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Outline

1. Unconstrained optimization

2. Computational methods for unconstrained optimization

3. Optimization with equality constraints

4. Optimization with inequality constraints
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Unconstrained optimization

Unconstrained non-linear program

• 𝑓 usually assumed continuously 
differentiable (and often twice 
continuously differentiable)
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Local and global minima

• A vector 𝐱∗ is said to be an unconstrained 
local minimum if ∃𝜖 > 0 such that

• A vector 𝐱∗ is said to be an unconstrained 
global minimum if

• 𝐱∗ is a strict local/global minimum if the 
inequality is strict
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Necessary conditions for optimality

Key idea: compare cost of a vector with cost 
of its close neighbors

• Assume 𝑓 ∈ 𝐶1, by using Taylor series 
expansion

• If 𝑓 ∈ 𝐶2
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Necessary conditions for optimality
• We expect that if 𝐱∗ is an unconstrained local 

minimum, the first order cost variation due to 
a small variation Δ𝐱 is nonnegative, i.e., 

• By taking Δ𝐱 to be positive and negative 
multiples of the unit coordinate vectors, we 
obtain conditions of the type

• Equivalently we have the necessary condition 
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Necessary conditions for optimality
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Necessary conditions for optimality

• Of course, also the second order cost variation due to a 
small variation Δ𝐱 must be non-negative

• Since ∇𝑓(x∗)′∆x=0, we obtain ∆x′∇2𝑓(x∗)∆x ≥ 0. Hence
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Necessary conditions for optimality

Theorem: NOC 

Let 𝐱∗be an unconstrained local minimum of 𝑓:ℝ𝑛 ↦ℝ and assume 
that 𝑓 is 𝐶1 in an open set 𝑆 containing 𝐱∗. Then 

If in addition 𝑓 ∈ 𝐶2 within 𝑆,
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(first order NOC)

positive semidefinite (second order NOC)
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Sufficient conditions for optimality

• Assume that 𝐱∗satisfies the first order NOC

• and also assume that the second order NOC is 
strengthened to

• Then, for all Δ𝐱 ≠ 0, ∆x′∇2𝑓(𝐱∗)∆x > 0. Hence, 
𝑓 tends to increase strictly with small 
excursions from 𝐱∗, suggesting SOC…
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Sufficient conditions for optimality
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Theorem: SOC 

Let 𝑓: ℝ𝑛 ↦ℝ be 𝐶2 in an open set 𝑆. Suppose that a vector 𝐱∗ ∈
𝑆 satisfies the conditions

Then 𝐱∗ is a strict unconstrained local minimum of 𝑓

and positive definite

AA 203 | Lecture 3



Special case: convex optimization

A subset 𝐶 of ℝ𝑛 is called convex if

Let 𝐶 be convex. A function 𝑓: 𝐶 → ℝ is 
called convex if
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Special case: convex optimization

Let 𝑓: 𝐶 → ℝ be a convex function over a 
convex set 𝐶

• A local minimum of 𝑓 over 𝐶 is also a 
global minimum over 𝐶. If in addition 𝑓 is 
strictly convex, then there exists at most 
one global minimum of 𝑓

• If 𝑓 is in 𝐶1 and convex, and the set 𝐶 is 
open, ∇𝑓(x∗) = 0 is a necessary and 
sufficient condition for a vector x∗ ∈ 𝐶 to 
be a global minimum over 𝐶
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• Optimality conditions are important to 
filter candidates for global minima 

• They often provide the basis for the design 
and analysis of optimization algorithms

• They can be used for sensitivity analysis
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Discussion
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Outline

1. Unconstrained optimization

2. Computational methods for unconstrained optimization

3. Optimization with equality constraints

4. Optimization with inequality constraints
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Computational methods (unconstrained case)

Key idea: iterative descent. We start at some point x0

(initial guess) and successively generate vectors 
x1, x2, … such that 𝑓 is decreased at each iteration, i.e.,

The hope is to decrease 𝑓 all the way to the minimum
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Gradient methods

Given x ∈ ℝ𝑛 with ∇𝑓 𝐱 ≠ 0, consider the half 
line of vectors

From first order Taylor expansion (𝛼 small)

So for 𝛼 small enough 𝑓(𝐱𝛂) is smaller than 𝑓(𝐱)!
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Gradient methods

Carrying this idea one step further, consider the half 
line of vectors

where ∇𝑓 𝐱 ′𝐝 < 𝟎 (angle > 90∘)

By Taylor expansion

For small enough 𝛼, 𝑓(𝐱 + 𝛼𝐝) is smaller than 𝑓(𝐱)!
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Gradient methods

Broad and important class of algorithms: 
gradient methods

where if ∇𝑓 𝐱k ≠ 0, 𝐝k is chosen so that

and the stepsize 𝛼 is chosen to be positive  
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Gradient descent

Most often the stepsize is chosen so that

and the method is called gradient descent. 
“Tuning” parameters:

• selecting the descent direction

• selecting the stepsize
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Selecting the descent direction

General class

(Obviously, ∇𝑓 𝐱𝑘
′
𝐝𝑘 < 0)

Popular choices:

• Steepest descent:

• Newton's method:                                            ,
provided
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Selecting the stepsize

• Minimization rule: 𝛼𝑘 is selected such that the cost 
function is minimized along the direction 𝐝𝑘, i.e., 

• Constant stepsize: 𝛼𝑘 = 𝑠
• the method might diverge

• convergence rate could be very slow  

• Diminishing stepsize: 𝛼𝑘 → 0 and σ𝑘=0
+∞ 𝛼𝑘 = ∞

• it does not guarantee descent at each iteration
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Undiscussed in this class

Mathematical analysis:

• convergence (to stationary points)

• termination criteria 

• convergence rate

Derivative-free methods, e.g., 

• coordinate descent

• Nelder-Mead
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Constrained optimization
• Constraint set usually specified in terms 

of equality and inequality constraints

• Sophisticated collection of optimality 
conditions, involving some auxiliary 
variables, called Lagrange multipliers

Viewpoints:

• Penalty viewpoint: we disregard the 
constraints and we add to the cost a high 
penalty for violating them 

• Feasibility direction viewpoint: it relies on 
the fact that at a local minimum there 
can be no cost improvement when 
traveling a small distance along a 
direction that leads to feasible points
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Optimization with equality constraints

• 𝑓:ℝ𝑛 → ℝ and ℎ𝑖: ℝ
𝑛 → ℝ are 𝐶1

• notation: 𝐡 ≔ (ℎ1, … , ℎ𝑚)
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Lagrange multipliers

• Basic Lagrange multiplier theorem: for a given local minimum 𝐱∗

there exist scalars 𝜆1, … , 𝜆𝑚 called Lagrange multipliers such that
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Lagrange multipliers
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Lagrange multipliers
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Lagrange multipliers

• Basic Lagrange multiplier theorem: for a given local minimum 𝐱∗

there exist scalars 𝜆1, … , 𝜆𝑚 called Lagrange multipliers such that

• Example
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Lagrange multipliers
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Lagrange multipliers

• Basic Lagrange multiplier theorem: for a given local minimum 𝐱∗

there exist scalars 𝜆1, … , 𝜆𝑚 called Lagrange multipliers such that

• Example

Solution: 𝐱∗= (-1, -1)
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Lagrange multipliers

Interpretations:

1. The cost gradient ∇𝑓(𝐱∗) belongs to the subspace 
spanned by the constraint gradients at 𝐱∗. That is, 
the constrained solution will be at a point of 
tangency of the constrained cost curves and the 
constraint function 

2. The cost gradient ∇𝑓(𝐱∗) is orthogonal to the 
subspace of first order feasible variations

This is the subspace of variations Δ𝐱 for which the 
vector 𝐱 = 𝐱∗ + Δ𝐱 satisfies the constraint 𝐡 𝐱 = 0
up to first order. Hence, at a local minimum, the first 
order cost variation ∇𝑓 𝐱∗ ′Δ𝒙 is zero for all 
variations Δ𝐱 in this subspace 
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NOC

Theorem: NOC

Let 𝐱∗ be a local minimum of 𝑓 subject to 𝐡 𝐱 = 0 and assume that 
the constraint gradients ∇ℎ1(𝐱

∗), … , ∇ℎ𝑚(𝐱
∗) are linearly 

independent. Then there exists a unique vector (𝜆1, … , 𝜆𝑚), called a 
Lagrange multiplier vector, such that 

(2nd order NOC and SOC are provided in AA203-Notes)
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https://github.com/StanfordASL/AA203-Notes


Discussion

• A feasible vector 𝐱 for which ∇ℎ𝑖 𝐱 𝑖 are 
linearly independent is called regular*

• Proof relies on transforming the constrained 
problem into an unconstrained one

1. penalty approach: we disregard the constraints 
while adding to the cost a high penalty for 
violating them → extends to inequality constraints

2. elimination approach: we view the constraints as a 
system of 𝑚 equations with 𝑛 unknowns, and we 
express 𝑚 of the variables in terms of the 
remaining 𝑛 − 𝑚, thereby reducing the problem to 
an unconstrained problem
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* There may not exist Lagrange multipliers for a local minimum that is not regular



The Lagrangian function

• It is often convenient to write the necessary conditions 
in terms of the Lagrangian function 𝐿:ℝ𝑛+𝑚 → ℝ

• Then, if 𝐱∗ is a local minimum which is regular, the 
NOC conditions are  compactly written

System of 𝑛 +𝑚 equations 
with 𝑛 +𝑚 unknowns
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Optimization with inequality constraints

• 𝑓, ℎ𝑖, 𝑔𝑗 are 𝐶1

• Inequality Constrained Problem (ICP) 
in compact form
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Active constraints

For any feasible point, the set of active inequality 
constraints is denoted

If 𝑗 ∉ 𝐴(𝐱), then the constraint is inactive at 𝐱.

Key points

• if 𝐱∗ is a local minimum of the ICP, then 𝐱∗ is 
also a local minimum for the identical ICP 
without the inactive constraints

• at a local minimum, active inequality 
constraints can be treated to a large extent as 
equalities 
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Active constraints

• Hence, if 𝐱∗is a local minimum of ICP, then 
𝐱∗ is also a local minimum for the equality
constrained problem 
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Active constraints

• Thus if 𝐱∗ is regular, there exist Lagrange multipliers 
(𝜆1, … , 𝜆𝑚) and 𝜇𝑗

∗, 𝑗 ∈ 𝐴(𝐱∗), such that

• or equivalently
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Karush-Kuhn-Tucker NOC

Define the Lagrangian function

Theorem: KKT NOC

Let 𝐱∗ be a local minimum for ICP where 𝑓, ℎ𝑖, 𝑔𝑗 are 𝐶1 and assume 𝐱∗ is 
regular (equality + active inequality constraints gradients are linearly 
independent). Then, there exist unique Lagrange multiplier vectors 
(𝜆1

∗ , … , 𝜆𝑚
∗ ), 𝜇1

∗, … , 𝜇𝑟
∗ such that
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Example

Solution: (0,0)
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min 𝑥2 + 𝑦2

s. t. 2𝑥 + 𝑦 ≤ 2
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Next time
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Calculus of variations

(infinite-dimensional optimization!)


