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Optimization in many dimensions
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Optimization in many dimensions
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Optimization in many dimensions
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Outline

1. Unconstrained optimization
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Unconstrained optimization

Unconstrained non-linear program

min f(x)

* f usually assumed continuously
differentiable (and often twice
continuously differentiable)
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Local and global minima

 Avectorx™ is said to be an unconstrained
local minimum if 3e > 0 such that

F) < f(x),  Vx|[x— x| <e

 Avector x™ is said to be an unconstrained
global minimum if

fx*) < f(x),  ¥xeR"

* X" is a strict local/global minimum if the
inequality is strict
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S
Necessary conditions for optimality

Key idea: compare cost of a vector with cost
of its close neighbors

« Assume f € C1, by using Taylor series
expansion

f(x* 4+ Ax) — f(x*) = Vf(x") Ax
*If f € C*

f(x* + Ax) — f(x*) = Vf(x*) Ax + %AX,V2f(X*)AX
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Necessary conditions for optimality

* We expect thatif x* is an unconstrained local
minimum, the first order cost variation due to
a small variation Ax is nonnegative, i.e.,

" — 0f(x*)
Vix*)Ax = ?Z::l o, Ax; >0
* By taking Ax to be positive and negative

multiples of the unit coordinate vectors, we
obtain conditions of the type

Of (x") Of(x) _
0x; ox;
* Equivalently we have the necessary condition

>0, and

Vfx*)=0 (x™ is said a stationary point)
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Necessary conditions for optimality

Vfx*)=0 (x™ is said a stationary point)
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Necessary conditions for optimality

* Of course, also the second order cost variation due to a
small variation Ax must be non-negative

Vf(x*) Ax + %m’v? F(x")Ax > 0

* Since Vf(x*)'Ax=0, we obtain AX'V4f(x*)Ax > 0. Hence

VZ f(x*) has to be positive semidefinite
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Necessary conditions for optimality

Theorem: NOC

Let x*be an unconstrained local minimum of f: R" » R and assume
that f is C! in an open set S containing x*. Then

Vix*)=0 (first order NOC)

If in addition f € C? within S,

VZ f(x*) positive semidefinite (second order NOC)
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Sufficient conditions for optimality

 Assume that x*satisfies the first order NOC
Vf(x*)=0

e and also assume that the second order NOC is
strengthened to

V2 f(x*) positive definite

e Then, for all Ax = 0, AX'V?f(x*)Ax > 0. Hence,
f tends to increase strictly with small
excursions from x*, suggesting SOC...
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Sufficient conditions for optimality

Theorem: SOC

Let f: R™ » R be C%in an open set S. Suppose that a vector x* €
S satisfies the conditions

Vf(x*) =0 and V? f(x*) positive definite

Then x™ is a strict unconstrained local minimum of f
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Special case: convex optimization

A subset C of R" is called convex if
ax+ (1—a)yeC, Vx,yeC,Vac]0,]1]

Let C be convex. Afunction f: C = Ris
called convex if

flax+ (1 -a)y) < af(x)+ (1 —-a)f(y)
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Special case: convex optimization

Let f: C — R be aconvex function over a
convexset C

* Alocal minimum of f overCisalso a
global minimum over C. If in addition f is
strictly convex, then there exists at most
one global minimum of f

e If fisin C! and convex, and the set C is
open, Vf(x*) = 0 isanecessary and
sufficient condition for a vector x* € C to
be a global minimum over C
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Discussion

* Optimality conditions are important to
filter candidates for global minima

* They often provide the basis for the design
and analysis of optimization algorithms

* They can be used for sensitivity analysis
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Outline

2. Computational methods for unconstrained optimization

4/4/2022 AA 203 | Lecture 3 18



Computational methods (unconstrained case)

Key idea: iterative descent. We start at some point x°
(initial guess) and successively generate vectors
x1,x?, ... suchthat f is decreased at each iteration, i.e.,

) < f(x),  k=0,1,...

