AA203
 Optimal and Learning-based Control
 Pontryagin's Minimum Principle (PMP); Dynamic Programming

Roadmap

Necessary conditions for optimal control

 (with unbounded controls)- The problem is to find an admissible control \mathbf{u}^{*} which causes the system

$$
\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)
$$

to follow an admissible trajectory \mathbf{x}^{*} that minimizes the functional

$$
J(\mathbf{u})=h\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(\mathbf{x}(t), \mathbf{u}(t), t) d t
$$

- Assumptions: $h \in C^{2}$, state and control regions are unbounded, t_{0} and $\mathbf{x}(0)$ are fixed

Necessary conditions for optimal control

 (with unbounded controls)- Define the Hamiltonian

$$
H(\mathbf{x}(t), \mathbf{u}(t), \mathbf{p}(t), t):=g(\mathbf{x}(t), \mathbf{u}(t), t)+\mathbf{p}(t)^{T} \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)
$$

- The necessary conditions for optimality (proof to follow) are

$$
\begin{aligned}
\dot{\mathbf{x}}^{*}(t) & =\frac{\partial H}{\partial \mathbf{p}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right) \\
\dot{\mathbf{p}}^{*}(t) & =-\frac{\partial H}{\partial \mathbf{x}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right) \\
\mathbf{0} & =\frac{\partial H}{\partial \mathbf{u}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right)
\end{aligned} \quad \text { for all } t \in\left[t_{0}, t_{f}\right]
$$

with boundary conditions

$$
\left[\frac{\partial h}{\partial \mathbf{x}}\left(\mathbf{x}^{*}\left(t_{f}\right), t_{f}\right)-\mathbf{p}^{*}\left(t_{f}\right)\right]^{T} \delta \mathbf{x}_{f}+\left[H\left(\mathbf{x}^{*}\left(t_{f}\right), \mathbf{u}^{*}\left(t_{f}\right), \mathbf{p}^{*}\left(t_{f}\right), t_{f}\right)+\frac{\partial h}{\partial t}\left(\mathbf{x}^{*}\left(t_{f}\right), t_{f}\right)\right] \delta t_{f}=0
$$

Necessary conditions for optimal control

 (with bounded controls)- So far, we have assumed that the admissible controls and states are not constrained by any boundaries
- However, in realistic systems, such constraints do commonly occur
- control constraints often occur due to actuation limits
- state constraints often occur due to safety considerations
- We will now consider the case with control constraints, which will lead to the statement of the Pontryagin's minimum principle

Why do control constraints complicate the analysis?

- By definition, the control \mathbf{u}^{*} causes the functional J to have a relative minimum if

$$
J(\mathbf{u})-J\left(\mathbf{u}^{*}\right)=\Delta J \geq 0
$$

for all admissible controls "close" to \mathbf{u}^{*}

- If we let $\mathbf{u}=\mathbf{u}^{*}+\delta \mathbf{u}$, the increment in J can be expressed as

$$
\Delta J\left(\mathbf{u}^{*}, \delta \mathbf{u}\right)=\delta J\left(\mathbf{u}^{*}, \delta \mathbf{u}\right)+\text { higher order terms }
$$

- The variation $\delta \mathbf{u}$ is arbitrary only if the extremal control is strictly within the boundary for all time in the interval $\left[t_{0}, t_{f}\right]$
- In general, however, an extremal control lies on a boundary during at least one subinterval of the interval $\left[t_{0}, t_{f}\right]$

Why do control constraints complicate the analysis?

- As a consequence, admissible control variations $\delta \mathbf{u}$ exist whose negatives ($-\delta \mathbf{u}$) are not admissible
- This implies that a necessary condition for \mathbf{u}^{*} to minimize J is

$$
\delta J\left(\mathbf{u}^{*}, \delta \mathbf{u}\right) \geq 0
$$

for all admissible variations with $\|\delta \mathbf{u}\|$ small enough

Pontryagin's minimum principle

- Assuming bounded controls $\mathbf{u} \in U$, the necessary optimality conditions are (H is the Hamiltonian)

$$
\left.\begin{array}{c}
\dot{\mathbf{x}}^{*}(t)=\frac{\partial H}{\partial \mathbf{p}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right) \\
\dot{\mathbf{p}}^{*}(t)=-\frac{\partial H}{\partial \mathbf{x}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right) \\
H\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right) \leq H\left(\mathbf{x}^{*}(t), \mathbf{u}(t), \mathbf{p}^{*}(t), t\right), \text { for all } \mathbf{u}(t) \in U
\end{array}\right] \quad \begin{gathered}
\text { for all } \\
t \in\left[t_{0}, t_{f}\right]
\end{gathered}
$$

