AA203
Optimal and Learning-based Control

Policy gradient and actor-critic

Stanford ASET
Universi t)r' .

A

SARSA } Continuous

Roa d ma p S leaming Tabular H

Model-free RL

Control Adaptlve
optimal control
I | 1 Model-based RL
Feedback control Adaptive control
| Optimaland Unconstrained Constrained
learning control
Open-loop [-------------=-mmmmmmmm-- > MPC = m o moo Closed-loop
Indi"rect Dir"ect :]
methods methods bP HJB /HJI
I
¥ - v v !
AA 203 | Lecture 18 LQR iLQR DDP LQR Reachability

5/25/22 analysis

Model-free RL: deep RL and policy gradient

* Review Q-learning

* Policy gradient

* Introduce variance reduction methods for policy gradient estimation
* Brief survey of the modern model-free RL landscape

* Readings:
e R. Sutton and A. Barto, Reinforcement Learning: An Introduction, 2018.
* J. Achiam,“Spinning Up in Deep RL,” https://spinningup.openai.com/.

5/25/22 AA 203 | Lecture 18 3

-
Review: Q-Learning

Recall generalized policy iteration; loop:
1. Perform policy evaluation step to estimate Q.
2. Perform policy improvement step using Q, to yield '

3. Setm« 1’

5/25/22 AA 203 | Lecture 18

Review: Q-Learning

Recall generalized policy iteration; loop:

1. Perform policy evaluation step to estimate Q.

2. Perform policy improvement step using Q, to yield '
3. Setm« '’

Policy evaluation for Q™ via

0

with a greedy policy improvement step, m(x) = argmax Qg (x, u).
u

2
min (rt +y ml?X Qg'(xt+1» u) — Qo (xt: ut)>

5/25/22 AA 203 | Lecture 18 5

-
Review: Q-Learning

Recall generalized policy iteration; loop:

1. Perform policy evaluation step to estimate Q.

2. Perform policy improvement step using Q, to yield '
3. Setm« '’

Policy evaluation for Q™ via

2
mein (Tt +Yy ml?X QQ’(xt+1; u) — Qo (xt: ut)>

with a greedy policy improvement step, m(x) = argmax Qg (x, u).

u
Side note on maximization bias: even if state-action value (Q function)
estimates are unbiased, may still have biased value estimates due to max.

5/25/22 AA 203 | Lecture 18 6

Deep Q-Learning

* |[n continuous setting, many possible function approximators for Q
* Linear, nearest neighbors, aggregation

e Recent success: neural networks with loss function

2
(Tt Ty max Qor(Xt41,u) — Qg (xtlut)>
* Deep Q Network (DQN; Mnih et al. 2013)

* Key idea: experience replay, i.e., keep a buffer of recent transitions to train on
* Middle ground between on-policy (e.g., SARSA) and off-policy (e.g., basic Q-learning)
* Benefits: better data efficiency, stabilizes training, mitigates NN overfitting

5/25/22 AA 203 | Lecture 18

Model-free, policy based: Policy Gradient

Alternative: instead of learning the Q function, learn the policy directly!
Define a class of policies mg where 6 are the parameters of the policy.
Can we learn the optimal 8 from interaction?

Goal: use trajectories to estimate a gradient of policy performance
w.r.t. parameters 0

5/25/22 AA 203 | Lecture 18 8

Policy Gradient

A particular value of 8 induces a distribution p(7; 8) over possible trajectories.

» Distribution comes from stochastic dynamics T'(x’| x, u) as well as stochastic
policy u ~ (- | x; 0).

Objective function:

J(0) = Ezp;0)lr (D))
l.e.,

1(6) = j r(Op(s; 0)de

where r(7) is the total discounted cumulative reward of a trajectory 7.

5/25/22 AA 203 | Lecture 18 9

Policy Gradient

Gradient of objective w.r.t. parameters:

Vo) (6) = j r(O)Vep(z; 0)dz

T

Trick: Vop(z; 8) = p(7; 0) VZI(OT(T;) = p(7;0)Vg logp(7; 0)

Vo) (6) = f (r(1)V log p(z: 0))p(; 6) dx

Vo] (8) = Evrp(r;0)[1(T)Vg log p(z; 6)]

5/25/22 AA 203 | Lecture 18 10

Policy Gradient

Vo] (0) = Er p(r;0)[r(1)Vg logp(7; 6)]

logp(t;6) = log (1_[T(xX¢qqlxe, up)mg (utlxt)>

t=0

= z log T (x¢41 |2, up) + logme (ue | ;)

t=0

> Vo logp(r;0) =) Vo logmg (i)
t=0

5/25/22 AA 203 | Lecture 18 11

Policy Gradient

Vo] (0) = Er p(r;0)[r(1)Vg logp(7; 6)]

logp(t;6) = log (1_[T(xX¢qqlxe, up)mg (utlxt)>

t=0

= z log T (x¢41 |2, up) + logme (ue | ;)

t=0
We don’t need to know

= v@ lOg p(T; 8) — z VQ lOg Tlg (ut |xt) the transition model to

t=0 compute this gradient!

