AA203
Optimal and Learning-based Control

Combining model and policy learning

Stanford ASET
Universi t)r' .

A

SARSA } Continuous

Roa d Mma p Gleaming Tabular —

Model-free RL

Control Adaptlve
optimal control
I | 1 Model-based RL
Feedback control Adaptive control
| Optimaland Unconstrained Constrained
learning control
Open-loop [-------------=-mmmmmmmm-- > MPC €= mmm oo Closed-loop

Indi"rect Dir"ect :]
methods methods bP HJB /HJI

I

¥ - v v !
AA 203 | Lecture 19 LQR iLQR DDP LQR Reachability

6/1/22 analysis

-
Combining MB and MF RL ideas

* Review model-based RL
* Combining model and policy learning in the tabular setting
* Combinations in the nonlinear setting

* Readings:
* R. Sutton and A. Barto. Reinforcement Learning: An Introduction, 2018.
» Several papers, referenced throughout.

6/1/22 AA 203 | Lecture 19 3

Review: model-based RL

Choose initial policy g
Loop over episodes:
Get initial state x
Loop until end of episode:
u « 1y (x)

Take action u in environment, receive next state x’ and reward r
Update model based on x,u, x’, r

Update policy ty based on updated model
X <« x'

6/1/22 AA 203 | Lecture 19

Dyna: combining model-free and model-based RL

(Tabular) Dyna-Q:
Init Q (x, u), model(x,u) for all x, u; initialize state x
Loop forever:
u « argmax,Q(x,u) (possibly with exploration)
Take action u in environment, receive next state x' and reward r
Qlx,u) « Q(x,u) + a[r + ymaxQ(x',u’) —Q(x,u)] (Q-learning with real data)
model(x,u) « x',7 “ (Learning a model)
Forn=1,..., N:
x, U < random previously observed state/action pair
x',r « model(x,u)

Qx,u) « Q(x,u) + a[r + ymaxQ(x",u’) — Q(x,u)] (Q-learning with sim data)

6/1/22 AA 203 | Lecture 19

Dyna: combining model-free and model-based RL

(Tabular) Dyna-Q:
Init Q (x, u), model(x,u) for all x, u; initialize state x
Loop forever:
u « argmax,Q(x,u) (possibly with exploration)
Take action u in environment, receive next state x' and reward r
Qlx,u) « Q(x,u) + a[r + ymaxQ(x',u’) —Q(x,u)] (Q-learning with real data)
model(x,u) « x',7 “ (Learning a model)
Forn=1,..., N:
x, U < random previously observed state/action pair
x',r « model(x,u)

Qx,u) « Q(x,u) + a[r + ymaxQ(x",u’) — Q(x,u)] (Q-learning with sim data)

(side note: this is not unlike experience replay; the hope is that a structured “model” might generalize better)

6/1/22 AA 203 | Lecture 19 6

-
Dyna performance: I
deterministic maze S i g jL

800

600

Steps
per 400
episode

0 planning steps
(direct RL only)

5 planning steps

* Main idea of Dyna: interleave
simulated and real experience in -
policy optimization.

* Learned model allows you to propagate

50 planning steps

Q function updates back throughout T e —
state space, I.e., allows for planning) E_pisodeé
* Allows early model-based training
, . W P - WITHP =
aCCEIeratlon, Wlthout performance ITHOUT PLANNING (n=0) ITH PLANNING (n=50)
LT o G sanaf AR Anad [
limitations of model-based methods. ; e
* Many “Dyna style” algorithms S SN Eamemamawar
* MF policy optimization + learning a a |~ 1=
model + MB policy optimization [=~

[Sutton & Barto, 2018.]
6/1/22 AA 203 | Lecture 19

-
How to optimize policy?

Question: what should policy be?

Limited horizon open loop Monte Carlo tree search or search Model predictive control
of finite horizon action sequence

Closed-loop policy optimization Dynamic programming: value Main focus of today’s lecture
iteration or policy iteration

Why do limited search? Typically, if policy optimization is too expensive.
* Example: game of Go or other very large MDPs

6/1/22 AA 203 | Lecture 19 8

Policy optimization with models

* Want to optimize 1y via
0 = argmaxgE, [V (x)]

Approach: fit model f4 (x, u), define value w.r.t. this model as

Vel (x) = 2 Exe~fug~m [T (e, Ue)]
t

Want to compute gradient of this value w.r.t. policy parameters:
6 «— 6+ aVaVme o (x)

6/1/22 AA 203 | Lecture 19 9

Case study: PILCO |
Deisenroth and Rasmussen, Probabilistic inference for T . +. |

(xi-' ui)

learning control, ICML 2011.
* Approach: use Gaussian process for dynamics model -~ .

