
AA203
Optimal and Learning-based Control

Combining model and policy learning



Roadmap

6/1/22 2

Open-loop

Indirect 
methods

Direct 
methods

Closed-loop

DP HJB / HJI

MPC

Adaptive
optimal control

Model-based RL

Model-free RL

Control

Optimal and 
learning control

Adaptive controlFeedback control

LQR iLQR DDP
2

Reachability 
analysis

LQR

Unconstrained Constrained

AA 203 | Lecture 19

Tabular
Q-learning

SARSA Continuous



Combining MB and MF RL ideas

• Review model-based RL

• Combining model and policy learning in the tabular setting

• Combinations in the nonlinear setting

• Readings:
• R. Sutton and A. Barto. Reinforcement Learning: An Introduction, 2018.

• Several papers, referenced throughout. 

6/1/22 AA 203 | Lecture 19 3



Review: model-based RL

Choose initial policy 𝜋𝜃
Loop over episodes:

Get initial state 𝑥

Loop until end of episode: 
𝑢 ← 𝜋𝜃 𝑥

Take action 𝑢 in environment, receive next state 𝑥′ and reward 𝑟

Update model based on 𝑥, 𝑢, 𝑥′, 𝑟

Update policy 𝜋𝜃 based on updated model

𝑥 ← 𝑥′

6/1/22 AA 203 | Lecture 19 4



Dyna: combining model-free and model-based RL

(Tabular) Dyna-Q:

Init 𝑄 𝑥, 𝑢 ,𝑚𝑜𝑑𝑒𝑙(𝑥, 𝑢) for all 𝑥, 𝑢; initialize state 𝑥

Loop forever:

𝑢 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑢𝑄 𝑥, 𝑢 (possibly with exploration)

Take action 𝑢 in environment, receive next state 𝑥′ and reward 𝑟

𝑄 𝑥, 𝑢 ← 𝑄 𝑥, 𝑢 + 𝛼[𝑟 + 𝛾max
𝑢′

𝑄 𝑥′, 𝑢′ − 𝑄(𝑥, 𝑢)]

𝑚𝑜𝑑𝑒𝑙 𝑥, 𝑢 ← 𝑥′, 𝑟

For 𝑛 = 1,… ,𝑁:

𝑥, 𝑢 ← random previously observed state/action pair

𝑥′, 𝑟 ← 𝑚𝑜𝑑𝑒𝑙 𝑥, 𝑢

𝑄 𝑥, 𝑢 ← 𝑄 𝑥, 𝑢 + 𝛼[𝑟 + 𝛾max
𝑢′

𝑄 𝑥′, 𝑢′ − 𝑄(𝑥, 𝑢)]

6/1/22 AA 203 | Lecture 19 5

(Q-learning with real data)

(Learning a model)

(Q-learning with sim data)



Dyna: combining model-free and model-based RL

(Tabular) Dyna-Q:

Init 𝑄 𝑥, 𝑢 ,𝑚𝑜𝑑𝑒𝑙(𝑥, 𝑢) for all 𝑥, 𝑢; initialize state 𝑥

Loop forever:

𝑢 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑢𝑄 𝑥, 𝑢 (possibly with exploration)

Take action 𝑢 in environment, receive next state 𝑥′ and reward 𝑟

𝑄 𝑥, 𝑢 ← 𝑄 𝑥, 𝑢 + 𝛼[𝑟 + 𝛾max
𝑢′

𝑄 𝑥′, 𝑢′ − 𝑄(𝑥, 𝑢)]

𝑚𝑜𝑑𝑒𝑙 𝑥, 𝑢 ← 𝑥′, 𝑟

For 𝑛 = 1,… ,𝑁:

𝑥, 𝑢 ← random previously observed state/action pair

𝑥′, 𝑟 ← 𝑚𝑜𝑑𝑒𝑙 𝑥, 𝑢

𝑄 𝑥, 𝑢 ← 𝑄 𝑥, 𝑢 + 𝛼[𝑟 + 𝛾max
𝑢′

𝑄 𝑥′, 𝑢′ − 𝑄(𝑥, 𝑢)]

6/1/22 AA 203 | Lecture 19 6

(Q-learning with real data)

(Learning a model)

(Q-learning with sim data)

(side note: this is not unlike experience replay; the hope is that a structured “model” might generalize better)



Dyna performance: 
deterministic maze

• Main idea of Dyna: interleave 
simulated and real experience in 
policy optimization.
• Learned model allows you to propagate 

Q function updates back throughout 
state space, i.e., allows for planning

• Allows early model-based training 
acceleration, without performance 
limitations of model-based methods.