along with the boundary conditions:

$$
\left[\frac{\partial h}{\partial \mathbf{x}}\left(\mathbf{x}^{*}\left(t_{f}\right), t_{f}\right)-\mathbf{p}^{*}\left(t_{f}\right)\right]^{T} \delta \mathbf{x}_{f}+\left[H\left(\mathbf{x}^{*}\left(t_{f}\right), \mathbf{u}^{*}\left(t_{f}\right), \mathbf{p}^{*}\left(t_{f}\right), t_{f}\right)+\frac{\partial h}{\partial t}\left(\mathbf{x}^{*}\left(t_{f}\right), t_{f}\right)\right] \delta t_{f}=0
$$

Pontryagin's minimum principle

- $\mathbf{u}^{*}(t)$ is a control that causes $H\left(\mathbf{x}^{*}(t), \mathbf{u}(t), \mathbf{p}^{*}(t), t\right)$ to assume its global minimum
- Harder condition in general to analyze
- Example: consider the system having dynamics:

$$
\dot{x}_{1}(t)=x_{2}(t), \quad \dot{x}_{2}(t)=-x_{2}(t)+u(t)
$$

it is desired to minimize the functional

$$
J=\int_{t_{0}}^{t_{f}} \frac{1}{2}\left[x_{1}^{2}(t)+u^{2}(t)\right] d t
$$

subject to the control constraint $|u(t)| \leq 1$ with t_{f} fixed and the final state free.

Pontryagin's minimum principle

Solution:

- If the control is unconstrained,

$$
u^{*}(t)=-p_{2}^{*}(t)
$$

- If the control is constrained as $|u(t)| \leq 1$, then

$$
u^{*}(t)=\left\{\begin{array}{cc}
-1 & \text { for } 1<p_{2}^{*}(t) \\
-p_{2}^{*}(t), & -1 \leq p_{2}^{*}(t) \leq 1 \\
+1 & \text { for } p_{2}^{*}(t)<-1
\end{array}\right.
$$

- To determine $u^{*}(t)$ explicitly, the state and costate equations must still be solved

Additional necessary conditions

1. If the final time is fixed and the Hamiltonian does not depend explicitly on time, then

$$
H\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t)\right)=c \quad \text { for all } t \in\left[t_{0}, t_{f}\right]
$$

2. If the final time is free and the Hamiltonian does not depend explicitly on time, then

$$
H\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t)\right)=0 \quad \text { for all } t \in\left[t_{0}, t_{f}\right]
$$

Minimum time problems

- Find the control input sequence

$$
M_{i}^{-} \leq u_{i}(t) \leq M_{i}^{+} \text {for } i=1, \ldots, m
$$

that drives the control affine system

$$
\dot{\mathbf{x}}=\mathbf{a}(\mathbf{x}, t)+B(\mathbf{x}, t) \mathbf{u}(t)
$$

from an arbitrary state \mathbf{x}_{0} to the origin, and minimizes time

$$
J=\int_{t_{0}}^{t_{f}} d t
$$

Minimum time problems

- Form the Hamiltonian

$$
\begin{aligned}
H & =1+\mathbf{p}(t)^{T}\{\mathbf{a}(\mathbf{x}, t)+B(\mathbf{x}, t) \mathbf{u}(t)\} \\
& =1+\mathbf{p}(t)^{T}\left\{\mathbf{a}(\mathbf{x}, t)+\left[\mathbf{b}_{1}(\mathbf{x}, t) \mathbf{b}_{2}(\mathbf{x}, t) \cdots \mathbf{b}_{m}(\mathbf{x}, t)\right] \mathbf{u}(t)\right\} \\
& =1+\mathbf{p}(t)^{T} \mathbf{a}(\mathbf{x}, t)+\sum_{i=1}^{m} \mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) u_{i}(t)
\end{aligned}
$$

- By the PMP, select $u_{i}(t)$ to minimize H, which gives

$$
u_{i}^{*}(t)=\left\{\begin{array}{l}
M_{i}^{+} \text {if } \mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t)<0 \\
M_{i}^{-} \text {if } \mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t)>0
\end{array} \quad\right. \text { "Bang-bang" control }
$$

