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Model-free RL: deep RL and policy gradient

• Review Q-learning

• Policy gradient

• Introduce variance reduction methods for policy gradient estimation

• Brief survey of the modern model-free RL landscape

• Readings:
• R. Sutton and A. Barto, Reinforcement Learning: An Introduction, 2018.

• J. Achiam,“Spinning Up in Deep RL,” https://spinningup.openai.com/.
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Review: Q-Learning

Recall generalized policy iteration; loop:

1. Perform policy evaluation step to estimate 𝑄𝜋
2. Perform policy improvement step using 𝑄𝜋 to yield 𝜋′

3. Set 𝜋 ← 𝜋′

Policy evaluation for 𝑄∗ via

min
𝜃

𝑟𝑡 + 𝛾max
𝑢

𝑄𝜃′ 𝑥𝑡+1, 𝑢 − 𝑄𝜃 𝑥𝑡 , 𝑢𝑡

2

with a greedy policy improvement step, 𝜋 𝑥 = argmax
𝑢

𝑄𝜃(𝑥, 𝑢).

Side note on maximization bias: even if state-action value (Q function) 
estimates are unbiased, may still have biased value estimates
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Review: Q-Learning

Recall generalized policy iteration; loop:

1. Perform policy evaluation step to estimate 𝑄𝜋
2. Perform policy improvement step using 𝑄𝜋 to yield 𝜋′

3. Set 𝜋 ← 𝜋′

Policy evaluation for 𝑄∗ via

min
𝜃

𝑟𝑡 + 𝛾max
𝑢

𝑄𝜃′ 𝑥𝑡+1, 𝑢 − 𝑄𝜃 𝑥𝑡 , 𝑢𝑡

2

with a greedy policy improvement step, 𝜋 𝑥 = argmax
𝑢

𝑄𝜃(𝑥, 𝑢).

Side note on maximization bias: even if state-action value (Q function) 
estimates are unbiased, may still have biased value estimates due to max.
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Deep Q-Learning

• In continuous setting, many possible function approximators for Q
• Linear, nearest neighbors, aggregation

• Recent success: neural networks with loss function

𝑟𝑡 + 𝛾max
𝑢

𝑄𝜃′ 𝑥𝑡+1, 𝑢 − 𝑄𝜃 𝑥𝑡 , 𝑢𝑡

2

• Deep Q Network (DQN; Mnih et al. 2013)
• Key idea: experience replay, i.e., keep a buffer of recent transitions to train on

• Middle ground between on-policy (e.g., SARSA) and off-policy (e.g., basic Q-learning)
• Benefits: better data efficiency, stabilizes training, mitigates NN overfitting

5/25/22 AA 203 | Lecture 18 7



Model-free, policy based: Policy Gradient

Alternative: instead of learning the Q function, learn the policy directly!

Define a class of policies 𝜋𝜃 where 𝜃 are the parameters of the policy.

Can we learn the optimal 𝜃 from interaction?

Goal: use trajectories to estimate a gradient of policy performance 
w.r.t. parameters 𝜃
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Policy Gradient

A particular value of 𝜃 induces a distribution 𝑝 𝜏; 𝜃 over possible trajectories.
• Distribution comes from stochastic dynamics 𝑇 𝑥′ 𝑥, 𝑢) as well as stochastic 

policy 𝑢 ∼ 𝜋 ⋅ 𝑥; 𝜃). 

Objective function:
𝐽 𝜃 = 𝐸𝜏∼𝑝 𝜏;𝜃 𝑟 𝜏

i.e.,

𝐽 𝜃 = න
𝜏

𝑟 𝜏 𝑝 𝜏; 𝜃 𝑑𝜏

where 𝑟 𝜏 is the total discounted cumulative reward of a trajectory 𝜏.
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Policy Gradient

Gradient of objective w.r.t. parameters:

∇𝜃𝐽 𝜃 = න
𝜏

𝑟 𝜏 ∇𝜃𝑝 𝜏; 𝜃 𝑑𝜏

Trick: ∇𝜃𝑝 𝜏; 𝜃 = 𝑝 𝜏; 𝜃
∇𝜃𝑝(𝜏;𝜃)

𝑝 𝜏;𝜃
= 𝑝 𝜏; 𝜃 ∇𝜃 log 𝑝 𝜏; 𝜃

∇𝜃𝐽 𝜃 = න
𝜏

𝑟 𝜏 ∇𝜃 log 𝑝 𝜏; 𝜃 𝑝 𝜏; 𝜃 𝑑𝜏

∇𝜃𝐽 𝜃 = 𝐸𝜏∼𝑝 𝜏;𝜃 𝑟 𝜏 ∇𝜃 log 𝑝 𝜏; 𝜃
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Policy Gradient