• Many “Dyna style” algorithms
• MF policy optimization + learning a 

model + MB policy optimization

6/1/22 AA 203 | Lecture 19 7
[Sutton & Barto, 2018.]



How to optimize policy?

Question: what should policy be?

Why do limited search? Typically, if policy optimization is too expensive. 
• Example: game of Go or other very large MDPs

6/1/22 AA 203 | Lecture 19 8

Tabular MDP Continuous MDP

Limited horizon open loop Monte Carlo tree search or search 
of finite horizon action sequence

Model predictive control 

Closed-loop policy optimization Dynamic programming: value 
iteration or policy iteration

Main focus of today’s lecture



Policy optimization with models

• Want to optimize 𝜋𝜃 via
𝜃∗ = argmax𝜃Ε𝑥0[𝑉

𝜋𝜃(𝑥0)]

Approach: fit model 𝑓𝜙(𝑥, 𝑢), define value w.r.t. this model as 

𝑉𝜋,𝑓 𝑥 =

𝑡

Ε𝑥𝑡∼𝑓,𝑢𝑡∼𝜋[𝑟(𝑥𝑡 , 𝑢𝑡)]

Want to compute gradient of this value w.r.t. policy parameters:
𝜃 ← 𝜃 + 𝛼∇𝜃𝑉

𝜋𝜃,𝑓𝜙(𝑥)

6/1/22 AA 203 | Lecture 19 9



Case study: PILCO

Deisenroth and Rasmussen, Probabilistic inference for 
learning control, ICML 2011.

• Approach: use Gaussian process for dynamics model
• Gives measure of epistemic uncertainty

• Extremely sample efficient

• Pair with arbitrary (possibly nonlinear) policy

• By propagating the uncertainty in the transitions, 
capture the effect of small amount of data 

6/1/22 AA 203 | Lecture 19 10

http://mlg.eng.cam.ac.uk/pilco/


GP reminder

• Gaussian processes: Gaussian distributions 
over functions 

• Typically, initialize with zero mean; behavior 
determined entirely by kernel

𝑐𝑜𝑣 𝑥, 𝑥′ = 𝑘 𝑥, 𝑥′

• Standard kernel choice: squared exponential, 
used in PILCO
• Has smooth interpolating behavior

6/1/22 AA 203 | Lecture 19 11



Uncertainty propagation

• For GP conditioned on data, one 
step prediction is Gaussian

• But, need to make multistep 
predictions: so, need to derive 
multi-step predictive distribution

• Turn to approximating 
distribution at each time with a 
Gaussian via moment matching

6/1/22 AA 203 | Lecture 19 12



Uncertainty propagation

All algorithm design choices made to ensure analytical tractability:

• Because of the squared exponential kernel, mean and variance can be 
computed in closed form

• Choose cost 

which is similarly squared exponential; thus expected cost can be 
computed exactly, factoring in uncertainty. 

• Choose also radial basis function or linear policy, to enable analytical 
uncertainty propagation

6/1/22 AA 203 | Lecture 19 13



PILCO Summary

• Uncertainty prop: leverage specific functional forms to derive analytical 
expressions for mean and variance of trajectory under policy.

• Can use chain rule (aka backprop through time) to compute the 
gradient of expected total cost w.r.t. policy parameters 

• Algorithm: 
• Roll out policy to get new measurements; update model

• Compute (locally) optimal policy via gradient descent
• This policy is “local” in the sense of the data we’ve given it, i.e., it’s tailored to the regions 

of state space it’s seen before; this is more general than “local” in the sense of linearization

• Repeat

6/1/22 AA 203 | Lecture 19 14



PILCO results

6/1/22 AA 203 | Lecture 19 15

For more results and algorithm info: Deisenroth, Fox, and Rasmussen, Gaussian Processes for Data-
Efficient Learning in Robotics and Control, TPAMI 2015.



