# AA203 <br> Optimal and Learning-based Control <br> CoV extensions, NOC for optimal control 

## Roadmap



## CoV extension I: generalized boundary conditions

- Let $\mathbf{x}: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a vector-valued function, where each component $x_{i}$ is in the class of functions with continuous first derivatives. It is desired to find the function $\mathbf{x}^{*}$ for which the functional

$$
J(\mathbf{x})=\int_{t_{0}}^{t_{f}} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) d t
$$

has a relative extremum

- Assumptions:
- $g \in C^{2}$
- $t_{0}$ and $\mathbf{x}(0)$ are fixed
- $t_{f}$ might be fixed or free, and each component of $\mathbf{x}\left(t_{f}\right)$ might be fixed or free
- Reading:
- D. E. Kirk. Optimal Control Theory: An Introduction, 2004.


## CoV extension I: generalized boundary conditions

- Regardless of the boundary conditions, the Euler equations

$$
g_{\mathbf{x}}\left(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), t\right)-\frac{d}{d t} g_{\dot{\mathbf{x}}}\left(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), t\right)=\mathbf{0}
$$

must be satisfied

## CoV extension I: generalized boundary conditions

- Regardless of the boundary conditions, the Euler equations

$$
g_{\mathbf{x}}\left(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), t\right)-\frac{d}{d t} g_{\dot{\mathbf{x}}}\left(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), t\right)=\mathbf{0}
$$

must be satisfied

- The required boundary conditions are found from the equation

$$
g_{\dot{\mathbf{x}}}\left(\mathbf{x}^{*}\left(t_{f}\right), \dot{\mathbf{x}}^{*}\left(t_{f}\right), t_{f}\right)^{T} \delta \mathbf{x}_{f}+\left[g\left(\mathbf{x}^{*}\left(t_{f}\right), \dot{\mathbf{x}}^{*}\left(t_{f}\right), t_{f}\right)-g_{\dot{\mathbf{x}}}\left(\mathbf{x}^{*}\left(t_{f}\right), \dot{\mathbf{x}}^{*}\left(t_{f}\right), t_{f}\right)^{T} \dot{\mathbf{x}}^{*}\left(t_{f}\right)\right] \delta t_{f}=0
$$

by making the "appropriate" substitutions for $\delta \mathbf{x}_{f}$ and $\delta t_{f}$

## CoV extension I: generalized boundary conditions

- $\delta \mathbf{x}_{f}$ and $\delta t_{f}$ capture the notion of "allowable" variations at the end point, thus $\delta t_{f}=0$ if the final time is fixed, and $\delta x_{i}\left(t_{f}\right)=0$ if the end value of state variable $x_{i}\left(t_{f}\right)$ is fixed
- For example, suppose that $t_{f}$ is fixed, $x_{i}\left(t_{f}\right), i=1, \ldots, r$ are fixed, and $x_{j}\left(t_{f}\right), j=r+1, \ldots, n$ are free. Then the substitutions are:

$$
\delta t_{f}=0
$$

$$
\delta x_{i}\left(t_{f}\right)=0, \quad i=1, \ldots, r
$$

$$
\delta x_{j}\left(t_{f}\right) \text { arbitrary, } \quad j=r+1, \ldots, n
$$

## CoV extension I: generalized boundary conditions

| Problem description | Substitution | Boundary conditions | Remarks |
| :---: | :---: | :---: | :---: |
| 1. $\mathbf{x}\left(t_{f}\right), t_{f}$ both specified (Problem 1) | $\begin{aligned} & \delta \mathbf{x}_{f}=\delta \mathbf{x}\left(t_{f}\right)=\mathbf{0} \\ & \delta t_{f}=0 \end{aligned}$ | $\begin{aligned} & \mathbf{x}^{*}\left(t_{0}\right)=\mathbf{x}_{0} \\ & \mathbf{x}^{*}\left(t_{f}\right)=\mathbf{x}_{f} \end{aligned}$ | $2 n$ equations to determine $2 n$ constants of integration |
| 2. $\mathbf{x}\left(t_{f}\right)$ free; $t_{f}$ specified (Problem 2) | $\begin{aligned} & \delta \mathbf{x}_{f}=\delta \mathbf{x}\left(t_{f}\right) \\ & \delta t_{f}=0 \end{aligned}$ | $\begin{aligned} & \mathbf{x}^{*}\left(t_{0}\right)=\mathbf{x}_{0} \\ & \frac{\partial g}{\partial \dot{\mathbf{x}}}\left(\mathbf{x}^{*}\left(t_{f}\right), \dot{\mathbf{x}}^{*}\left(t_{f}\right), t_{f}\right)=\mathbf{0} \end{aligned}$ | $2 n$ equations to determine $2 n$ constants of integration |
| 3. $t_{f}$ free; $\mathbf{x}\left(t_{f}\right)$ specified (Problem 3) | $\delta \mathbf{x}_{f}=\mathbf{0}$ | $\begin{aligned} & \mathbf{x}^{*}\left(t_{0}\right)=\mathbf{x}_{0} \\ & \mathbf{x}^{*}\left(t_{f}\right)=\mathbf{x}_{f} \\ & g\left(\mathbf{x}^{*}\left(t_{f}\right), \dot{\mathbf{x}}^{*}\left(t_{f}\right), t_{f}\right) \\ & -\left[\frac{\partial g}{\partial \dot{\mathbf{x}}}\left(\mathbf{x}^{*}\left(t_{f}\right), \dot{\mathbf{x}}^{*}\left(t_{f}\right), t_{f}\right)\right]^{T} \dot{\mathbf{x}}^{*}\left(t_{f}\right)=0 \end{aligned}$ | ( $2 n+1$ ) equations to determine $2 n$ constants of integration and $t_{f}$ |
| 4. $t_{f}, \mathbf{x}\left(t_{f}\right)$ free and independent (Problem 4) | - | $\begin{aligned} & \mathbf{x}^{*}\left(t_{0}\right)=\mathbf{x}_{0} \\ & \frac{\partial g}{\partial \dot{\mathbf{x}}}\left(\mathbf{x}^{*}\left(t_{f}\right), \dot{\mathbf{x}}^{*}\left(t_{f}\right), t_{f}\right)=\mathbf{0} \\ & g\left(\mathbf{x}^{*}\left(t_{f}\right), \dot{\mathbf{x}}^{*}\left(t_{f}\right), t_{f}\right)=0 \end{aligned}$ | $(2 n+1)$ equations to determine $2 n$ constants of integration and $t_{f}$ |
| 5. $t_{f}, \mathbf{x}\left(t_{f}\right)$ free but related by $\mathbf{x}\left(t_{f}\right)=\boldsymbol{\theta}\left(t_{f}\right)$ <br> (Problem 4) | $\delta \mathbf{x}_{f}=\frac{d \theta}{d t}\left(t_{f}\right) \delta t_{f} \dagger$ | $\begin{aligned} & \mathbf{x}^{*}\left(t_{0}\right)=\mathbf{x}_{0} \\ & \mathbf{x}^{*}\left(t_{f}\right)=\boldsymbol{\theta}\left(t_{f}\right) \\ & g\left(\mathbf{x}^{*}\left(t_{f}\right), \dot{\mathbf{x}}^{*}\left(t_{f}\right), t_{f}\right) \\ & +\left[\frac{\partial g}{\partial \dot{\mathbf{x}}}\left(\mathbf{x}^{*}\left(t_{f}\right), \dot{\mathbf{x}}^{*}\left(t_{f}\right), t_{f}\right)\right]^{T}\left[\frac{d \theta}{d t}\left(t_{f}\right)-\dot{\mathbf{x}}^{*}\left(t_{f}\right)\right]=0 \dagger \end{aligned}$ | ( $2 n+1$ ) equations to determine $2 n$ constants of integration and $t_{f}$ |

## Example

- Determine the smooth curve of smallest length connecting the point $x(0)=1$ to the line $t=5$
- Solution: $x(t)=1$


## CoV extension II: constrained extrema

- Let $\mathbf{w}: \mathbb{R} \rightarrow \mathbb{R}^{n+m}$ be a vector-valued function, where each component $w_{i}$ is in the class of functions with continuous first derivatives. It is desired to find the function $\boldsymbol{w}^{*}$ for which the functional

$$
J(\mathbf{w})=\int_{t_{0}}^{t_{f}} g(\mathbf{w}(t), \dot{\mathbf{w}}(t), t) d t
$$