∇𝜃𝐽 𝜃 = 𝐸𝜏∼𝑝 𝜏;𝜃 𝑟 𝜏 ∇𝜃 log 𝑝 𝜏; 𝜃

log 𝑝 𝜏; 𝜃 = log ෑ

𝑡≥0

𝑇 𝑥𝑡+1 𝑥𝑡 , 𝑢𝑡 𝜋𝜃(𝑢𝑡|𝑥𝑡)

=෍

𝑡≥0

log 𝑇 𝑥𝑡+1 𝑥𝑡 , 𝑢𝑡 + log 𝜋𝜃(𝑢𝑡|𝑥𝑡)

⇒ ∇𝜃 log 𝑝 𝜏; 𝜃 =෍

𝑡≥0

∇𝜃 log 𝜋𝜃(𝑢𝑡|𝑥𝑡)
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Policy Gradient

∇𝜃𝐽 𝜃 = 𝐸𝜏∼𝑝 𝜏;𝜃 𝑟 𝜏 ∇𝜃 log 𝑝 𝜏; 𝜃

log 𝑝 𝜏; 𝜃 = log ෑ

𝑡≥0

𝑇 𝑥𝑡+1 𝑥𝑡 , 𝑢𝑡 𝜋𝜃(𝑢𝑡|𝑥𝑡)

=෍

𝑡≥0

log 𝑇 𝑥𝑡+1 𝑥𝑡 , 𝑢𝑡 + log 𝜋𝜃(𝑢𝑡|𝑥𝑡)

⇒ ∇𝜃 log 𝑝 𝜏; 𝜃 =෍

𝑡≥0

∇𝜃 log 𝜋𝜃(𝑢𝑡|𝑥𝑡)
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We don’t need to know 
the transition model to 
compute this gradient!



Policy Gradient

If we use 𝜋𝜃 to sample a trajectory, we can approximate the gradient 
via N Monte Carlo samples:

∇𝜃𝐽 𝜃 = 𝐸𝜏∼𝑝 𝜏;𝜃 𝑟 𝜏 ∇𝜃 log 𝑝 𝜏; 𝜃

≈
1

𝑁
σ𝑖=1
𝑁 𝑟 𝜏(𝑖) σ𝑡≥0∇𝜃 log 𝜋𝜃(𝑢𝑡

(𝑖)
|𝑥𝑡

(𝑖)
)

Intuition: adjust 𝜃 to:
• Boost probability of actions taken if reward is high

• Lower probability of actions taken if reward is low

Learning by trial and error
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Policy Gradient Recap

Pros:

• Learns policy directly – can be more stable (less moving parts than Q-learning)

• Works for continuous action spaces (no need to “argmax” Q)

• Converges to local maximum of 𝐽(𝜃)

Cons:

• Needs data from current policy to compute gradient – data inefficient

• Gradient estimates can be very noisy
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Deep policy gradient

• Parametrize policy as deep neural network

• In practice, very unstable
• Need to reduce variance of gradient estimator: baselines and actor-critic
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NN output is parameters of distribution:
• For discrete action space, logits of a 

categorical distribution
• For a continuous action space, e.g., 

parameters of a normal distribution

𝜋𝜃 𝑢 𝑥 = 𝒩 𝜇𝜃 𝑥 , Σ𝜃 𝑥



Time dependency of policy gradient theorem

• Previous estimator for policy gradient was 

∇𝜃𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

𝑟 𝜏(𝑖) ෍

𝑡≥0

∇𝜃 log 𝜋𝜃(𝑢𝑡
(𝑖)
|𝑥𝑡

(𝑖)
)

Action 𝑢𝑡′ can not change reward 𝑟𝑡 for 𝑡 < 𝑡′ (i.e., previous timesteps):

∇𝜃𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍

𝑡≥0

∇𝜃 log 𝜋𝜃(𝑢𝑡
(𝑖)
|𝑥𝑡

(𝑖)
)෍

𝜏≥𝑡

𝑟(𝑥𝜏
𝑖
, 𝑢𝜏

𝑖
)
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(caveat: this is not a rigorous 
argument we’re presenting here)



REINFORCE

Loop forever:

Generate episode 𝑥0, 𝑢0, 𝑟0, 𝑥1, 𝑢1, 𝑟1… with 𝜋𝜃
Loop for all 𝑡 = 0,… ,𝑁 − 1:

𝐺𝑡 ← σ𝑘=𝑡
𝑁 𝑟𝑘

𝜃 ← 𝜃 + 𝛼 𝐺𝑡 ∇𝜃 log 𝜋𝜃 𝑢𝑡 𝑥𝑡)
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Cumulative tail reward, 
the tail “return”



Adding baselines to policy evaluation

• Monte Carlo policy gradient estimator has extremely high variance.

