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e
CoV extension |: generalized boundary conditions

* Letx : R —» R" be a vector-valued function, where each component x; is in the
class of functions with continuous first derivatives. It is desired to find the
function x* for which the functional

K@=£t

has a relative extremum

* Assumptions:
« g€C?
* to and x(0) are fixed

* tr might be fixed or free, and
each component of x(tr) might be fixed or free

* Reading;:
* D. E. Kirk. Optimal Control Theory: An Introduction, 2004.

g (x(®), x(0), )t

0
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CoV extension |: generalized boundary conditions

* Regardless of the boundary conditions, the Euler equations

(X" (£, X (£), 8) — = g2 (X" (), X" (£), £) = O
must be satisfied
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CoV extension |: generalized boundary conditions

* Regardless of the boundary conditions, the Euler equations

gx(X*(£), X" (), £) — = gx(x" (1), X" (£),£) = 0
must be satisfied
* The required boundary conditions are found from the equation
g5 (%" (). %°(), &) 6%7 + [g(x" ) %" (), 1) = 92(x (). % (1), &) % (2D 8t = 0

by making the “appropriate” substitutions for §xr and 6t
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CoV extension |: generalized boundary conditions

* 0Xr and &ty capture the notion of “allowable” variations at the
end point, thus 6ty = 0 if the final time is fixed, and (le-(tf) =0 if
the end value of state variable x; (t7) is fixed

» For example, suppose that ¢t is fixed, x;(t7),i = 1, ..., r are fixed,
and x;(t7),j =1+ 1,...,n are free. Then the substitutions are:
5xi(tf) — O, I = 1, ey, IV
0x;(tr) arbitrary, j=r+1,..,n

4/11/2022 AA 203 | Lecture 5 6



CoV extension |: generalized boundary conditions

Problem description Substitution Boundary conditions Remarks

1. x(z5), t7 both specified oxy = 0x(ty) = 0 | x*(z,) = Xo 2n equations to determine 2
(Problem I) oty =0 x*(t5) = Xy constants of integration

2. x(ty) free; t5 specified O0xy = 0x(t5) x*(t) = Xxo 2n equations to determine 2
(Problem 2) oty =0 g_ig(x,( t7), %*(t5), t5) = O constants of integration

3. ty free; x(z5) specified oxy =0 x*(29) = Xo (2n + 1) equations to deter-
(Problem 3) xX*(tr) = xr mine 27 constants of integra-

g(x*(ty), x*(ts), t5) tion and ¢

— [BB ), 2, 1] 5% = 0

4. ts, x(ts) free and x*(ty) = Xo (2n + 1) equations to deter-
independent L 08 (vx 48 SHOEN 42) um B mine 2n constants of integra-
(Problem 4) ox OcHep), X¥(t1), 1) tion and #f

g(x*(ty), X*(15), t5) = 0

5. ty, x(t5) free but 5% = ég(tf) 5tst x*(t,) = Xo (27 + 1) equations to deter-
related by dt x*(ts) = 0(ty) mine 2» constants of integra-
x(t7) = 6(z5) g(x*(ty), X*(t5), t5) tion and #¢

. r -
(Froblem 4) + [GE e 5o, 1] [ @) — 5°¢)] = Ot
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Example

* Determine the smooth curve of smallest length connecting the
point x(0) = 1tothelinet =5
* Solution: x(t) =1
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CoV extension |l constrained extrema

« Letw : R —» R™™ be a vector-valued function, where each component w;
is in the class of functions with continuous first derivatives. It is desired to

find the function w* for which tfge functional
f
Jow) = [ g(wo, W, 0de

to
has a relative extremum, subject to the constraints
* Assumptions:
« g E€C?
* to and w(0) are fixed
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CoV extension |l constrained extrema

» Because of the n differential constraints, only m of
the n + m components of w are independent

 Constraints of this type may represent the state
equation constraints in optimal control problems
where w corresponds to the n + m vectorw = [x, u]!

