ𝑥1 𝑡 = 𝑥2 𝑡 , ሶ𝑥2 𝑡 = −𝑥2 𝑡 + 𝑢(𝑡);

it is desired to minimize the functional 

𝐽 = න
𝑡0

𝑡𝑓 1

2
𝑥1
2 𝑡 + 𝑢2 𝑡 𝑑𝑡

subject to the control constraint 𝑢 𝑡 ≤ 1
with 𝑡𝑓 fixed and the final state free.
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Pontryagin’s minimum principle

Solution:

• If the control is unconstrained, 
𝑢∗ 𝑡 = −𝑝2

∗ 𝑡

• If the control is constrained as 𝑢 𝑡 ≤ 1, then

𝑢∗ 𝑡 = ൞
−1

−𝑝2
∗ 𝑡 ,
+1

for 1 < 𝑝2
∗ 𝑡

−1 ≤ 𝑝2
∗ 𝑡 ≤ 1

for 𝑝2
∗ 𝑡 < −1

• To determine 𝑢∗ 𝑡 explicitly, the state and co-
state equations must still be solved
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Additional necessary conditions 

1. If the final time is fixed and the Hamiltonian 
does not depend explicitly on time, then 

𝐻 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 = 𝑐 for all 𝑡 ∈ 𝑡0, 𝑡𝑓

2. If the final time is free and the Hamiltonian 
does not depend explicitly on time, then 

𝐻 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 = 0 for all 𝑡 ∈ [𝑡0, 𝑡𝑓]
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Minimum time problems 

• Find the control input sequence 

𝑀𝑖
− ≤ 𝑢𝑖 𝑡 ≤ 𝑀𝑖

+ for 𝑖 = 1, … ,𝑚

that drives the control affine system 
ሶ𝐱 = 𝐚 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡

from an arbitrary state 𝐱0 to the origin, 
and minimizes time

𝐽 = න
𝑡0

𝑡𝑓

𝑑𝑡
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Minimum time problems 

• Form the Hamiltonian

𝐻 = 1 + 𝐩 𝑡 𝑇{𝐚 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡 }

• By the PMP, select 𝑢𝑖(𝑡) to minimize 𝐻, which gives

𝑢𝑖
∗ 𝑡 = ൝

𝑀𝑖
+

𝑀𝑖
−
if 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 < 0

if 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 > 0

• Side note: reminiscent of HJB? 𝐩∗ t = ∇𝐱 𝐽 𝐱
∗ t , t under 

certain technical assumptions (see Kirk Ch. 7)
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= 1 + 𝐩 𝑡 𝑇{𝐚 𝐱, 𝑡 + [𝐛1 𝐱, 𝑡 𝐛2 𝐱, 𝑡 ⋯𝐛𝑚 𝐱, 𝑡 ]𝐮 𝑡 }

= 1 + 𝐩 𝑡 𝑇𝐚 𝐱, 𝑡 +෍

𝑖=1

𝑚

𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 𝑢𝑖(𝑡)

“Bang-bang” control
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Minimum time problems 

• Note: we showed what to do when 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 ≠ 0

• Not obvious what to do if  𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 = 0

• If 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 = 0 for some finite time interval, 
then the coefficient of 𝑢𝑖(𝑡) in the Hamiltonian is 
zero, so the PMP provides no information on how to 
select 𝑢𝑖(𝑡)

• The treatment of such a singular condition requires a 
more sophisticated analysis

• The analysis in the linear case is significantly easier, 
see Kirk Sec. 5.4

4/13/2022 AA 203 | Lecture 6 14



Minimum fuel problems 

• Find the control input sequence 

𝑀𝑖
− ≤ 𝑢𝑖 𝑡 ≤ 𝑀𝑖

+ for 𝑖 = 1, … ,𝑚

that drives the control affine system 
ሶ𝐱 = 𝐚 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡

from an arbitrary state 𝐱0 to the origin in 
a fixed time, and minimizes 

𝐽 = න
𝑡0

𝑡𝑓

෍

𝑖=1

𝑚

𝑐𝑖 |𝑢𝑖(𝑡)| 𝑑𝑡
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Minimum fuel problems 