The hopeis to decrease f all the way to the minimum
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Gradient methods

Given x € R™ with Vf(x) # 0, consider the half
line of vectors

Xq = X — aV f(x), Va > 0
From first order Taylor expansion (a small)

f(xa) = f(x) + V(%) (xa —x) = f(x) — o Vf(x)]*

So for a small enough f(x,) is smaller than f(x)!
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Gradient methods

Carrying this idea one step further, consider the half
line of vectors

X, =X+ ad, Va > 0
where Vf(x)'d < 0 (angle > 90°)

By Taylor expansion

f(xa) = f(x) + aV f(x)'d

For small enough «a, f (x + ad) is smaller than f(x)!
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Gradient methods

Broad and important class of algorithms:
gradient methods

xFtt = xF + o* d¥, k=20,1,...
where if Vf(xX) # 0, d¥is chosen so that
Vf(xF)d* <0

and the stepsize a is chosen to be positive
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e
Gradient descent

Most often the stepsize is chosen so that
f(x" +a®d*) < f(xF), k=0,1,...

and the method is called gradient descent.
“Tuning” parameters:

* selecting the descent direction
* selecting the stepsize
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Selecting the descent direction

General class
d* = —D*Vf(x*),  where D* > 0
(Obviously, Vf(xk)’dk < 0)
Popular choices:
* Steepest descent: D¥ =T

- Newton's method: D* = (V*f(x*)) !
provided sz( ) >0
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Selecting the stepsize

« Minimization rule: a¥ is selected such that the cost
function is minimized along the direction d¥, i.e.,

f(x* + afd®) = m>113 f(x* + ad®)

» Constant stepsize: a® = s
* the method might diverge
* convergence rate could be very slow

e Diminishing stepsize: a® - 0 and X125, a® = o
* it does not guarantee descent at each iteration
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e
Undiscussed in this class

Mathematical analysis:
 convergence (to stationary points)
e termination criteria

* convergence rate

Derivative-free methods, e.g.,

e coordinate descent
 Nelder-Mead
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Constrained optimization

 Constraint set usually specified in terms
of equality and inequality constraints

* Sophisticated collection of optimality
conditions, involving some auxiliary
variables, called Lagrange multipliers
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Constrained optimization

 Constraint set usually specified in terms
of equality and inequality constraints

* Sophisticated collection of optimality
conditions, involving some auxiliary
variables, called Lagrange multipliers

Viewpoints:

 Penalty viewpoint: we disreﬁard the
constraints and we add to the cost a high
penalty for violating them

 Feasibility direction viewpoint: it relies on
the fact that at a local minimum there
can be no cost improvement when
traveling a small distance along a_
direction that leads to feasible points
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Outline

3. Optimization with equality constraints
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Optimization with equality constraints

min f(x)
subject to  h;(x) = 0, 1= L i 5000

* f:R"™ - Rand h;: R® > RareC?
* notation: h := (h4, ..., hy,,)

4/4/2022 AA 203 | Lecture 3 30



Lagrange multipliers

* Basic Lagrange multiplier theorem: for a given local minimum x*
there exist scalars 44, ..., 4,, called Lagrange multipliers such that

V") + Y AiVhi(x*) =0
=1
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Lagrange multipliers

Vf(x*) —+ Z )\ZVhZ(X*) =0
=1
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Lagrange multipliers

Vf(x*) —+ Z )\ZVhZ(X*) =0
=1
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Lagrange multipliers

* Basic Lagrange multiplier theorem: for a given local minimum x*
there exist scalars 44, ..., 4,, called Lagrange multipliers such that

Vf(x*) + Z )\EV.’%(X*) = {)
=1

* Example
min xi + o

subject to z% 4+ 22 = 2
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Lagrange multipliers

min T + o

subject to  x% 4 23 = 2

f(x) = z1 4 22
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Lagrange multipliers

* Basic Lagrange multiplier theorem: for a given local minimum x*
there exist scalars 44, ..., 4,, called Lagrange multipliers such that

V") + Y AiVhi(x*) =0
=1

* Example
min x1 + xo

subject to r% + r% =2 Solution: x*= (-1, -1)
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Lagrange multipliers
Vf(x™)+ i)\thi(x*) =)

Interpretations:

1. Thecost gradient Vf(x") belongs to the subspace
spanned by the constraint gradients at x*. That is,
the constrained solution will be at a point of
tangency of the constrained cost curves and the
constraint function
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Lagrange multipliers
Vf(x™)+ i/\@:Vhi(x*) =)

