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Necessary conditions for optimal control
(with unbounded controls)

* The problem is to find an admissible control u*
which causes the system

x(t) = f(x(t),u(t),t)
to follow an admissible trajectory x* that minimizes
the functional

J@) = h(x(tr), tr) + [ g (x(8), u(®), £) dt

 Assumptions: h € C?, state and control regions
are unbounded, t, and x(0) are fixed
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Necessary conditions for optimal control
(with unbounded controls)

* Define the Hamiltonian

H(x(t),u(t), p(t), t) = gx(@),u(t),t) + p(t)" f(x(t), u(t), t)
* The necessary conditions for optimality (proof to follow) are

X'(6) = 5 (" (), (0, p°(0), )
p*(0) = — 22 (x*(0),w'(£), p* (D), £) - foralit€ [0t

a k k k
0 === (x*(t), ' (t), p*(t), 1)
with boundary conditions

% (x*(t). tr) — P*(tf)] 5Xf + [H(x*(tf),u*(tf), p*(tr) tr) + % (x*(t;), ;)| 6t, = 0
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Necessary conditions for optimal control
(with bounded controls)

* So far, we have assumed that the admissible
controls and states are not constrained by any

boundaries

* However, in realistic systems, such constraints

do commonly occur
e control constraints often occur due to actuation limits

* state constraints often occur due to safety
considerations
* We will now consider the case with control
constraints, which will lead to the statement of
the Pontryagin’s minimum principle
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Why do control constraints complicate the analysis?

By definition, the control u* causes the functional J
to have a relative minimum if

Jw) —J(u*)=A]=0
for all admissible controls “close” to u”*

e [fweletu = u* + du, theincrementin/ can be
expressed as

AJ(u*, du) = §J(u*, du) + higher order terms

* The variation du is arbitrary only if the extremal
control is strictly within the boundary for all time in
the interval [¢y, tf]

* In general, however, an extremal control lies on a
boundary during at least one subinterval of the
interval [y, tf]
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Why do control constraints complicate the analysis?

* As a consequence, admissible control variations du exist
whose negatives (—du) are not admissible

* This implies that a necessary condition for u*to minimize J is
5/(u*,éu) =0

for all admissible variations with [|du|| small enough
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-
Pontryagin’s minimum principle

* Assuming bounded controls u € U, the necessary optimality conditions
are (H is the Hamiltonian)

X'(6) = 5 (¢ (0,0 (0, " (0),0)

—_

for all
p*(t) = _aa_z (x*(t),u*(t),p*(t),t) B f IrEa[’fo» trl

H(x*(t),u"(t),p*(t),t) < Hx*(t),u(t),p*(t),t), forallu(t) € U
along with the boundary conditions:

—

% (x*(tr) tr) = P*(tf)]T 6X¢ + [H(X*(tf), u(tr), p(tr) tr) + % (x* (), tr)| 8t = 0
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-
Pontryagin’s minimum principle

e u*(t) isacontrol that causes H(x*(t),u(t),p*(¢t),t)
to assume its global minimum

» Harder condition in general to analyze
* Example: consider the system having dynamics:

x1(t) = x,(¢), x, (t) = —x5(t) + u(t);
itis desired to millimize the functional
f1
J=| Zl@® +u@®)]dt
to

subject to the control constraint |u(t)| < 1
with tr fixed and the final state free.
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-
Pontryagin’s minimum principle

Solution:

* If the control is unconstrained,
u*(t) = —pz(t)
e If the control is constrained as |u(t)| < 1, then
—1 for 1 < p;(t)
u(t) =4-p2(t), —-1<py(t)<1
\ +1 for p;(t) < —1

* To determine u*(t) explicitly, the state and co-
state equations must still be solved
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Additional necessary conditions

1. Ifthefinal time is fixed and the Hamiltonian
does not depend explicitly on time, then

H(x*(0),u*(t),p*(t)) = ¢ forallt € |¢to, tf]

2. Ifthefinal timeis free and the Hamiltonian
does not depend explicitly on time, then

H(x*(0),u*(t),p* (1)) =0 forallt € [¢o, tf]