 Similar to the case of constrained optimization,
define the augmented integrand function

go(w(t),w(t),p(t),t) =
g(w(®), w(t),t) +[pOTEW(®), w(d), t)

\ Lagrange multipliers (now

functions of time!), the “costate”
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CoV extension |l constrained extrema

* A necessary condition for optimality is then

294 (w* (1), W* (1), p*(£), £) — =222 (w* (), W* (£), p* (1), t) = O
along with
flw*(t),w*(t),t) =0

* That s, to determine the necessary conditions for an extremal we
simply form the augmented integrand g, and write the Euler
equations as if there were no constraints among the functions w(t)

* Note the similarity with the case of constrained optimization!

4/11/2022 AA 203 | Lecture 5 11



The variational approach to optimal control

Roadmap:

1. We will first derive necessary conditions for
optimal control assuming that the admissible
controls are not bounded

2. Next, we will heuristically introduce Pontryagin’s
Minimum Principle as a generalization of the
fundamental theorem of CoV

3. Finally, we will consider special cases of
problems with bounded controls and state
variables

4/11/2022 AA 203 | Lecture 5 12



Necessary conditions for optimal control
(with unbounded controls)

* The problem is to find an admissible control u*
which causes the system

x(t) = f(x(t),u(t),t)
to follow an admissible trajectory x* that minimizes
the functional

J@) = h(x(tr), tr) + [ g (x(8), u(®), £) dt

 Assumptions: h € C?, state and control regions
are unbounded, t, and x(0) are fixed
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Necessary conditions for optimal control
(with unbounded controls)

* Define the Hamiltonian

H(x(t),u(t), p(t), t) = gx(@),u(t),t) + p(t)" f(x(t), u(t), t)
* The necessary conditions for optimality (proof to follow) are

X'(6) = 5 (" (), (0, p°(0), )
p*(0) = — 22 (x*(0),w'(£), p* (D), £) - foralit€ [0t

a k k k
0 === (x*(t), ' (t), p*(t), 1)
with boundary conditions

% (x*(t). tr) — P*(tf)] 5Xf + [H(x*(tf),u*(tf), p*(tr) tr) + % (x*(t;), ;)| 6t, = 0
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Necessary conditions for optimal control

(with unbounded controls)

Problem Description Substitution Boundary-condition equations Remarks
in Eq. (5.1-18)
t ¢ fixed . X(t5) = x5 Oxy = 0x(tf) =0 x*(t0) = xo 2n equations to determine 2n
specified oty =0 x*(y) = xs constants of integration
final state
. X(t5) free oxy = ox(ty) x*(to) =X 2n equations to determine 2n
oty =0 h int i
f g'i' 1) — p*(ts) = 0 constants of integration
. x(t5) on the oxy = 0x(ts) x*(to) = Xo (2n + k) equations to deter-
surface oty =0 oh, . . k om;,_ . mine the 2n constants of
m(x(z)) = 0 FEXCN —ps) = EJI d"[ﬁ =7 ))] integration and the variables
m(x*(ts)) =0 dy,...,dy
ts free . X(2f) = xy oxy =10 x*(to) = Xxo (2n + 1) equations to deter-
specified x*(ty) = xr mine the 2n constants of
final stat 1 i
e state @), uke), B 1) + Jpxrap), 1) = 0 | InteErRtion and iy
. X(¢5) free x*(to) = Xo (2n + 1) equations to deter-
0k, (N mine the 2n constants of
ax X Erht) = %) =0 integration and ¢ ¢
oh
HHtr), ut(ts), p*(ts), 1) + 5;(*(ts), 1) = 0
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Interlude: Pontryagin’s minimum principle
(with bounded controls)

* Assuming bounded controls u € U, the necessary optimality conditions
are (H is the Hamiltonian)

X'(6) = 5 (¢ (0,0 (0, " (0),0)

—_

for all
p*(t) = _aa_z (x*(t),u*(t),p*(t),t) B f IrEa[’fo» trl

H(x*(t),u"(t),p*(t),t) < Hx*(t),u(t),p*(t),t), forallu(t) € U
along with the boundary conditions:

—

% (x*(tr) tr) = P*(tf)]T 6X¢ + [H(X*(tf), u(tr), p(tr) tr) + % (x* (), tr)| 8t = 0
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Necessary conditions for optimal control
(with unbounded controls)