Interpretations:

1. Thecost gradient Vf(x") belongs to the subspace
spanned by the constraint gradients at x*. That is,
the constrained solution will be at a point of
tangency of the constrained cost curves and the
constraint function

2. Thecost gradient Vf(x") is orthogonal to the
subspace of first order feasible variations

VA" )i =t o) V(! ) Aze = 0y, 4 = Lo}

This is the subspace of variations Ax for which the
vector x = x* + Ax satisfies the constrainth(x) = 0
up to first order. Hence, at a local minimum, the first
order cost variation Vf (x*)'Ax is zero for al
variations Ax in this subspace
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NOC

Theorem: NOC

Let x* be a local minimum of f subject to h(x) = 0 and assume that
the constraint gradients Vh;(x"), ..., Vh,,(X*) are linearly
independent. Then there exists a unique vector (44, ..., 4,;,), called a
Lagrange multiplier vector, such that

Vf(x*) -+ Z )«EVhE(X*) =1
=1

(2" order NOC and SOC are provided in AA203-Notes)
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https://github.com/StanfordASL/AA203-Notes

Discussion

* Afeasible vector x for which {Vh;(x)}; are
linearly independent is called regular*

* Proof relies on transforming the constrained
problem into an unconstrained one

1. penalty approach: we disregard the constraints
while adding to the cost a high penalty for
violating them — extends to inequality constraints

2. elimination approach: we view the constraints as a
system of m equations with n unknowns, and we
express m of the variables in terms of the
remaining n — m, thereby reducing the problem to
an unconstrained problem

* There may not exist Lagrange multipliers for a local minimum that is not regular
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The Lagrangian function

* |tis often convenient to write the necessary conditions
in terms of the Lagrangian function L: R**™ - R

L(x,\) = f(x) + Z Aihi(x)

* Then, if x* is a local minimum which is regular, the
NOC conditions are compactly written

System of n + m equations

VxL(x", \¥)
% with n + m unknowns

0
VAL(X*j)\ ) 0
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Outline

4. Optimization with inequality constraints
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Optimization with inequality constraints

min  f(x)
subject to h;(x) = 0, i =135 m
g;(x) <0, T =dyuve,s r

.fahi)gj arecl

* Inequality Constrained Problem (ICP)
in compact form
min  f(x)
subject to h(x) =0
g(x) <0
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Active constraints

For any feasible point, the set of active inequality
constraints is denoted

A(x) := {J] g;(x) = 0}

Ifj € A(X), then the constraintis inactive at x.
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Active constraints

For any feasible point, the set of active inequality
constraints is denoted

A(x) := {J] g;(x) = 0}

Ifj € A(X), then the constraintis inactive at x.

Key points

* if X" is a local minimum of the ICP, then X" is
also a local minimum for the identical ICP
without the inactive constraints

* at a local minimum, active inequality
constraints can be treated to a large extent as
equalities
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Active constraints

* Hence, if x™is a local minimum of ICP, then
x* is also a local minimum for the equality
constrained problem

min  f(x)

subject to h(x) =0
gi(x) =0, Vj € A(x*)
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Active constraints

* Thusifx* is regular, there exist Lagrange multipliers
(A4, ..., Am) and 5, j € A(X"), such that

V) + D NV )+ > piVgi(x*) =0

JEA(x*)

* or equivalently

+Z>\ Vhi( +Zu3vgj ) =0

71=1

p; =0 Vj ¢ Ax") (indeed p; > 0)
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Karush-Kuhn-Tucker NOC

Define the Lagrangian function

L(x, A\, 1) : +§:Ah )+ > g (x)
j=1
Theorem: KKT NOC

Let x* be a local minimum for ICP where f, h;, g; are C! and assume x* is

regular (equality + active inequality constraints gradients are linearly
independent). Then, there exist unique Lagrange multiplier vectors

(AL s A), (U3, ..., 4y) such that
Ve L(x*, X", ") =0
p; >0, g=1,...,r
p; =0  Vj ¢ Ax")
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Example
min x2 + y?
s.t. 2x+y <2

Solution: (0,0)
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Next time

Calculus of variations
(infinite-dimensional optimization!)
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