• Form the Hamiltonian

𝐻 = σ𝑖=1
𝑚 𝑐𝑖 |𝑢𝑖(𝑡)| + 𝐩 𝑡 𝑇{𝐚 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡 }

• By the PMP, select 𝑢𝑖(𝑡) to minimize 𝐻, that is

σ𝑖=1
𝑚 [𝑐𝑖 |𝑢𝑖

∗(𝑡)| + 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 𝑢𝑖
∗(𝑡)] ≤

4/13/2022 AA 203 | Lecture 6

=෍

𝑖=1

𝑚

𝑐𝑖 |𝑢𝑖(𝑡)| + 𝐩 𝑡 𝑇𝐚 𝐱, 𝑡 +෍

𝑖=1

𝑚

𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 𝑢𝑖(𝑡)

=෍

𝑖=1

𝑚

[𝑐𝑖 |𝑢𝑖(𝑡)| + 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 𝑢𝑖(𝑡)] + 𝐩 𝑡 𝑇𝐚 𝐱, 𝑡

σ𝑖=1
𝑚 [𝑐𝑖 |𝑢𝑖(𝑡)| + 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 𝑢𝑖(𝑡)]
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Minimum fuel problems 

• Since the components of 𝐮 𝑡 are 
independent, then one can just look at 

𝑐𝑖 |𝑢𝑖
∗(𝑡)| + 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 𝑢𝑖

∗ 𝑡
≤ 𝑐𝑖 |𝑢𝑖(𝑡)| + 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 𝑢𝑖(𝑡)

• The resulting control law is

𝑢𝑖
∗ 𝑡 = ቐ

𝑀𝑖
−

0
𝑀𝑖

+

if 𝑐𝑖 < 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡

if − 𝑐𝑖 < 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 < 𝑐𝑖
if 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 < −𝑐𝑖
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“Bang-off-bang” control
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Minimum energy problems 

• Find the control input sequence 

𝑀𝑖
− ≤ 𝑢𝑖 𝑡 ≤ 𝑀𝑖

+ for 𝑖 = 1,… ,𝑚

that drives the control affine system 
ሶ𝐱 = 𝐚 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡

from an arbitrary state 𝐱0 to the origin 
in a fixed time, and minimizes 

𝐽 =
1

2
න
𝑡0

𝑡𝑓

𝐮 𝑡 𝑇𝑅𝐮 𝑡 𝑑𝑡 ,

where 𝑅 > 0 and diagonal
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Minimum energy problems 

• Form the Hamiltonian

𝐻 =
1

2
𝐮 𝑡 𝑇𝑅𝐮(𝑡) + 𝐩 𝑡 𝑇{𝐚 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡 }

• By the PMP, we need to solve

𝐮∗ 𝑡 = arg min
𝐮 𝑡 ∈𝑈

෍

𝑖=1

𝑚
1

2
𝑅𝑖𝑖𝑢𝑖 𝑡

2 + 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 𝑢𝑖(𝑡)
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=
1

2
𝐮 𝑡 𝑇𝑅𝐮 𝑡 + 𝐩 𝑡 𝑇𝐵 𝐱, 𝑡 𝐮 𝑡 + 𝐩 𝑡 𝑇𝐚 𝐱, 𝑡
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Minimum energy problems 

• As in the first example today, in the 
unconstrained case, the optimal solution for 
each component of 𝐮(𝑡) would be

ො𝑢𝑖 𝑡 = −𝑅𝑖𝑖
−1 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡

• Considering the input constraints, the resulting 
control law is

𝑢∗ 𝑡 = ൞

𝑀𝑖
−

ො𝑢𝑖 𝑡

𝑀𝑖
+

if ො𝑢𝑖 𝑡 < 𝑀𝑖
−

if 𝑀𝑖
− < ො𝑢𝑖 𝑡 <

if 𝑀𝑖
+ < ො𝑢𝑖 𝑡

𝑀𝑖
+
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“Saturating” control
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Uniqueness and existence

• Note: uniqueness and existence are not in general guaranteed!