Minimum time problems

- Note: we showed what to do when $\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) \neq 0$
- Not obvious what to do if $\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t)=0$
- If $\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t)=0$ for some finite time interval, then the coefficient of $u_{i}(t)$ in the Hamiltonian is zero, so the PMP provides no information on how to select $u_{i}(t)$
- The treatment of such a singular condition requires a more sophisticated analysis
- The analysis in the linear case is significantly easier, see Kirk Sec. 5.4

Minimum fuel problems

- Find the control input sequence

$$
M_{i}^{-} \leq u_{i}(t) \leq M_{i}^{+} \text {for } i=1, \ldots, m
$$

that drives the control affine system

$$
\dot{\mathbf{x}}=\mathbf{a}(\mathbf{x}, t)+B(\mathbf{x}, t) \mathbf{u}(t)
$$

from an arbitrary state \mathbf{x}_{0} to the origin in a fixed time, and minimizes

$$
J=\int_{t_{0}}^{t_{f}} \sum_{i=1}^{m} c_{i}\left|u_{i}(t)\right| d t
$$

Minimum fuel problems

- Form the Hamiltonian

$$
\begin{aligned}
H & =\sum_{i=1}^{m} c_{i}\left|u_{i}(t)\right|+\mathbf{p}(t)^{T}\{\mathbf{a}(\mathbf{x}, t)+B(\mathbf{x}, t) \mathbf{u}(t)\} \\
& =\sum_{i=1}^{m} c_{i}\left|u_{i}(t)\right|+\mathbf{p}(t)^{T} \mathbf{a}(\mathbf{x}, t)+\sum_{i=1}^{m} \mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) u_{i}(t) \\
& =\sum_{i=1}^{m}\left[c_{i}\left|u_{i}(t)\right|+\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) u_{i}(t)\right]+\mathbf{p}(t)^{T} \mathbf{a}(\mathbf{x}, t)
\end{aligned}
$$

- By the PMP, select $u_{i}(t)$ to minimize H, that is

$$
\begin{aligned}
& \sum_{i=1}^{m}\left[c_{i}\left|u_{i}^{*}(t)\right|+\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) u_{i}^{*}(t)\right] \leq \\
& \quad \sum_{i=1}^{m}\left[c_{i}\left|u_{i}(t)\right|+\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) u_{i}(t)\right]
\end{aligned}
$$

Minimum fuel problems

- Since the components of $\mathbf{u}(t)$ are independent, then one can just look at

$$
\begin{aligned}
& c_{i}\left|u_{i}^{*}(t)\right|+\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) u_{i}^{*}(t) \\
& \leq c_{i}\left|u_{i}(t)\right|+\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) u_{i}(t)
\end{aligned}
$$

- The resulting control law is

$$
\begin{gathered}
u_{i}^{*}(t)=\left\{\begin{array}{cc}
M_{i}^{-} & \text {if } c_{i}<\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) \\
0 & \text { if }-c_{i}<\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t)<c_{i} \\
M_{i}^{+} & \text {if } \mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t)<-c_{i}
\end{array}\right. \\
\text { "Bang-off-bang" control }
\end{gathered}
$$

Minimum energy problems

- Find the control input sequence

$$
M_{i}^{-} \leq u_{i}(t) \leq M_{i}^{+} \text {for } i=1, \ldots, m
$$

that drives the control affine system

$$
\dot{\mathbf{x}}=\mathbf{a}(\mathbf{x}, t)+B(\mathbf{x}, t) \mathbf{u}(t)
$$

from an arbitrary state \mathbf{x}_{0} to the origin in a fixed time, and minimizes

$$
J=\frac{1}{2} \int_{t_{0}}^{t_{f}} \mathbf{u}(t)^{T} R \mathbf{u}(t) d t
$$

where $R>0$ and diagonal

Minimum energy problems

- Form the Hamiltonian

$$
\begin{aligned}
H & =\frac{1}{2} \mathbf{u}(t)^{T} R \mathbf{u}(t)+\mathbf{p}(t)^{T}\{\mathbf{a}(\mathbf{x}, t)+B(\mathbf{x}, t) \mathbf{u}(t)\} \\
& =\frac{1}{2} \mathbf{u}(t)^{T} R \mathbf{u}(t)+\mathbf{p}(t)^{T} B(\mathbf{x}, t) \mathbf{u}(t)+\mathbf{p}(t)^{T} \mathbf{a}(\mathbf{x}, t)
\end{aligned}
$$