* Gives measure of epistemic uncertainty T ok

* Extremely sample efficient PN N\
* Pair with arbitrary (possibly nonlinear) policy S {0 23 45
* By propagating the uncertainty in the transitions, 2

capture the effect of small amount of data

ﬁ(o
e
<

6/1/22 AA 203 | Lecture 19 10

http://mlg.eng.cam.ac.uk/pilco/

GP reminder

* Gaussian processes: Gaussian distributions
over functions

e Typically, initialize with zero mean; behavior
determined entirely by kernel
cov(x,x") = k(x,x")

e Standard kernel choice: squared exponential,
used in PILCO

* Has smooth interpolating behavior

6/1/22 AA 203 | Lecture 19

Squared exponential

Squared Exponential Kernel

AR

AKCA. the Radial Basis Function kermel
' (z—=)*
kse(z,2') = o Em(—?)

11

Uncertainty propagation

* For GP conditioned on data, one (x| X1, wp—1) = N (x4 | e, 2t
step prediction is Gaussian pe = xi—1 + Ef[Ad],
* But, need to make multistep 3t = varg[A¢].

predictions: so, need to derive
multi-step predictive distribution

* Turn to approximating
distribution at each time with a
Gaussian via moment matching

6/1/22 AA 203 | Lecture 19 12

Uncertainty propagation

All algorithm design choices made to ensure analytical tractability:

* Because of the squared exponential kernel, mean and variance can be
computed in closed form

* Choose cost
rf(x) — 1 — {%:{]1(-”1‘{ — Xtarget ||£/'-'T:3)

which is similarly squared exponential; thus expected cost can be
computed exactly, factoring in uncertainty.

* Choose also radial basis function or linear policy, to enable analytical
uncertainty propagation

6/1/22 AA 203 | Lecture 19 13

PILCO Summary

e Uncertainty prop: leverage specific functional forms to derive analytical
expressions for mean and variance of trajectory under policy.

e Can use chain rule (aka backprop through time) to compute the
gradient of expected total cost w.r.t. policy parameters

* Algorithm:
* Roll out policy to get new measurements; update model

* Compute (locally) optimal policy via gradient descent

* This policy is “local” in the sense of the data we’ve given it, i.e., it’s tailored to the regions
of state space it’s seen before; this is more general than “local” in the sense of linearization

* Repeat

6/1/22 AA 203 | Lecture 19 14

PILCO results

Bd<3cmBlde (3.10)cm de (10,50)cm d > 50cm ‘ ‘
100 KK: Kimura & Kobayashi 1999
D: Doya 2000
C: Coulom 2002
WP: Wawrzynski & Pacut 2004
R: Riedmiller 2005
RT: Raiko & Tornio 2009
vH: van Hasselt 2010
pilco: Deisenroth & Rasmussen 2011

distance distribution in %

2 .3
timeins

For more results and algorithm info: Deisenroth, Fox, and Rasmussen, Gaussian Processes for Data-
Efficient Learning in Robotics and Control, TPAMI 2015.

6/1/22 AA 203 | Lecture 19 15

PILCO limitations

[os]

A"

— Actual trajectories
Predicted trajectory

* Treatment of uncertainty

* Propagates uncertainty via moment matching, so can’t
handle multi-modal outcomes

* Limited in choice of kernel function 0 05 115 2 25
* Doesn’t capture temporal correlation

—

o
O M = ;N ;W O,
\~

Angle inner pendulum in rad

* Efficiency
* GPs are extremely data efficient; however, very slow

* Policy optimization (done after every rollout) can take
on the order of ~1h

N O N AEoO

| |
(=2

—Actual trajectories
Predicted trajectory

Angle inner pendulum in rad

|
o]

o

0.5 1 1.5 2 25
Timeins

6/1/22 AA 203 | Lecture 19 16

-
What about the same principles with neural

network models?