• We want to search for gradient estimators that have lower variance

• Add in state-dependent baseline
෨𝐺𝑡 = 𝐺𝑡 − 𝑏 𝑥𝑡

𝐽 𝜃 = Ε𝑥𝑡,𝑢𝑡,…[
෨𝐺𝑡]

Policy gradient theorem yields

∇𝜃𝐽 𝜃 = Ε𝑥0,𝑢0,…[෍

𝑡≥0

෨𝐺𝑡∇𝜃 log 𝜋 𝑢𝑡 𝑥𝑡 , 𝜃)]
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A closer look at the baseline

Claim: adding baseline does not change the value of the 
expected gradient

∇𝜃𝐽 𝜃 = E[෍

𝑡≥0

(𝐺𝑡 − 𝑏 𝑥𝑡 )∇𝜃 log 𝜋 𝑢𝑡 𝑥𝑡, 𝜃)]

= Ε[෍

𝑡≥0

𝐺𝑡∇𝜃 log 𝜋 𝑢𝑡 𝑥𝑡, 𝜃)] − Ε[෍

𝑡≥0

𝑏(𝑥𝑡)∇𝜃 log 𝜋 𝑢𝑡 𝑥𝑡 , 𝜃)]

Ε[𝑏 𝑥𝑡 ∇𝜃 log 𝜋 𝑢𝑡 𝑥𝑡 , 𝜃)] = Ε𝑥𝑡[𝑏 𝑥𝑡 Ε𝑢𝑡 ∇𝜃 log 𝜋 𝑢𝑡 𝑥𝑡, 𝜃) ]

Any state-dependent function, independent of action, works.
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= 0 for all t



Toy example
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Consider a one-step problem with
𝑟 𝑥, [𝑢1, 𝑢2] = 100 + 𝑢1

and suppose that our policy is parameterized as
𝜋𝜃 𝑢 𝑥 = 𝒩 𝜃, 𝐼

⇒ ∇𝜃 log 𝜋𝜃 𝑢 𝑥) = 𝑢 − 𝜃

Let’s estimate the policy gradient at 𝜃 = 0 with two samples of 𝑢, [1,1] and [-1, 1]:

∇𝜃𝐽 𝜃 ≈
1

2
101 1, 1 + 99 −1,1 = [1, 100]

Subtracting a baseline 𝑏 = 100:

∇𝜃𝐽 𝜃 ≈
1

2
101 − 100 1, 1 + 99 − 100 −1,1 = [1, 0]



Performance improvement on gridworld
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R. Sutton and A. Barto, Reinforcement 
Learning: An Introduction, 2018.



Actor-critic

Particularly good baseline choice: value function
Actor-critic: use both actor (policy 𝜋𝜃) and critic (value function 𝑉𝑤).

Loop forever:
Generate episode 𝑥0, 𝑢0, 𝑟0, 𝑥1, 𝑢1, 𝑟1… with 𝜋𝜃
Loop for all 𝑡 = 0,… , 𝑁 − 1:

𝐺 ← σ𝑘=𝑡+1
𝑁 𝑟𝑘

𝛿𝑤 ← 𝐺 − 𝑉𝑤(𝑥𝑡)
𝑤 ← 𝑤 + 𝛼𝑤𝛿𝑤∇𝑤𝑉𝑤 𝑥𝑡
𝜃 ← 𝜃 + 𝛼𝜃𝛿𝑤∇𝜃 log 𝜋𝜃 𝑢𝑡 𝑥𝑡)
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(fits 𝑉𝑤 through MC policy evaluation)

(baselined policy gradient)



Policy gradient theorem with Q function

• Previously, have used 𝐽 𝜃 = Ε𝑥0,𝑢0,…[σ𝑡≥0 𝑟(𝑥𝑡, 𝑢𝑡)]

• Note that, by definition (of Q), 
𝐽 𝜃 = Ε𝑢𝑡∼𝜋(⋅|𝑥𝑡)[𝑄

𝜋(𝑥𝑡, 𝑢𝑡)]

Yields policy gradient 
∇𝜃𝐽 𝜃 = Ε𝑢𝑡∼𝜋𝜃(⋅|𝑥𝑡)[𝑄

𝜋 𝑥𝑡, 𝑢𝑡 ∇𝜃 log 𝜋𝜃(𝑢𝑡|𝑥𝑡)]

Note that 𝑄𝜋 𝑥𝑡 , 𝑢𝑡 = Ε𝑢𝑡∼𝜋𝜃 ⋅ 𝑥𝑡 ,𝑥𝑡+1
[𝑟 𝑥𝑡 , 𝑢𝑡 + 𝑉𝜋(𝑥𝑡+1)]
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Advantage policy gradient

• Combining the Q function policy gradient and the value baselines, we have 

∇𝜃𝐽 𝜃 = Ε[ 𝛿𝜋∇𝜃 log 𝜋𝜃(𝑢𝑡|𝑥𝑡)]

For 𝛿𝜋 = 𝑟𝑡 + 𝑉𝜋 𝑥𝑡+1 − 𝑉𝜋 𝑥𝑡 . This is the TD error for policy evaluation!