- By the PMP, we need to solve

$$
\mathbf{u}^{*}(t)=\arg \min _{\mathbf{u}(t) \in U}\left[\sum_{i=1}^{m} \frac{1}{2} R_{i i} u_{i}(t)^{2}+\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) u_{i}(t)\right]
$$

Minimum energy problems

- As in the first example today, in the unconstrained case, the optimal solution for each component of $\mathbf{u}(t)$ would be

$$
\widehat{u}_{i}(t)=-R_{i i}^{-1} \mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t)
$$

- Considering the input constraints, the resulting control law is

$$
u^{*}(t)=\left\{\begin{array}{lll}
M_{i}^{-} & \text {if } & \hat{u}_{i}(t)<M_{i}^{-} \\
\hat{u}_{i}(t) & \text { if } \quad M_{i}^{-}<\hat{u}_{i}(t)<M_{i}^{+} \\
M_{i}^{+} & \text {if } \quad M_{i}^{+}<\hat{u}_{i}(t) \\
\text { "Saturating" control }
\end{array}\right.
$$

Uniqueness and existence

- Note: uniqueness and existence are not in general guaranteed!
- Example 1 (non uniqueness): find a control sequence $u(t)$ to transfer the system $\dot{x}(t)=u(t)$ from an arbitrary initial state x_{0} to the origin, and such that the functional $J=\int_{0}^{t_{f}}|u(t)| d t$ is minimized. The final time is free, and the admissible controls are $|u(t)| \leq 1$
- Example 2 (non existence): find a control sequence $u(t)$ to transfer the system $\dot{x}(t)=x(t)+u(t)$ from an arbitrary initial state x_{0} to the origin, and such that the functional $J=\int_{t_{0}}^{t_{f}}|u(t)| d t$ is minimized. The final time is free, and the admissible controls are $|u(t)| \leq 1$

Roadmap

Principle of optimality

The key concept behind the dynamic programming approach is the principle of optimality
Suppose optimal path for a multi-stage decision-making problem with additive cost structure is

- first decision yields segment $a-b$ with cost $J_{a b}$
- remaining decisions yield segments $b-e$ with cost $J_{b e}$
- optimal cost is then $J_{a e}^{*}=J_{a b}+J_{b e}$

Principle of optimality

- Claim: If $a-b-e$ is optimal path from a to e, then $b-e$ is optimal path from b to e

Principle of optimality

- Claim: If $a-b-e$ is optimal path from a to e, then $b-e$ is optimal path from b to e
- Proof: Suppose $b-c-e$ is the optimal path from b to e. Then

$$
J_{b c e}<J_{b e}
$$

and

$$
J_{a b}+J_{b c e}<J_{a b}+J_{b e}=J_{a e}^{*}
$$

Contradiction!

Principle of optimality

Principle of optimality (for discrete-time systems): Let $\pi^{*}:=\left\{\pi_{0}^{*}, \pi_{1}^{*}, \ldots, \pi_{N-1}^{*}\right\}$ be an optimal policy. Assume state \mathbf{x}_{k} is reachable. Consider the subproblem whereby we are at \mathbf{x}_{k} at time k and we wish to minimize the cost-to-go from time k to time N. Then the truncated policy $\left\{\pi_{k}^{*}, \pi_{k+1}^{*}, \ldots, \pi_{N-1}^{*}\right\}$ is optimal for the subproblem.

- tail policies optimal for tail subproblems
- notation: $\pi_{k}^{*}\left(\mathbf{x}_{k}\right)=\pi^{*}\left(\mathbf{x}_{k}, k\right)$

Applying the principle of optimality

Principle of optimality: if $b-c$ is the initial segment of the optimal path from b to f, then $c-f$ is the terminal segment of this path

Applying the principle of optimality

Principle of optimality: if $b-c$ is the initial segment of the optimal path from b to f, then $c-f$ is the terminal segment of this path

Hence, the optimal trajectory is found by comparing:

$$
\begin{gathered}
C_{b c f}=J_{b c}+J_{c f}^{*} \\
C_{b d f}=J_{b d}+J_{d f}^{*} \\
C_{b e f}=J_{b e}+J_{e f}^{*}
\end{gathered}
$$

Applying the principle of optimality

- Need only to compare the concatenations of immediate decisions and optimal decisions \rightarrow significant decrease in computation/possibilities
- In practice: carry out this procedure backward in time