4/13/2022 AA 203 | Lecture 6 11



Minimum time problems

* Find the control input sequence
M7 <u;(t) <M fori=1,..,m
that drives the control affine system
x =a(xt) + B(x, t)u(t)

from an arbitrary state x to the origin,

and minimizes time
ty
J = dt

to

4/13/2022 AA 203 | Lecture 6 12



Minimum time problems

 Form the Hamiltonian
H=1+p@®) {alxt) + B t)u(t)}

=1+p@®)'{a(xt) + [b;(xt) by(x,t) by (x t)]u(t)}
m
= 14+p(OTax ) + ) pO)by(x (1)
i=1
* By the PMP, select u;(t) to minimize H, which gives

WD) = MFif p(t)'b;(x,t) <0
L IMT i p(D)Thi(x,t) > 0

“Bang-bang” control
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Minimum time problems

* Note: we showed what to do when p(t)'b;(x,t) # 0
* Not obvious what to do if p(¢)'b;(x,t) =0

« If p(t)"'b;(x,t) = 0 for some finite time interval,
then the coefficient of u;(t) in the Hamiltonian is
zero, so the PMP provides no information on how to
select u;(t)

* The treatment of such a singular condition requires a
more sophisticated analysis

* The analysis in the linear case is significantly easier,
see Kirk Sec. 5.4
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Minimum fuel problems

* Find the control input sequence
M <u(t) <M fori=1,..,m

that drives the control affine system
x =a(xt) + B(x, t)u(t)

from an arbitrary state X to the origin in
a fixed time, and m|n|m|zes

Ly
J = zcl i ()] dt

tol
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Minimum fuel problems
* Form the Hamiltonian
H =Yz ¢ [wi (O] + p(t) {a(x, t) + B(x, Hu(®)}

Z ci [y (6)] + p(OTax, ) + z p()"b;(x, ;1

= 1

= E[Ci lu; ()] + p(®)Th;(x, Ou; ()] + p(H)Ta(x, t)

* By the PMP, select u;(t) to minimize H, that is
iz1[ci [ui (O] + p©O)'bi(x, )u; (£)] <
iz1lci lw (O] + p() " bi(x, u;(t)]
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Minimum fuel problems

* Since the components of u(t) are
independent, then one can just look at

¢; [u; ()| +p®)"b;(x, u; (t)
< ¢ lu; ()] + p®) by (x, Ouy(t)

* The resulting control law is

(Ml_ if Ci < p(t)Tbi(X, t)
uf(t) =4 0 if — C; < p(t)Tbi(X, t) < Cj
M if p(t)Th;(x,t) < —c;

“Bang-off-bang” control
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Minimum energy problems

* Find the control input sequence
M7 <u;(t) <M fori=1,..,m

that drives the control affine system
x =a(xt) + B(x, t)u(t)

from an arbitrary state x, to the origin
in a fixed time, and minimizes

1
Ji =§jt u(t)’ Ru(t)dt,

0

where R > 0 and diagonal
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Minimum energy problems

* Form the Hamiltonian
H = -u(®)TRu(t) + p(O)T {a(x,t) + B(x, t)u(t)}

= ~u()TRu(t) + p(O)"B(x, t)u(t) + p() a(x, 1)

* By the PMP, we need to solve
u*(t) = arg min [2 Ryu; (£)? + p(t)"b;(x, )u;(t)

u(t)eu

4/13/2022 AA 203 | Lecture 6 19



Minimum energy problems

* As in the first example today, in the
unconstrained case, the optimal solution for
each component of u(t) would be

2;(t) = =R p() b (%, 1)

* Considering the input constraints, the resulting
control law is

M; if 4;(t) <M;
u*(t) =< 4;(t) if My <4;(t) <M
M if M <;(t)
“Saturating” control
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Uniqueness and existence

* Note: uniqueness and existence are not in general guaranteed!