has a relative extremum, subject to the constraints

$$
f_{i}(\mathbf{w}(t), \dot{\mathbf{w}}(t), t)=0, \quad i=1, \ldots, n
$$

- Assumptions:
- $g \in C^{2}$
- $t_{0}$ and $\mathbf{w}(0)$ are fixed


## CoV extension II: constrained extrema

- Because of the $n$ differential constraints, only $m$ of the $n+m$ components of $\mathbf{w}$ are independent
- Constraints of this type may represent the state equation constraints in optimal control problems where $\mathbf{w}$ corresponds to the $n+m$ vector $\mathbf{w}=[\mathbf{x}, \mathbf{u}]^{\mathbf{T}}$
- Similar to the case of constrained optimization, define the augmented integrand function

$$
\begin{aligned}
& g_{a}(\mathbf{w}(t), \dot{\mathbf{w}}(t), \mathbf{p}(t), t):= \\
& g(\mathbf{w}(t), \dot{\mathbf{w}}(t), t)+\mathbf{p}(t)^{T} \mathbf{f}(\mathbf{w}(t), \dot{\mathbf{w}}(t), t) \\
& \begin{array}{l}
\text { Lagrange multipliers (now } \\
\text { functions of time!), the "costate" }
\end{array}
\end{aligned}
$$

## CoV extension II: constrained extrema

- A necessary condition for optimality is then

$$
\frac{\partial g_{a}}{\partial \mathbf{w}}\left(\mathbf{w}^{*}(t), \dot{\mathbf{w}}^{*}(t), \mathbf{p}^{*}(t), t\right)-\frac{d}{d t} \frac{\partial g_{a}}{\partial \dot{\mathbf{w}}}\left(\mathbf{w}^{*}(t), \dot{\mathbf{w}}^{*}(t), \mathbf{p}^{*}(t), t\right)=\mathbf{0}
$$

along with

$$
\mathbf{f}\left(\mathbf{w}^{*}(t), \dot{\mathbf{w}}^{*}(t), t\right)=\mathbf{0}
$$

- That is, to determine the necessary conditions for an extremal we simply form the augmented integrand $g_{a}$ and write the Euler equations as if there were no constraints among the functions $\mathbf{w}(t)$
- Note the similarity with the case of constrained optimization!


## The variational approach to optimal control

## Roadmap:

1. We will first derive necessary conditions for optimal control assuming that the admissible controls are not bounded
2. Next, we will heuristically introduce Pontryagin's Minimum Principle as a generalization of the fundamental theorem of CoV
3. Finally, we will consider special cases of problems with bounded controls and state variables

## Necessary conditions for optimal control

 (with unbounded controls)- The problem is to find an admissible control $\mathbf{u}^{*}$ which causes the system

$$
\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)
$$

to follow an admissible trajectory $\mathbf{x}^{*}$ that minimizes the functional

$$
J(\mathbf{u})=h\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(\mathbf{x}(t), \mathbf{u}(t), t) d t
$$

- Assumptions: $h \in C^{2}$, state and control regions are unbounded, $t_{0}$ and $\mathbf{x}(0)$ are fixed


## Necessary conditions for optimal control

 (with unbounded controls)- Define the Hamiltonian

$$
H(\mathbf{x}(t), \mathbf{u}(t), \mathbf{p}(t), t):=g(\mathbf{x}(t), \mathbf{u}(t), t)+\mathbf{p}(t)^{T} \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)
$$

- The necessary conditions for optimality (proof to follow) are

$$
\begin{aligned}
\dot{\mathbf{x}}^{*}(t) & =\frac{\partial H}{\partial \mathbf{p}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right) \\
\dot{\mathbf{p}}^{*}(t) & =-\frac{\partial H}{\partial \mathbf{x}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right) \\
\mathbf{0} & =\frac{\partial H}{\partial \mathbf{u}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right)
\end{aligned} \quad \text { for all } t \in\left[t_{0}, t_{f}\right]
$$

with boundary conditions

$$
\left[\frac{\partial h}{\partial \mathbf{x}}\left(\mathbf{x}^{*}\left(t_{f}\right), t_{f}\right)-\mathbf{p}^{*}\left(t_{f}\right)\right]^{T} \delta \mathbf{x}_{f}+\left[H\left(\mathbf{x}^{*}\left(t_{f}\right), \mathbf{u}^{*}\left(t_{f}\right), \mathbf{p}^{*}\left(t_{f}\right), t_{f}\right)+\frac{\partial h}{\partial t}\left(\mathbf{x}^{*}\left(t_{f}\right), t_{f}\right)\right] \delta t_{f}=0
$$