PILCO limitations

• Treatment of uncertainty
• Propagates uncertainty via moment matching, so can’t 

handle multi-modal outcomes

• Limited in choice of kernel function 

• Doesn’t capture temporal correlation

• Efficiency
• GPs are extremely data efficient; however, very slow

• Policy optimization (done after every rollout) can take 
on the order of ~1h

6/1/22 AA 203 | Lecture 19 16



What about the same principles with neural 
network models?
• McHutchon, Modelling nonlinear dynamical systems with Gaussian processes, PhD thesis, 

2014: particle propagation (alternative to moment matching) performs poorly.

• Gal, McAllister, Rasmussen, Improving PILCO with Bayesian neural network dynamics 
models, 2017.
• Use a Bayesian network that provides samples from posterior
• Again use moment matching; this time not necessary for analytical variance 

computation, but for performance – “Gaussianization” has a strong regularizing effect 
by decorrelating samples across time

6/1/22 AA 203 | Lecture 19 17

For much deeper discussion of gradient 
estimation with particles, see:
Parmas, Rasmussen, Peters, Doya, PIPPS: 
Flexible model-based policy search robust to 
the curse of chaos, ICML 2018.



Policy optimization via backpropagation 
through neural network dynamics 
Diving deeper on the challenges with sampling:

• Backpropagate through computation graph of dynamics and policy

• Same instability as shooting methods in trajectory optimization
• However, in shooting methods, each time step is an independent action

• Here, the policy is the same at each time step: so very small changes 
in policy dramatically change trajectory
• Accumulated gradients become very large as you backprop further

• Similar to exploding/vanishing gradient problems in recurrent NNs

6/1/22 AA 203 | Lecture 19 18



How to workaround this sensitivity problem?

• Solution 1: use policy gradient from model-free RL
• E.g., policy gradient algorithm such as A2C, TRPO, PPO, etc. 

• Doesn’t require multiplying many Jacobians, which leads to 
large gradient

• Example: Kaiser, et al. “Model-Based RL for Atari,” ICLR 2020.
• Uses video prediction model + PPO

• Solution 2: use value function for tail return
• Value function now used not just for variance reduction, but 

sensitivity reduction as well

• Example: Clavera, Fu, Abbeel, “Model-augmented actor 
critic: Backpropagating through paths,” ICLR 2020.

• Stochastic policy and dynamics: estimate gradient via pathwise
derivative (involves dynamics explicitly, unlike score function gradient 
estimator, i.e., REINFORCE)

6/1/22 AA 203 | Lecture 19 19



Solution 2: Use value function for tail return

• Clavera, Fu, Abbeel, Model-augmented 
actor critic: Backpropagating through 
paths, ICLR 2020.

• Stochastic policy and dynamics: compute 
gradient via pathwise derivative

• Use ensemble of dynamics models, two Q 
functions, Dyna-style training

6/1/22 AA 203 | Lecture 19 20



Combining model and policy learning

• Discussed two possible solutions; infinitely many more

• Very busy research direction! Many topics not covered here
• Many possible combinations of planning/control, policies, values, and models

• Quite practical: model learning is data efficient and parameterized 
policy is cheap to evaluate at run time

6/1/22 AA 203 | Lecture 19 21



Course wrap up

6/1/22 22

Open-loop

Indirect 
methods

Direct 
methods

Closed-loop

DP HJB / HJI

MPC

Adaptive
optimal control

Model-based RL

Model-free RL

Control

Optimal and 
learning control

Adaptive controlFeedback control

LQR iLQR DDP
22

Reachability 
analysis

LQR

Unconstrained Constrained

AA 203 | Lecture 19

Tabular
Q-learning

SARSA Continuous

Thank you for 
attending!