* Example 1 (non uniqueness): find a control sequence u(t) to transfer
the system x(t) = u(t) from an arbitrary initial state x, to the origin,

and such that the functional | = fotflu(t)ldt is minimized. The final
time is free, and the admissible controls are |u(t)| < 1

* Example 2 (non existence): find a control sequence u(t) to transfer
the system x(t) = x(t) + u(t) from an arbitrary initial state x, to the

origin, and such that the functional | = fti)flu(t)ldt is minimized. The
final time is free, and the admissible controls are |[u(t)| < 1

4/13/2022 AA 203 | Lecture 6 21



Roadmap

Control

.

v

Feedback control

Adaptive control

A\ 4

Adaptive

A\ 4

Model-free RL

optimal control

\ 4

Optimal and
learning control

A

y

Open

-loop

A 4

A 4

Indirect
methods

Direct
methods

4/13/2022

MPC

AA 203 | Lecture 6

\ 4

Model-based RL

I—*

Closed-loop

A 4

DP

HJB / HJI

22




Principle of optimality

The key concept behind the dynamic programming
approach is the principle of optimality

Suppose optimal path for a multi-stage decision-making
problem with additive cost structure is

b

an
Jbe
» first decision yields segment a — b with cost ],
* remaining decisions yield segments b — e with cost J,,

» optimal costisthenJ}, = J,p» + Jpe
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-
Principle of optimality

e Claim:Ifa — b — e is optimal path from a to
e,then b — e is optimal pathfrom b toe
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-
Principle of optimality

e Claim:Ifa — b — e is optimal path from a to
e,then b — e is optimal pathfrom b toe

* Proof: Suppose b — ¢ — e is the optimal path
from b toe. Then

]bce < ]be
and

Jab + Joce <Jap t Jre = ]:Le

Contradiction!
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-
Principle of optimality

Principle of optimality (for discrete-time systems):

Let ©*: = {my, 7y, ..., Ty_1} be an optimal policy.
Assume state X, is reachable. Consider the
subproblem whereby we are at x;, at time k and we
wish to minimize the cost-to-go from time k to time N.
Then the truncated policy {m, 741, .., Ty_1} IS
optimal for the subproblem.

» tail policies optimal for tail subproblems
* notation: T[;;(Xk) — T[*(Xk, k)
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-
Applying the principle of optimality

c c J:f
Principle of optimality: if b — c is the r °
e ey . br:/
initial segment of the optimal path {
from b to f, then ¢ — f is the terminal bﬁ_.'.’.‘.’...- f
segment of this path N
jbt ‘g
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Applying the principle of optimality

J:,,

Principle of optimality: if b — c is the
initial segment of the optimal path

from b to f,then c — f is the terminal bﬁ
segment of this path

Hence, the optimal trajectory is found
by comparing:

Cbcf = Jpc + ]:f

Coar = Jpa t+ Jar

Cbef = Jpe t+ ]Zf
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-
Applying the principle of optimality

* Need only to compare the concatenations of immediate decisions and
optimal decisions — significant decrease in computation/possibilities

* |[n practice: carry out this procedure backward in time
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Example

Final
a — da —* e —— > h Y7 point

3 3 8
N

5 5 2 2 W E

S

9 3 3

b —_— c ———— f — g
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Example

J*(a) = 18 J*(d) = 10 J*(e) = 7 J*(h) =0
F.
e T ) p
3 3 8
N
S
9 3 3
S — ¢ —p [ — g
J*(b) =17 J*(e)=8 J'(f)=5 J*(g) = 2

Optimal cost: 18; Optimal path.a - d - e—> f = g—> h
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DP Algorithm

* Model: Xk+1 — f(xkl Ug, k)) uke U(Xk)
» Cost: J(xg) = hy(xy) + XR=g 9Kk, T (Xi), k)

DP Algorithm: For every initial state x, the optimal cost J*(X,) is equal to J,(Xy),
given by the last step of the following algorithm, which proceeds backward in
time from stage N — 1 to stage O:

In&Xn) = hy(Xy)
]It(xk) = min g(xk' Uy, k) +]I>;+1(f(xk' Uy, k)): k = O; o, N — 1

up€U(Xg)

Furthermore, if u;, = m; (X;) minimizes the right hand side of the above equation
for each x;, and k, the policy {m,, {, ..., my_1} is Optimal
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Comments

* discretization (from differential
equations to difference equations)

* quantization (from continuous to
discrete state variables / controls)

* global minimum

* constraints, in general, simplify the
numerical procedure

 optimal control in closed-loop form
* curse of dimensionality
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e
Discrete LQR

 Canonical application of dynamic programming for control

* One case where DP can be solved analytically (in general, DP
algorithm must be performed numerically)