## Necessary conditions for optimal control (with unbounded controls)

| Problem | Description | $\begin{aligned} & \text { Substitution } \\ & \text { in Eq. }(5.1-18) \end{aligned}$ | Boundary-condition equations | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| $t_{f}$ fixed | 1. $\mathbf{x}\left(t_{f}\right)=\mathbf{x}_{f}$ specified final state | $\begin{aligned} & \delta \mathbf{x}_{f}=\delta \mathbf{x}\left(t_{f}\right)=\mathbf{0} \\ & \delta t_{f}=0 \end{aligned}$ | $\begin{aligned} & \mathbf{x}^{*}\left(t_{0}\right)=\mathbf{x}_{0} \\ & \mathbf{x}^{*}\left(t_{f}\right)=\mathbf{x}_{f} \end{aligned}$ | $2 n$ equations to determine $2 n$ constants of integration |
|  | 2. $\mathbf{x}\left(t_{f}\right)$ free | $\begin{aligned} & \delta \mathbf{x}_{f}=\delta \mathbf{x}\left(t_{f}\right) \\ & \delta t_{f}=0 \end{aligned}$ | $\begin{aligned} & \mathbf{x}^{*}\left(t_{0}\right)=\mathbf{x}_{0} \\ & \frac{\partial h}{\partial \mathbf{x}}\left(\mathbf{x}^{*}\left(t_{f}\right)\right)-\mathbf{p}^{*}\left(t_{f}\right)=\mathbf{0} \end{aligned}$ | $2 n$ equations to determine $2 n$ constants of integration |
|  | 3. $\mathbf{x}\left(t_{f}\right)$ on the surface $\mathrm{m}(\mathrm{x}(t))=0$ | $\begin{aligned} & \delta \mathbf{x}_{f}=\delta \mathbf{x}\left(t_{f}\right) \\ & \delta t_{f}=0 \end{aligned}$ | $\begin{aligned} & \mathbf{x}^{*}\left(t_{0}\right)=\mathbf{x}_{0} \\ & \frac{\partial h}{\partial \mathbf{x}}\left(\mathbf{x}^{*}\left(t_{f}\right)\right)-\mathbf{p}^{*}\left(t_{f}\right)=\sum_{i=1}^{k} d_{i}\left[\frac{\partial m_{i}}{\partial \mathbf{x}}\left(\mathbf{x}^{*}\left(t_{f}\right)\right)\right] \\ & \mathbf{m}\left(\mathbf{x}^{*}\left(t_{f}\right)\right)=\mathbf{0} \end{aligned}$ | $(2 n+k)$ equations to determine the $2 n$ constants of integration and the variables $d_{1}, \ldots, d_{k}$ |
| $t_{f}$ free | 4. $\mathbf{x}\left(t_{f}\right)=\mathbf{x}_{f}$ specified final state | $\delta \mathbf{x}_{f}=0$ | $\begin{aligned} & \mathbf{x}^{*}\left(t_{0}\right)=\mathbf{x}_{0} \\ & \mathbf{x}^{*}\left(t_{f}\right)=\mathbf{x}_{f} \\ & \mathscr{H}\left(\mathbf{x}^{*}\left(t_{f}\right), \mathbf{u}^{*}\left(t_{f}\right), \mathbf{p}^{*}\left(t_{f}\right), t_{f}\right)+\frac{\partial h}{\partial t}\left(\mathbf{x}^{*}\left(t_{f}\right), t_{f}\right)=0 \end{aligned}$ | $(2 n+1)$ equations to determine the $2 n$ constants of integration and $t_{f}$ |
|  | 5. $\mathbf{x}\left(t_{f}\right)$ free |  | $\begin{aligned} & \mathbf{x}^{*}\left(t_{0}\right)=\mathbf{x}_{0} \\ & \frac{\partial h}{\partial \mathbf{x}}\left(\mathbf{x}^{*}\left(t_{f}\right), t_{f}\right)-\mathbf{p}^{*}\left(t_{f}\right)=\mathbf{0} \\ & \mathscr{H}\left(\mathbf{x}^{*}\left(t_{f}\right), \mathbf{u}^{*}\left(t_{f}\right), \mathbf{p}^{*}\left(t_{f}\right), t_{f}\right)+\frac{\partial h}{\partial t}\left(\mathbf{x}^{*}\left(t_{f}\right), t_{f}\right)=0 \end{aligned}$ | $(2 n+1)$ equations to determine the $2 n$ constants of integration and $t_{f}$ |