* Necessary conditions consist of a set of 2n, first-order,
differential equations (state and costate equations), and a
set of m algebraic equations (control equations)

e The solution to the state and costate equations will contain
2n constants of integration

* To obtain values for the constants, we use the n equations
x(ty,) = Xq, and an additional set of n (orn + 1) equations
from the boundary conditions

* Once again: 2-point boundary value problem
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Example

Find optimal control u(t) to steer the system

i(t) = u(t)

from x(0) = 10, x(0) = 0 to the origin
x(tr) = 0,%(tr) = 0, and to minimize

] = %atf +%ft2fbu2(t)dt, a,b >0

(note: the final time t¢ is free)
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Example

Find optimal control u(t) to steer the system

i(t) = u(t)
from x(0) = 10, x(0) = 0 to the origin
x(tr) = 0,%(tr) = 0, and to minimize

] = %atf +%f;fbu2(t)dt, a,b >0

 Solution: optimal time is

(1800b)1/ >
tf —
a
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Necessary conditions for optimal control
(with unbounded controls)

We want to prove that, with unbounded controls, the necessary optimality
conditions are (H = g + p'f is the Hamiltonian)

X'(6) = 5 (¢ (0, (0, p°(0), )

p(t) = — aa—z (x*(t),u*(t),p*(t),t)  forallt € [ty tf]

—_

9 i ) )
0 =22 (x*(6), u"(t), p* (1), )
along with the bou ndar); conditions:
dh oh
o (xX"(tr). tf) - p*(tf)] 5% + [H(x*(tf),u*(tf),p*(tf),tf) +— (%" (1), t7) [ 6 = 0

—
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e
Proof sketch of NOC

* For simplicity, assume that the terminal penalty is equal to zero, and
that tr and x(t;) are fixed and given

* Consider the augmented cost function
ga(x(@), %), u(®), p(t), t) = g(x(t),u(t), t) + p(&)" [f(x(t), u(t), t) — x(t)]

where the {p;(t)}’s are Lagrange multipliers
* Note that we have simply added zero to the cost function!

* The augmented cost fu?ction is then
f
Ja( = [ gax(0, %0, u(),p(©),0) dt

to
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e
Proof sketch of NOC

On an extremal, by applying the fundamental theorem of the CoV

By the CoV
theorem

094
ox

N 7 (994 d '
O=5]a(u)=f ([ (x*(t),)'(*(t),u*(t),p*(t),t)—a (x*(t),ic*(t),u*(t),p*(t),t)] 6x(t)

0x

094 T
9 (0,5 (0,0 (0, ) t)] 5p(t)> it

T
+ [aa‘ff (x" (), X" (0, ' (6), " (0, t)] su(t) + [
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e
Proof sketch of NOC

On an extremal, by applying the fundamental theorem of the CoV

By the CoV
theorem
09 . v of ..\ . . d
=— (" (O, (®),6) + & (©),w (), )" (D) == (p'(®)
| A
1 — ga * . % * * - ga * . % * *
0 = 6/,(u) ft 0 ([ — (x* (), x*(t), u*(t), p*(t),t) prar (x*(¢),x*(t),u*(t),p (t),t)] 6x(t)

094 T
9 (0,5 (0,0 (0, ) t)] 5p(t)> it

/

T
" [aa‘-‘il“ (x* (£),%*(8), uw* (£, p* (©), t)] su(t) +

|
= f(X*(t)) u’ (t)r t) - X (t)
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e
Proof sketch of NOC

Considering each term in sequence,
o f(x*(t),u*(t),t) —x*(t) = 0, on an extremal

* The Lagrange multipliers are arbitrary, so we can select
them to make the coefficient of 6x(t) equal to zero, that is

0 of
pr(t) = — a_i (x* (@), (1), 1) — —— (x"(©), w' (), ) p* (1)

* The remaining variation du(t), is independent, so its
coefficient must be zero; thus

(" (0), W' (), £) + o= (x* (1), w’ (), ) p* (£) = 0

By using the Hamiltonian formalism, one obtains the claim
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Next time

* Pontryagin’s Minimum Principle
* Intro to dynamic programming
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