Discrete LQR: select control inputs to minimize
N—1
1

1
Jo(x0) = §X%QNXN Ty Z (xf Quxx + uj, Rpuy 4 2x; Sguy,)
k=0

subject to the dynamics
Xk_|_1:Aka—|—Bkuk, kE{O,l,...,N—l}

assuming

Qr=QF =0, R,=R! >0, [gq’i ;’;’“]zo vk
k k
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e
Discrete LQR

Many important extensions, some of
which we’ll cover later in this class

* Tracking LQR: Xy, u, represent small
deviations (“errors”) from a nominal
trajectory (possibly with nonlinear
dynamics)

* Cost with linear terms, affine dynamics:
can consider today’s analysis with
augmented dynamics

X AL c X, B ~ ~
N [ e
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Discrete LQR — brute force

Rewrite the minimization of

1 N—-1

1
Jo(x0) = §X%QNXN ) Z (x1 Qrxy + uj, Rpuy 4 2x, Spuy,)
k=0

subject to dynamics

Xk_|_1:Aka—|—Bkuk., kG{O,l,...,N—l}

as...
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Discrete LQR — brute force

_ - T - - -
X0 Qo So X0
Up Sg R() Ug
X1 Q1 Si X1
uq S? R1 u
min —
Xk ,Ug
XN-1 Qn-1 Sn-1 XN—1
uny_1 St Rn-1 un_1
| Xy | L On] | XN |
[ X0 ] —XO_
Ug 0
_—I ] X1 0
Ay By -1 u; 0
s.t. Al Bl —1 X2 + 0 =0
i An-1 By —1 | |XNn—1 0
un-—1 0
L. XN = —0_
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e
Discrete LQR — brute force

Defining suitable notation, this is
1

min -zl Wz
Z

st. Cz+d=0

with solution from applying NOC
(also SOC in this case, due to
problem convexity):

RN
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Discrete LQR — dynamic programming

First step:

) 1 1
JN(XN) — ix%QNazN = §$%PN$N

Going backward:

R 1 ([xna]l [Qnvor Svoa] [xnd] T
Jy_1(Xn-1) = min S T + XN PNXN
uv_1 2 \ |[un—1| |[Sy_; Rn-1] |unv-—1]
1 Txn 17T 1 Txw_i]
. XN—1 Qn-1 Sn-1]| |XN-1
= min — T +
uv-1 2 \ [un-1] |[Sy_1 Bn-1] [un-1)

(An_1xXN—1 + By_iun_1)" Py (AN_1Xn_1 + BNluNl))
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Discrete LQR — dynamic programming

Unconstrained NOC:

Vun_1JIN-1(XN_1) = Ry_1un_1 + Sy_1XNn_1+
By PN(AN_1Xn_1+ By_1un_1) =0
— uy_; = —(Rn_1+ By_PnBy-1) " (By_1PvAn—1 + Sy_1)Xn 1
= FN_1ZN—1

Note also that:

VQ JN—l(XN—l) = Ry_1+ Bjj\}_leBN—l >~

UN -1
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Discrete LQR — dynamic programming

Plugging in the optimal policy:
IN_1(xn_1) = %X%_l (@n-1+ AN_1PNAn_1—

(AN_1PNBn-1+ Sn-1)(Rn-1+ By_1PnBn_1)""(BN_1PNAn—1+ S§_1)) Xn-1

1 T
= §XN_1PN—1XN—1

Algebraic details aside:

* Cost-to-go (equivalently, “value function”) is a
quadratic function of the state at each step

* Optimal policy is a time-varying linear
feedback policy
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Discrete LQR — dynamic programming

Proceeding by induction, we derive the Riccati recursion:
1. Pn =QnN
2. Iy = —(Ry, + Bj, Pr11By,) " (Bj, Pry1 A + S;)
3. P, =Q + AL Py Ap—
(A% Prt1Bi + Sk)(Ry, + By, Prt1 By) ™! (B, Proy1 Ak + Sy )
4, m(xk) = Fpx;
. 1

Compute policy backwards in time, apply policy forward in time.
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Next time

Stochastic dynamic programming

V*(x) = max R(x,u) +vy Z T(x |2, u) V*(x")

x'ex
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