## Interlude: Pontryagin's minimum principle

 (with bounded controls)- Assuming bounded controls $\mathbf{u} \in U$, the necessary optimality conditions are ( $H$ is the Hamiltonian)

$$
\left.\begin{array}{c}
\dot{\mathbf{x}}^{*}(t)=\frac{\partial H}{\partial \mathbf{p}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right) \\
\dot{\mathbf{p}}^{*}(t)=-\frac{\partial H}{\partial \mathbf{x}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right) \\
H\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right) \leq H\left(\mathbf{x}^{*}(t), \mathbf{u}(t), \mathbf{p}^{*}(t), t\right), \text { for all } \mathbf{u}(t) \in U
\end{array}\right] \quad \begin{gathered}
\text { for all } \\
t \in\left[t_{0}, t_{f}\right]
\end{gathered}
$$

along with the boundary conditions:

$$
\left[\frac{\partial h}{\partial \mathbf{x}}\left(\mathbf{x}^{*}\left(t_{f}\right), t_{f}\right)-\mathbf{p}^{*}\left(t_{f}\right)\right]^{T} \delta \mathbf{x}_{f}+\left[H\left(\mathbf{x}^{*}\left(t_{f}\right), \mathbf{u}^{*}\left(t_{f}\right), \mathbf{p}^{*}\left(t_{f}\right), t_{f}\right)+\frac{\partial h}{\partial t}\left(\mathbf{x}^{*}\left(t_{f}\right), t_{f}\right)\right] \delta t_{f}=0
$$

## Necessary conditions for optimal control

 (with unbounded controls)- Necessary conditions consist of a set of $2 n$, first-order, differential equations (state and costate equations), and a set of $m$ algebraic equations (control equations)
- The solution to the state and costate equations will contain $2 n$ constants of integration
- To obtain values for the constants, we use the $n$ equations $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$, and an additional set of $n$ (or $n+1$ ) equations from the boundary conditions
- Once again: 2-point boundary value problem


## Example

Find optimal control $u(t)$ to steer the system

$$
\ddot{x}(t)=u(t)
$$

from $x(0)=10, \dot{x}(0)=0$ to the origin $x\left(t_{f}\right)=0, \dot{x}\left(t_{f}\right)=0$, and to minimize

$$
J=\frac{1}{2} \alpha t_{f}^{2}+\frac{1}{2} \int_{t_{0}}^{t_{f}} b u^{2}(t) d t, \quad \alpha, b>0
$$

(note: the final time $t_{f}$ is free)

## Example

Find optimal control $u(t)$ to steer the system

$$
\ddot{x}(t)=u(t)
$$

from $x(0)=10, \dot{x}(0)=0$ to the origin $x\left(t_{f}\right)=0, \dot{x}\left(t_{f}\right)=0$, and to minimize

$$
J=\frac{1}{2} \alpha t_{f}^{2}+\frac{1}{2} \int_{t_{0}}^{t_{f}} b u^{2}(t) d t, \quad \alpha, b>0
$$

- Solution: optimal time is

$$
t_{f}=\left(\frac{1800 b}{\alpha}\right)^{1 / 5}
$$

## Necessary conditions for optimal control

 (with unbounded controls)We want to prove that, with unbounded controls, the necessary optimality conditions are ( $H=g+\mathbf{p}^{\mathrm{T}} \mathbf{f}$ is the Hamiltonian)

$$
\begin{aligned}
\dot{\mathbf{x}}^{*}(t) & =\frac{\partial H}{\partial \mathbf{p}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right) \\
\dot{\mathbf{p}}^{*}(t) & =-\frac{\partial H}{\partial \mathbf{x}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right) \\
\mathbf{0} & =\frac{\partial H}{\partial \mathbf{u}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right)
\end{aligned} \quad \text { for all } t \in\left[t_{0}, t_{f}\right]
$$

along with the boundary conditions:

$$
\left[\frac{\partial h}{\partial \mathbf{x}}\left(\mathbf{x}^{*}\left(t_{f}\right), t_{f}\right)-\mathbf{p}^{*}\left(t_{f}\right)\right]^{T} \delta \mathbf{x}_{f}+\left[H\left(\mathbf{x}^{*}\left(t_{f}\right), \mathbf{u}^{*}\left(t_{f}\right), \mathbf{p}^{*}\left(t_{f}\right), t_{f}\right)+\frac{\partial h}{\partial t}\left(\mathbf{x}^{*}\left(t_{f}\right), t_{f}\right)\right] \delta t_{f}=0
$$