Example

Example

Optimal cost: 18; Optimal path: $a \rightarrow d \rightarrow e \rightarrow f \rightarrow g \rightarrow h$

DP Algorithm

- Model: $\mathbf{x}_{k+1}=f\left(\mathbf{x}_{k}, \mathbf{u}_{k}, k\right), \quad \mathbf{u}_{k} \in U\left(\mathbf{x}_{k}\right)$
- $\operatorname{Cost}: J\left(\mathbf{x}_{0}\right)=h_{N}\left(\mathbf{x}_{N}\right)+\sum_{k=0}^{N-1} g\left(\mathbf{x}_{k}, \pi_{k}\left(\mathbf{x}_{k}\right), k\right)$

DP Algorithm: For every initial state \mathbf{x}_{0}, the optimal $\operatorname{cost} J^{*}\left(\mathbf{x}_{0}\right)$ is equal to $J_{0}^{*}\left(\mathbf{x}_{0}\right)$, given by the last step of the following algorithm, which proceeds backward in time from stage $N-1$ to stage 0 :

$$
\begin{gathered}
J_{N}^{*}\left(\mathbf{x}_{N}\right)=h_{N}\left(\mathbf{x}_{N}\right) \\
J_{k}^{*}\left(\mathbf{x}_{k}\right)=\min _{\mathbf{u}_{k} \in U\left(\mathbf{x}_{k}\right)} g\left(\mathbf{x}_{k}, \mathbf{u}_{k}, k\right)+J_{k+1}^{*}\left(f\left(\mathbf{x}_{k}, \mathbf{u}_{k}, k\right)\right), \quad k=0, \ldots, N-1
\end{gathered}
$$

Furthermore, if $\mathbf{u}_{k}^{*}=\pi_{k}^{*}\left(\mathbf{x}_{k}\right)$ minimizes the right hand side of the above equation for each \mathbf{x}_{k} and k, the policy $\left\{\pi_{0}^{*}, \pi_{1}^{*}, \ldots, \pi_{N-1}^{*}\right\}$ is optimal

Comments

- discretization (from differential equations to difference equations)
- quantization (from continuous to discrete state variables / controls)
- global minimum
- constraints, in general, simplify the numerical procedure
- optimal control in closed-loop form
- curse of dimensionality

Discrete LQR

- Canonical application of dynamic programming for control
- One case where DP can be solved analytically (in general, DP algorithm must be performed numerically)
Discrete LQR: select control inputs to minimize

$$
J_{0}\left(\mathbf{x}_{0}\right)=\frac{1}{2} \mathbf{x}_{N}^{T} Q_{N} \mathbf{x}_{N}+\frac{1}{2} \sum_{k=0}^{N-1}\left(\mathbf{x}_{k}^{T} Q_{k} \mathbf{x}_{k}+\mathbf{u}_{k}^{T} R_{k} \mathbf{u}_{k}+2 \mathbf{x}_{k}^{T} S_{k} \mathbf{u}_{k}\right)
$$

subject to the dynamics

$$
\mathbf{x}_{k+1}=A_{k} \mathbf{x}_{k}+B_{k} \mathbf{u}_{k}, \quad k \in\{0,1, \ldots, N-1\}
$$

assuming

$$
Q_{k}=Q_{k}^{T} \succeq 0, \quad R_{k}=R_{k}^{T} \succ 0, \quad\left[\begin{array}{ll}
Q_{k} & S_{k} \\
S_{k}^{T} & R_{k}
\end{array}\right] \succeq 0 \quad \forall k
$$

Discrete LQR

Many important extensions, some of which we'll cover later in this class

- Tracking LQR: $\mathbf{x}_{k}, \mathbf{u}_{k}$ represent small deviations ("errors") from a nominal trajectory (possibly with nonlinear dynamics)
- Cost with linear terms, affine dynamics: can consider today's analysis with augmented dynamics

$$
\mathbf{y}_{k+1}=\left[\begin{array}{c}
\mathbf{x}_{k+1} \\
1
\end{array}\right]=\left[\begin{array}{cc}
A_{k} & c_{k} \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{k} \\
1
\end{array}\right]+\left[\begin{array}{l}
B \\
0
\end{array}\right] \mathbf{u}_{k}=\tilde{A} \mathbf{y}_{k}+\tilde{B} \mathbf{u}_{k}
$$

