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Intro to learning; System identification and adaptive control
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Feedback control
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Feedback control
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Reinforcement learning
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Approaches

How do we handle uncertainty?

• In many cases, when uncertainties have only a small 
effect, a feedback controller will adequately 
compensate for model error
• Small wind disturbances in a quadrotor

• We can use robust control approaches (e.g., minimax 
control strategies)
• Harrier VSTOL near hover

• We can use observed state transitions to attempt to 
identify patterns and improve our control strategy 
• F-16 under wind resistance 
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What can we learn?

Want to use measurements to improve control performance. 

Can either:

• Use measurements to directly improve controller
• Direct adaptive control
• Model-free reinforcement learning

• Use measurements to learn model, use model to improve controller
• System identification
• Indirect adaptive control
• Model-based reinforcement learning
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How does learning happen?

Three possible learning settings: 
• “Zero” episodes: the system identification approach, in which learning is 

done based on data gathered before operation 

• One episode: want to learn and re-optimize our controller online -> this is the 
standard setting for adaptive control

• Multiple episodes: interact with the environment in episodes, in which the 
system is reset at the start of each episode; learning and policy optimization 
can happen between episodes -> this is the standard setting for 
reinforcement learning

3/30/2022 AA 203 | Lecture 2 8



System identification for learning-based control

• For many problems, we don’t need to learn online 

• A standard control engineering pipeline is to do experiments in 
advance to build a data-driven model of the dynamics

• Then, we can use this model for planning and control without further 
learning online

• Relies on having an engineer in the loop for learning, designing 
experiments, resetting the system, etc. 

• Linear regression is one of the main system id tools
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Least squares

System model
𝑦 = 𝜽𝑇𝒛 + 𝜖

Given data 𝑦1, … , 𝑦𝑁, 𝒛1, … , 𝒛𝑁, want to minimize mean squared error:



𝑖=1

𝑁

𝑦𝑖 − 𝜽𝑇𝒛𝑖
2

Rewrite as 
𝒚 − 𝑍 𝜽 2

2

Solution (full rank 𝑍): 𝜽 = 𝑍𝑇 𝑍 −1𝑍𝑇𝒚
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Example: first order model 

• Consider a 1D first-order system with discrete-time dynamics 
𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑏𝑢𝑡 + 𝜖𝑡

• Linear regression representation 
• 𝒛𝒕 = [𝑥𝑡 , 𝑢𝑡], 𝑡 = 0,… ,𝑁

• 𝜽 = 𝑎, 𝑏

• Comments
• Practically, least squares can be written in recursive form for efficient 

updates as new observations stream in

• Least squares regression may also be considered in continuous time 
(minimizing an error integral)
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Linear regression for system id

• As seen before, the solution is 

𝜽 = 𝑍𝑇𝑍 −1𝑍𝑇𝐲

• Gauss-Markov theorem: 𝜽 is the best linear unbiased estimator
(for any noise distribution that obeys assumptions)
• Errors 𝜖𝑡 are zero mean, uncorrelated, and all have the same finite variance

• If noise distribution is Gaussian, 𝜽 is the maximum likelihood 
estimator
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Persistent excitation
Classical question: what are sufficient conditions for our estimator 𝜽 to converge?
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Persistent excitation
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-> criterion such that if our sys id/adaptive control system operates forever, then 
we’ll have identified the system perfectly

Classical question: what are sufficient conditions for our estimator 𝜽 to converge?



Performance questions 

Practically, the system identification approach leads to several questions:

• What if we have a data budget?
• How much data is required to learn the model?

• How can we quantify a “good” estimate?

• We care about controller performance, not model accuracy, so do we require an 
accurate model?

• How should we design the inputs used for data collection?
• What if we’re learning while doing?

• What if an engineer can’t intervene to prevent system failure during data collection?

• What if our system does not fall in the class of systems we are considering?
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Detour: stability analysis via Lyapunov

Mass/Spring/Damper

Consider the total energy of the system:
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Detour: stability analysis via Lyapunov

Mass/Spring/Damper

Consider the total energy of the system:
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(side note: these dynamics are 
exactly the same as Monday’s 
double integrator example, with 
the spring as proportional feedback 
and damper as derivative feedback)



Lyapunov theorem for global stability

Consider an autonomous system ሶ𝒙 = f 𝒙 (e.g., ሶ𝒙 = f 𝒙, 𝒖 = 𝝅(𝒙) ).