• Note that Ε𝜋 𝛿𝜋 𝑥, 𝑢 = 𝑄𝜋 𝑥, 𝑢 − 𝑉𝜋 𝑥 = 𝐴𝜋 𝑥, 𝑢 .
• This is called the advantage.

(the value of taking a specific action vs. following your policy)
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“TD advantage estimate”



Advantage actor-critic (A2C)

Loop forever:

Generate episode 𝑥0, 𝑢0, 𝑟0, 𝑥1, 𝑢1, 𝑟1… with 𝜋𝜃
Loop for all 𝑡 = 0,… ,𝑁 − 1:

𝛿𝑤 ← 𝑟𝑡 + 𝑉𝑤(𝑥𝑡+1) − 𝑉𝑤(𝑥𝑡)

𝑤 ← 𝑤 + 𝛼𝑤𝛿𝑤∇𝑤𝑉𝑤 𝑥𝑡
𝜃 ← 𝜃 + 𝛼𝜃𝛿𝑤∇𝜃 log 𝜋𝜃 𝑢𝑡 𝑥𝑡)
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(now fits 𝑉𝑤 by minimizing TD error)

(a “one point” estimate 
of the advantage)



Alternative estimators

• Many possible estimators for the advantage 

• A problem with 𝑟𝑡 + 𝑉𝑤(𝑥𝑡+1) − 𝑉𝑤(𝑥𝑡) is that during learning, 𝑉𝑤(𝑥𝑡) may 
be quite inaccurate, and thus this will be a biased estimator of 𝐴𝜋 𝑥, 𝑢

• Using a multistep TD error, we get the “𝜏-step advantage estimate”:
𝛿 ← 𝑟𝑡 + 𝑟𝑡+1 + …+ 𝑟𝑡+𝜏 + 𝑉𝑤(𝑥𝑡+𝜏+1) − 𝑉𝑤(𝑥𝑡)

As 𝜏 gets larger, this gets closer to Monte Carlo with value baseline.

5/25/22 AA 203 | Lecture 18 26

less biased estimate of expected return (or even unbiased, if 
you sum all the way to end of episode), but higher variance



Deterministic policy gradient (DPG) 
[Silver et al., ICML 2014]
• Instead of using stochastic policy with value estimation baseline:

• Maintain estimate of Q function via minimizing TD error

• Optimize deterministic policy via

max
𝜃

Ε𝑥[𝑄(𝑥, 𝜋𝜃 𝑥 )]

• Policy simply amortizes optimization of the Q function (the “argmax” 
of policy improvement).

• Can be used off policy, relatively unstable in practice.
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Double Q-learning

Addressing maximization bias:

• Several possible solutions; in general, want to avoid using max of 
estimates as estimate of max. 

• Double Q-learning [van Hasselt, NeurIPS 2010]: use two independent 
estimates 𝑄1, 𝑄2
• 𝑢∗ = argmax𝑢𝑄1 𝑥, 𝑢

• Use value estimate 𝑄2(𝑥, 𝑢
∗)

• Alternative approach: maintain two independent critics, always use 
min [Fujimoto et al, ICML 2018]
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Trust region policy optimization (TRPO) 
[Schulman et al., ICML 2015]
• Main idea : instead of choosing step size, use trust region

maxΕ𝜋𝜃𝑜𝑙𝑑
[
𝜋𝜃 𝑢𝑡 𝑥𝑡
𝜋𝜃𝑜𝑙𝑑 𝑢𝑡 𝑥𝑡

መ𝐴𝑡]

𝑠. 𝑡. Ε𝑥∼𝜌𝑜𝑙𝑑 𝐷𝐾𝐿 𝜋𝜃𝑜𝑙𝑑 ⋅ 𝑥 ||𝜋𝜃 ⋅ 𝑥 ≤ 𝛿

• Can show that this leads to monotonic improvement in the ideal case.

• Simpler, more popular version: proximal policy optimization (PPO).
• Replaces TRPO CG solve with simple adaptive KL penalty.
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Criticism of model-free methods
• Despite recent progress (+ much not 

discussed here), questions about whether 
model-free methods are doing more than 
random search in parameter space.
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Why model-free?

• Advantages
• Very few assumptions

• Many state of the art methods reach better performance 
than model-based methods

• Weaknesses
• Extremely high sample complexity 

5/25/22 AA 203 | Lecture 18 32



Next time

• Combining policy optimization 
with model learning

• AA 203 recap!
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