Discrete LQR - brute force

Rewrite the minimization of
$J_{0}\left(\mathbf{x}_{0}\right)=\frac{1}{2} \mathbf{x}_{N}^{T} Q_{N} \mathbf{x}_{N}+\frac{1}{2} \sum_{k=0}^{N-1}\left(\mathbf{x}_{k}^{T} Q_{k} \mathbf{x}_{k}+\mathbf{u}_{k}^{T} R_{k} \mathbf{u}_{k}+2 \mathbf{x}_{k}^{T} S_{k} \mathbf{u}_{k}\right)$
subject to dynamics

$$
\mathbf{x}_{k+1}=A_{k} \mathbf{x}_{k}+B_{k} \mathbf{u}_{k}, \quad k \in\{0,1, \ldots, N-1\}
$$

as...

Discrete LQR - brute force

$$
\begin{aligned}
& \min _{\mathbf{x}_{k}, \mathbf{u}_{k}} \frac{1}{2}\left[\begin{array}{c}
\mathbf{x}_{0} \\
\mathbf{u}_{0} \\
\mathbf{x}_{1} \\
\mathbf{u}_{1} \\
\vdots \\
\mathbf{x}_{N-1} \\
\mathbf{u}_{N-1} \\
\mathbf{x}_{N}
\end{array}\right]^{T}\left[\begin{array}{cccccccc}
Q_{0} & S_{0} & & & & & & \\
S_{0}^{T} & R_{0} & & & & & & \\
& & Q_{1} & S_{1} & & & & \\
& & S_{1}^{T} & R_{1} & & & & \\
& & & & \ddots & & & \\
& & & & & Q_{N-1} & S_{N-1} & \\
& & & & & S_{N-1}^{T} & R_{N-1} & \\
& & & & & & & Q_{N}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{0} \\
\mathbf{u}_{0} \\
\mathbf{x}_{1} \\
\mathbf{u}_{1} \\
\vdots \\
\mathbf{x}_{N-1} \\
\mathbf{u}_{N-1} \\
\mathbf{x}_{N}
\end{array}\right] \\
& \text { s.t. }\left[\begin{array}{cccccccc}
-I & & & & & & & \\
A_{0} & B_{0} & -I & & & & & \\
& & A_{1} & B_{1} & -I & & & \\
& & & & \ddots & & & \\
& & & & & A_{N-1} & B_{N-1} & -I
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{0} \\
\mathbf{u}_{0} \\
\mathbf{x}_{1} \\
\mathbf{u}_{1} \\
\mathbf{x}_{2} \\
\vdots \\
\mathbf{x}_{N-1} \\
\mathbf{u}_{N-1} \\
\mathbf{x}_{N}
\end{array}\right]+\left[\begin{array}{c}
\mathbf{x}_{0} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0} \\
\vdots \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right]=\mathbf{0}
\end{aligned}
$$

Discrete LQR - brute force

Defining suitable notation, this is

$$
\begin{array}{cl}
\min _{\mathbf{z}} & \frac{1}{2} \mathbf{z}^{T} W \mathbf{z} \\
\text { s.t. } & C \mathbf{z}+\mathbf{d}=\mathbf{0}
\end{array}
$$

with solution from applying NOC (also SOC in this case, due to problem convexity):

$$
\left[\begin{array}{c}
\mathbf{z}^{*} \\
\boldsymbol{\lambda}^{*}
\end{array}\right]=\left[\begin{array}{cc}
W & C^{T} \\
C & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
\mathbf{0} \\
-\mathbf{d}
\end{array}\right]
$$

Discrete LQR - dynamic programming

First step:

$$
J_{N}^{*}\left(\mathbf{x}_{N}\right)=\frac{1}{2} x_{N}^{T} Q_{N} x_{N}=\frac{1}{2} x_{N}^{T} P_{N} x_{N}
$$