## Proof sketch of NOC

- For simplicity, assume that the terminal penalty is equal to zero, and that $t_{f}$ and $\mathbf{x}\left(t_{f}\right)$ are fixed and given
- Consider the augmented cost function

$$
g_{a}(\mathbf{x}(t), \dot{\mathbf{x}}(t), \mathbf{u}(t), \mathbf{p}(t), t):=g(\mathbf{x}(t), \mathbf{u}(t), t)+\mathbf{p}(t)^{T}[\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)-\dot{\mathbf{x}}(t)]
$$

where the $\left\{p_{i}(t)\right.$ \}'s are Lagrange multipliers

- Note that we have simply added zero to the cost function!
- The augmented cost function is then

$$
J_{a}(\mathbf{u})=\int_{t_{0}}^{t_{f}} g_{a}(\mathbf{x}(t), \dot{\mathbf{x}}(t), \mathbf{u}(t), \mathbf{p}(t), t) d t
$$

## Proof sketch of NOC

On an extremal, by applying the fundamental theorem of the CoV

```
By the CoV
theorem
\[
\begin{aligned}
0 \stackrel{\delta}{=} J_{a}(\mathbf{u})= & \int_{t_{0}}^{t_{f}}\left(\left[\frac{\partial g_{a}}{\partial \mathbf{x}}\left(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right)-\frac{d}{d t} \frac{\partial g_{a}}{\partial \dot{\mathbf{x}}}\left(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right)\right]^{T} \delta \mathbf{x}(t)\right. \\
& \left.+\left[\frac{\partial g_{a}}{\partial \mathbf{u}}\left(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right)\right]^{T} \delta \mathbf{u}(t)+\left[\frac{\partial g_{a}}{\partial \mathbf{p}}\left(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right)\right]^{T} \delta \mathbf{p}(t)\right) d t
\end{aligned}
\]
```


## Proof sketch of NOC

On an extremal, by applying the fundamental theorem of the CoV

$$
\begin{aligned}
& \begin{array}{l}
\text { By the CoV } \\
\text { theorem } \\
\qquad
\end{array} \begin{aligned}
&=\frac{\partial g}{\partial \mathbf{x}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), t\right)+\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), t\right)^{T} \mathbf{p}^{*}(t) \quad=-\frac{d}{d t}\left(-\mathbf{p}^{*}(t)\right) \\
& 0 \stackrel{y}{=} \delta J_{a}(\mathbf{u})= \int_{t_{0}}^{t_{f}}\left(\left[\frac{\partial g_{a}}{\partial \mathbf{x}}\left(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right)-\frac{d}{d t} \frac{\partial g_{a}}{\partial \dot{\mathbf{x}}}\left(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right)\right]^{T} \delta \mathbf{x}(t)\right. \\
&+\left[\frac{\partial g_{a}}{\partial \mathbf{u}}\left(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right)\right]^{T} \delta \mathbf{u}(t)+\underbrace{}_{\left.\left[\frac{\partial g_{a}}{\partial \mathbf{p}}\left(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right)\right]^{T} \delta \mathbf{p}(t)\right) d t} d \\
&=\mathbf{f}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), t\right)-\dot{\mathbf{x}}^{*}(t)
\end{aligned}
\end{aligned}
$$

## Proof sketch of NOC

Considering each term in sequence,

- $\mathbf{f}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), t\right)-\dot{\mathbf{x}}^{*}(t)=\mathbf{0}$, on an extremal
- The Lagrange multipliers are arbitrary, so we can select them to make the coefficient of $\delta \mathbf{x}(t)$ equal to zero, that is

$$
\dot{\mathbf{p}}^{*}(t)=-\frac{\partial g}{\partial \mathbf{x}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), t\right)-\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), t\right)^{T} \mathbf{p}^{*}(t)
$$

- The remaining variation $\delta \mathbf{u}(t)$, is independent, so its coefficient must be zero; thus

$$
\frac{\partial g}{\partial \mathbf{u}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), t\right)+\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), t\right)^{T} \mathbf{p}^{*}(t)=\mathbf{0}
$$

By using the Hamiltonian formalism, one obtains the claim

## Next time

- Pontryagin's Minimum Principle
- Intro to dynamic programming