• Example 1 (non uniqueness): find a control sequence 𝑢(𝑡) to transfer 
the system ሶ𝑥 𝑡 = 𝑢(𝑡) from an arbitrary initial state 𝑥0 to the origin, 

and such that the functional 𝐽 = 0׬
𝑡𝑓 𝑢 𝑡 𝑑𝑡 is minimized. The final 

time is free, and the admissible controls are 𝑢 𝑡 ≤ 1

• Example 2 (non existence): find a control sequence 𝑢(𝑡) to transfer 
the system ሶ𝑥 𝑡 = 𝑥 𝑡 + 𝑢(𝑡) from an arbitrary initial state 𝑥0 to the 

origin, and such that the functional 𝐽 = 𝑡0׬
𝑡𝑓 𝑢 𝑡 𝑑𝑡 is minimized. The 

final time is free, and the admissible controls are 𝑢 𝑡 ≤ 1
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Principle of optimality

The key concept behind the dynamic programming 
approach is the principle of optimality

Suppose optimal path for a multi-stage decision-making 
problem with additive cost structure is

• first decision yields segment 𝑎 − 𝑏 with cost 𝐽𝑎𝑏
• remaining decisions yield segments 𝑏 − 𝑒 with cost 𝐽𝑏𝑒
• optimal cost is then 𝐽𝑎𝑒

∗ = 𝐽𝑎𝑏 + 𝐽𝑏𝑒
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Principle of optimality

• Claim: If 𝑎 − 𝑏 − 𝑒 is optimal path from 𝑎 to 
𝑒, then 𝑏 − 𝑒 is optimal path from 𝑏 to 𝑒

• Proof: Suppose 𝑏 − 𝑐 − 𝑒 is the optimal path 
from 𝑏 to 𝑒. Then

𝐽𝑏𝑐𝑒 < 𝐽𝑏𝑒
and

𝐽𝑎𝑏 + 𝐽𝑏𝑐𝑒 < 𝐽𝑎𝑏 + 𝐽𝑏𝑒 = 𝐽𝑎𝑒
∗
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Principle of optimality

• Claim: If 𝑎 − 𝑏 − 𝑒 is optimal path from 𝑎 to 
𝑒, then 𝑏 − 𝑒 is optimal path from 𝑏 to 𝑒

• Proof: Suppose 𝑏 − 𝑐 − 𝑒 is the optimal path 
from 𝑏 to 𝑒. Then

𝐽𝑏𝑐𝑒 < 𝐽𝑏𝑒
and

𝐽𝑎𝑏 + 𝐽𝑏𝑐𝑒 < 𝐽𝑎𝑏 + 𝐽𝑏𝑒 = 𝐽𝑎𝑒
∗
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Contradiction!
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Principle of optimality

Principle of optimality (for discrete-time systems): 
Let 𝜋∗: = {𝜋0

∗, 𝜋1
∗, … , 𝜋𝑁−1

∗ } be an optimal policy. 
Assume state 𝐱𝑘 is reachable. Consider the 
subproblem whereby we are at 𝐱𝑘 at time 𝑘 and we 
wish to minimize the cost-to-go from time 𝑘 to time 𝑁. 
Then the truncated policy {𝜋𝑘

∗ , 𝜋𝑘+1
∗ , … , 𝜋𝑁−1

∗ } is 
optimal for the subproblem.

• tail policies optimal for tail subproblems

• notation: 𝜋𝑘
∗ 𝐱𝑘 = 𝜋∗(𝐱𝑘 , 𝑘)
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Applying the principle of optimality
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Principle of optimality: if 𝑏 − 𝑐 is the 
initial segment of the optimal path 
from 𝑏 to 𝑓, then 𝑐 − 𝑓 is the terminal 
segment of this path



Applying the principle of optimality
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Principle of optimality: if 𝑏 − 𝑐 is the 
initial segment of the optimal path 
from 𝑏 to 𝑓, then 𝑐 − 𝑓 is the terminal 
segment of this path

Hence, the optimal trajectory is found 
by comparing:

𝐶𝑏𝑐𝑓 = 𝐽𝑏𝑐 + 𝐽𝑐𝑓
∗

𝐶𝑏𝑑𝑓 = 𝐽𝑏𝑑 + 𝐽𝑑𝑓
∗

𝐶𝑏𝑒𝑓 = 𝐽𝑏𝑒 + 𝐽𝑒𝑓
∗



Applying the principle of optimality

• Need only to compare the concatenations of immediate decisions and 
optimal decisions → significant decrease in computation/possibilities 