Going backward:

$$
\begin{aligned}
J_{N-1}^{*}\left(\mathbf{x}_{N-1}\right)= & \min _{\mathbf{u}_{N-1}} \frac{1}{2}\left(\left[\begin{array}{l}
\mathbf{x}_{N-1} \\
\mathbf{u}_{N-1}
\end{array}\right]^{T}\left[\begin{array}{ll}
Q_{N-1} & S_{N-1} \\
S_{N-1}^{T} & R_{N-1}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{N-1} \\
\mathbf{u}_{N-1}
\end{array}\right]+\mathbf{x}_{N}^{T} P_{N} \mathbf{x}_{N}\right) \\
= & \min _{\mathbf{u}_{N-1}} \frac{1}{2}\left(\left[\begin{array}{l}
\mathbf{x}_{N-1} \\
\mathbf{u}_{N-1}
\end{array}\right]^{T}\left[\begin{array}{ll}
Q_{N-1} & S_{N-1} \\
S_{N-1}^{T} & R_{N-1}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{N-1} \\
\mathbf{u}_{N-1}
\end{array}\right]+\right. \\
& \left.\left(A_{N-1} \mathbf{x}_{N-1}+B_{N-1} \mathbf{u}_{N-1}\right)^{T} P_{N}\left(A_{N-1} \mathbf{x}_{N-1}+B_{N-1} \mathbf{u}_{N-1}\right)\right)
\end{aligned}
$$

Discrete LQR - dynamic programming

Unconstrained NOC:

$$
\begin{aligned}
\nabla_{u_{N-1}} J_{N-1}\left(\mathbf{x}_{N-1}\right)= & R_{N-1} \mathbf{u}_{N-1}+S_{N-1}^{T} \mathbf{x}_{N-1}+ \\
& B_{N-1}^{T} P_{N}\left(A_{N-1} \mathbf{x}_{N-1}+B_{N-1} \mathbf{u}_{N-1}\right)=\mathbf{0} \\
\Longrightarrow & \mathbf{u}_{N-1}^{*}=-\left(R_{N-1}+B_{N-1}^{T} P_{N} B_{N-1}\right)^{-1}\left(B_{N-1}^{T} P_{N} A_{N-1}+S_{N-1}^{T}\right) \mathbf{x}_{N-1} \\
:= & F_{N-1} x_{N-1}
\end{aligned}
$$

Note also that:

$$
\nabla_{u_{N-1}}^{2} J_{N-1}\left(\mathbf{x}_{N-1}\right)=R_{N-1}+B_{N-1}^{T} P_{N} B_{N-1} \succ 0
$$

Discrete LQR - dynamic programming

Plugging in the optimal policy:

$$
\begin{aligned}
J_{N-1}^{*}\left(\mathbf{x}_{N-1}\right)= & \frac{1}{2} \mathbf{x}_{N-1}^{T}\left(Q_{N-1}+A_{N-1}^{T} P_{N} A_{N-1}-\right. \\
& \left.\left(A_{N-1}^{T} P_{N} B_{N-1}+S_{N-1}\right)\left(R_{N-1}+B_{N-1}^{T} P_{N} B_{N-1}\right)^{-1}\left(B_{N-1}^{T} P_{N} A_{N-1}+S_{N-1}^{T}\right)\right) \mathbf{x}_{N-1} \\
:= & \frac{1}{2} \mathbf{x}_{N-1}^{T} P_{N-1} \mathbf{x}_{N-1}
\end{aligned}
$$

Algebraic details aside:

- Cost-to-go (equivalently, "value function") is a quadratic function of the state at each step
- Optimal policy is a time-varying linear feedback policy

Discrete LQR - dynamic programming

Proceeding by induction, we derive the Riccati recursion:

1. $P_{N}=Q_{N}$
2. $F_{k}=-\left(R_{k}+B_{k}^{T} P_{k+1} B_{k}\right)^{-1}\left(B_{k}^{T} P_{k+1} A_{k}+S_{k}^{T}\right)$
3. $P_{k}=Q_{k}+A_{k}^{T} P_{k+1} A_{k}-$

$$
\left(A_{k}^{T} P_{k+1} B_{k}+S_{k}\right)\left(R_{k}+B_{k}^{T} P_{k+1} B_{k}\right)^{-1}\left(B_{k}^{T} P_{k+1} A_{k}+S_{k}^{T}\right)
$$

4. $\pi_{k}^{*}\left(\mathbf{x}_{k}\right)=F_{k} \mathbf{x}_{k}$
5. $J_{k}^{*}\left(\mathbf{x}_{k}\right)=\frac{1}{2} \mathbf{x}_{k}^{T} P_{k} \mathbf{x}_{k}$

Compute policy backwards in time, apply policy forward in time.

Next time

Stochastic dynamic programming

$$
V^{*}(x)=\max _{u}\left(R(x, u)+\gamma \sum_{x^{\prime} \in \mathcal{X}} T\left(x^{\prime} \mid x, u\right) V^{*}\left(x^{\prime}\right)\right)
$$