Equilibrium point: 𝒙∗ s.t. f 𝒙∗ = 0

1. 𝑉 𝒙 > 0 for all 𝒙 ≠ 𝒙∗, 𝑉 𝒙∗ = 0

2. ሶ𝑉 𝒙 < 0 for all 𝒙 ≠ 𝒙∗

3. 𝑉 𝒙 → ∞ as 𝒙 → ∞

If such a function exists, then equilibrium 𝒙∗ is globally asymptotically 
stable. 
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Adaptive control

• Broadly, adaptive control aims to perform online adaptation of the 
policy to improve performance

• This can be done via directly updating the policy or updating the 
model and re-optimizing or re-computing the controller 

• Most classical adaptive control work does not consider the optimal 
adaptive control problem; they focus on proving stability of the 
coupled controller + adaptive component + system dynamics
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Adaptive control approaches

Encompasses a large variety of techniques, including :

• Model reference adaptive control (MRAC)

• Model identification adaptive control (MIAC)

• Dual control

• Model-free 
• policy adaptation

• iterative learning control
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Model reference adaptive control (MRAC)

• A model reference adaptive controller is composed of four parts:
1. A plant containing unknown parameters 

2. A reference model for compactly specifying the desired output 

3. A feedback control law containing adjustable parameters 

4. An adaptation mechanism for updating the adjustable parameters 

• Compared to reward functions, a reference model is an alternative 
way to specify how a system should behave
• The reference model provides the ideal plant response which the 

adaptation mechanism should seek in adjusting the parameters 

3/30/2022 AA 203 | Lecture 2 21



Example of MRAC control 

• Consider double integrator
𝑚 ሷ𝑥 = 𝑢

• Assume a human operator provides the positioning command 𝑟(𝑡)
to the control system

• A reasonable way of specifying the ideal response of the controlled 
mass to the external command 𝑟(𝑡) is to use the reference model 

ሷ𝑥𝑚 + 𝑘𝑑 ሶ𝑥𝑚 + 𝑘𝑝𝑥𝑚 = 𝑘 𝑟(𝑡)

where the reference model output 𝑥𝑚 is the ideal output
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Example of MRAC control 

• If the mass is known exactly, one can achieve perfect tracking via
𝑢 = 𝑚( ሷ𝑥𝑚 − 2𝜆 ሶ𝑥 − 𝜆2 𝑥)

where 𝜆 > 0 is some chosen gain and 𝑥 ≔ 𝑥 − 𝑥𝑚 is the tracking error 

• This control leads to exponentially convergent tracking dynamics

ሷ𝑥 + 2𝜆 ሶ𝑥 + 𝜆2 𝑥 = 0
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Example of MRAC control 

• If the mass is not known exactly, we can use the 
control law

𝑢 = ෝ𝑚( ሷ𝑥𝑚 − 2𝜆 ሶ𝑥 − 𝜆2 𝑥)

which contains the adjustable parameter ෝ𝑚

• This control leads to the closed-loop dynamics 
𝑚 ሶ𝑠 + 𝜆𝑚𝑠 = 𝑚𝑣

where:
• 𝑠 is a combined tracking error measure (the “sliding 

mode” variable), defined by 𝑠 = ሶ𝑥 + 𝜆 𝑥
• the signal quantity 𝑣 is given by 𝑣 = ሷ𝑥𝑚 − 2𝜆 ሶ𝑥 − 𝜆2 𝑥
• and the parameter estimation error is 𝑚= ෝ𝑚 −𝑚
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Example of MRAC control 

• One way of adjusting the parameter ෝ𝑚 is to use the (nonlinear) 
update law

ሶෝ𝑚 = −𝛾𝑣𝑠

where 𝛾 > 0 is called the adaptation gain 

• Stability and convergence can be analyzed via Lyapunov theory

• Consider Lyapunov function candidate 

𝑉 =
1

2
𝑚𝑠2 +

1

𝛾
𝑚2

• Its derivative is ሶ𝑉 = −𝜆𝑚𝑠2

• Thus 𝑠 → 0, and hence 𝑥 → 0 and ሶ𝑥 → 0
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MRAC

• An excellent reference for systematic MRAC design is:
Jean-Jacques Slotine, Weiping Li, Applied Nonlinear Control, Chapter 8

• If the reference signal 𝑟(𝑡) is very simple, such as zero or a constant, it is 
possible for many vectors of parameters, besides the ideal parameter 
vector, to lead to tracking error convergence 

• However, if the reference signal 𝑟(𝑡) is so complex that only the “true” 
parameter vector can lead to tracking convergence, then one shall have 
parameter convergence -> persistent excitation condition
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Model identification adaptive control

• MIAC (also referred to as self-tuning) simply combines model 
estimation with a controller that uses the estimated model

• Important distinction between certainty-equivalent and cautious
approaches
• Certainty-equivalent: maintains point estimate of model and uses that 

model for policy selection/optimization. Can be suboptimal, risky.

• Cautious: Maintains measure of estimator uncertainty, incorporates the 
uncertainty into the controller. This is often overly robust because it does 
not account for future info gain!
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MRAC vs. MIAC

• MRAC and MIAC arise from two different perspectives:
1. parameters in MRAC are updated so as to minimize tracking error 

between the plant output and the reference model output 
2. parameters in MIAC are updated so as to minimize the data-fitting error 

• MIAC controllers are in general more flexible, as one can couple 
various controllers with various estimators 

• However, correctness of MIAC controllers is more difficult to 
guarantee, as if the signals are not rich, the estimated parameters 
may not be close to the “true” values, and stability and convergence 
may not be ensured 

• In contrast, for MRAC, stability and convergence are usually 
guaranteed regardless of the richness of the signals  
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Next class
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Nonlinear optimization theory;
unconstrained/constrained formulations