 McHutchon, Modelling nonlinear dynamical systems with Gaussian processes, PhD thesis,
2014: particle propagation (alternative to moment matching) performs poorly.

* Gal, McAllister, Rasmussen, Improving PILCO with Bayesian neural network dynamics
models, 2017.

* Use a Bayesian network that provides samples from posterior

* Again use moment matching; this time not necessary for analytical variance
computation, but for performance — “Gaussianization” has a strong regularizing effect
by decorrelating samples across time

1.0

|
PILCO
— Deep PILCO

For much deeper discussion of gradient
estimation with particles, see:

Parmas, Rasmussen, Peters, Doya, PIPPS:
Flexible model-based policy search robust to
the curse of chaos, ICML 2018.

10° 10* 10°

10°
Gu et al. (2016 Lillicrap et al. (2016
Trials (log scale) Y : 4 ey]

6/1/22 AA 203 | Lecture 19 17

-
Policy optimization via backpropagation
through neural network dynamics

Diving deeper on the challenges with sampling:
e Backpropagate through computation graph of dynamics and policy

e Same instability as shooting methods in trajectory optimization
* However, in shooting methods, each time step is an independent action

* Here, the policy is the same at each time step: so very small changes
in policy dramatically change trajectory

* Accumulated gradients become very large as you backprop further
 Similar to exploding/vanishing gradient problems in recurrent NNs

6/1/22 AA 203 | Lecture 19 18

How to workaround this sensitivity problem?

e Solution 1: use policy gradient from model-free RL
* E.g., policy gradient algorithm such as A2C, TRPO, PPO, etc.

* Doesn’t require multiplying many Jacobians, which leads to
large gradient

* Example: Kaiser, et al. “Model-Based RL for Atari,” ICLR 2020.

e Uses video prediction model + PPO

e Solution 2: use value function for tail return

* Value function now used not just for variance reduction, but
sensitivity reduction as well

* Example: Clavera, Fu, Abbeel, “Model-augmented actor
critic: Backpropagating through paths,” ICLR 2020.

» Stochastic policy and dynamics: estimate gradient via pathwise
derivative (involves dynamics explicitly, unlike score function gradient
estimator, i.e., REINFORCE)

6/1/22 AA 203 | Lecture 19

19

Solution 2: Use value function for tail return

* Clavera, Fu, Abbeel, Model-augmented
actor critic: Backpropagating through
paths, ICLR 2020.

 Stochastic policy and dynamics: compute
gradient via pathwise derivative

H—1
J=(0) =E Z vr(se) + “}HQ(EH-HH)]

t=>0

e Use ensemble of dynamics models, two Q
functions, Dyna-style training

6/1/22 AA 203 | Lecture 19

(o))

—— e

—

) -¢\a1/ \az @H
S1) S2 { SH\‘
|] [Q]

AntEnv HalfCheetahEnv

E 4 10000
-
Q \ 7500
@ 5000
o))
Q-
) 2500
> 100

0.25 0.50 0.75 1.00 1.25 1.50 0.0 0.4 0.¢

T ster 1e5 Ti steps le

HopperEnv Walker2dEnv
) 100 // /—
—,_/~ g(,u(»%f\
1 p. 3 4 5 6 7 0.0 0.2 0.4
Time-steps led Time-stey
— SVQg mbpo —— steve @ =—— sac —— ours
20

Combining model and policy learning

 Discussed two possible solutions; infinitely many more

* Very busy research direction! Many topics not covered here
* Many possible combinations of planning/control, policies, values, and models

* Quite practical: model learning is data efficient and parameterized
policy is cheap to evaluate at run time

6/1/22 AA 203 | Lecture 19 21

SARSA } o Continuous
abular |«
Course wrap up Qrlearning —
. * Model-free RL
Control > Adaptlve
optimal control
I | 1 » Model-based RL
Feedback control Adaptive control [
| Optimaland Unconstrained Constrained
learning control
Open-loop [-------------=-mmmmmmmm-- > MPC €= mmm oo Closed-loop
Indi"rect Dir"ect o :]
methods methods atte n d l ng ! DP HJB/HJI
¥ ¥ 3 ¥ l ¥
AA 203 | Lecture 19 LQR iLQR DDP LQR Reachability

6/1/22 analysis