• In practice: carry out this procedure backward in time
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Example
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Example
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Optimal cost: 18; Optimal path: 𝑎 → 𝑑 → 𝑒 → 𝑓 → 𝑔 → ℎ

𝐽∗ ℎ = 0

𝐽∗ 𝑔 = 2𝐽∗ 𝑓 = 5

𝐽∗ 𝑒 = 7

𝐽∗ 𝑐 = 8

𝐽∗ 𝑑 = 10𝐽∗ 𝑎 = 18

𝐽∗ 𝑏 = 17



DP Algorithm
• Model: 𝐱𝑘+1 = 𝑓 𝐱𝑘 , 𝐮𝑘 , 𝑘 , 𝐮𝑘∈ 𝑈(𝐱𝑘)

• Cost: 𝐽(𝐱0) = ℎ𝑁 𝐱𝑵 + σ𝑘=0
𝑁−1𝑔 𝐱𝑘 , 𝜋𝑘(𝐱𝑘), 𝑘

DP Algorithm: For every initial state 𝐱0, the optimal cost 𝐽∗(𝐱0) is equal to 𝐽0
∗(𝐱0), 

given by the last step of the following algorithm, which proceeds backward in 
time from stage 𝑁 − 1 to stage 0:

𝐽𝑁
∗ (𝐱𝑁) = ℎ𝑁(𝐱𝑁)

𝐽𝑘
∗ 𝐱𝑘 = min

𝐮𝑘∈𝑈(𝐱𝑘)
𝑔 𝐱𝑘 , 𝐮𝑘 , 𝑘 + 𝐽𝑘+1

∗ 𝑓 𝐱𝑘 , 𝐮𝑘 , 𝑘 , 𝑘 = 0,… ,𝑁 − 1

Furthermore, if 𝐮𝑘
∗ = 𝜋𝑘

∗(𝐱𝑘) minimizes the right hand side of the above equation 
for each 𝐱𝑘 and 𝑘, the policy {𝜋0

∗, 𝜋1
∗, … , 𝜋𝑁−1

∗ } is optimal 
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Comments

• discretization (from differential 
equations to difference equations)

• quantization (from continuous to 
discrete state variables / controls)

• global minimum

• constraints, in general, simplify the 
numerical procedure 

• optimal control in closed-loop form 

• curse of dimensionality
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Discrete LQR

• Canonical application of dynamic programming for control

• One case where DP can be solved analytically (in general, DP 
algorithm must be performed numerically)

Discrete LQR: select control inputs to minimize

subject to the dynamics

assuming
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Discrete LQR

4/13/2022 AA 203 | Lecture 6 35

Many important extensions, some of 
which we’ll cover later in this class

• Tracking LQR: 𝐱𝑘 , 𝐮𝑘 represent small 
deviations (“errors”) from a nominal 
trajectory (possibly with nonlinear 
dynamics)

• Cost with linear terms, affine dynamics: 
can consider today’s analysis with 
augmented dynamics



Discrete LQR – brute force
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Rewrite the minimization of

subject to dynamics

as…



Discrete LQR – brute force
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Discrete LQR – brute force

Defining suitable notation, this is

with solution from applying NOC 
(also SOC in this case, due to 
problem convexity):

4/13/2022 AA 203 | Lecture 6 38



Discrete LQR – dynamic programming

First step:

Going backward:
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Discrete LQR – dynamic programming

Unconstrained NOC:

Note also that:
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Discrete LQR – dynamic programming

Plugging in the optimal policy:

Algebraic details aside:

• Cost-to-go (equivalently, “value function”) is a 
quadratic function of the state at each step

• Optimal policy is a time-varying linear 
feedback policy
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Discrete LQR – dynamic programming

Proceeding by induction, we derive the Riccati recursion:

1.

2.

3.

4.

5.

Compute policy backwards in time, apply policy forward in time.
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Next time

AA 203 | Lecture 64/13/2022 43

Stochastic dynamic programming

𝑉∗(𝑥) = max
𝑢

𝑅 𝑥, 𝑢 + 𝛾 ෍

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝑢 𝑉∗ 𝑥′