5/25/22 AA 203 | Lecture 18 12

Policy Gradient

If we use 1Ty to sample a trajectory, we can approximate the gradient
via N Monte Carlo samples:
V@](B) — Er~p(r;9) [T(T)VH lng(T; 9)]

%Zlivﬂ (T(T(i)) Q=0 Vo log g (ugi) |xt(i)))

2

Intuition: adjust 6 to:
* Boost probability of actions taken if reward is high
* Lower probability of actions taken if reward is low

Learning by trial and error

5/25/22 AA 203 | Lecture 18 13

Policy Gradient Recap

Pros:
 Learns policy directly — can be more stable (less moving parts than Q-learning)
* Works for continuous action spaces (no need to “argmax” Q)

* Converges to local maximum of J(8)
Cons:

* Needs data from current policy to compute gradient — data inefficient

* Gradient estimates can be very noisy

5/25/22 AA 203 | Lecture 18 14

Deep policy gradient

* Parametrize policy as deep neural network

NN output is parameters of distribution:
/ * For discrete action space, logits of a
categorical distribution
_@ * For a continuous action space, e.g.,
parameters of a normal distribution

o (ulx) = N (pg(x),Z9(x))

TN
" A\vv'lA
.)

Input FC Hidden 1 (16) FC Hidden 2 (16) Qutput

* In practice, very unstable
* Need to reduce variance of gradient estimator: baselines and actor-critic

5/25/22 AA 203 | Lecture 18 15

Time dependency of policy gradient theorem

* Previous estimator for policy gradient was

Vo/(0) = NE(TO))EVG logﬂe(ut)|xt))

t=0

Action u,r can not change reward r; for t < t’ (i.e., previous timesteps):

Vo) (0) ~ NZ (Z Vo logmy(ulx(") » r(x” “’))

t=0 Tt

(caveat: this is not a rigorous
5/25/22 AA 203 | Lecture 18 argument we’re presenting here) 16

R EEEEEEEEE—————S——m—m—m———
REINFORCE

Loop forever:

Generate episode xg, ug, 1y, X1, U1, T ... With TTg

L =0,..,N—1: - i
oop forallt =0, ..., Cumulative tail reward,
Ge < XN _ 1« thetail “return”

0«0+ aG,Vglogmg(ug|x,)

5/25/22 AA 203 | Lecture 18 17

Adding baselines to policy evaluation

* Monte Carlo policy gradient estimator has extremely high variance.
* We want to search for gradient estimators that have lower variance

* Add in state-dependent baseline
ét =Gy — b(xt)
J(@) = Ext,ut,...[Gt]
Policy gradient theorem vyields

Vo) (0) = Eyyuy,.[) GeVologm(ulxe, 0)]

t=0

5/25/22 AA 203 | Lecture 18 18

A closer look at the baseline

Claim: adding baseline does not change the value of the
expected gradient

Ve (0) = E[) (G: — b(x))V logm(u|x,, 0)]

t>0
= E[E G:Vg logm(uc|x;, 0)] — E[z b(x;)Vg log m(us|xs, 0)]
t>0 t=0
E[b(x:)Vg logm(us|x;,)] = Ey, [b (xt)Eut [Vg log m(uelx, 6)]]

Y
=0forallt

Any state-dependent function, independent of action, works.

5/25/22 AA 203 | Lecture 18 19

Toy example

Consider a one-step problem with
r(x, [uy, uy]) =100 + uy

and suppose that our policy is parameterized as
g (ulx) = NV (6,1)
= Vglogmg(ulx) =u—20

Let’s estimate the policy gradient at 8 = 0 with two samples of u, [1,1] and [-1, 1]:
Vo] (0) = %(101[1, 1] +99[—-1,1]) = [1,100]
Subtracting a baseline b = 100:
Vo] (0) = %((101 —100)[1,1] + (99 — 100)[—1,1]) = [1, 0]

5/25/22 AA 203 | Lecture 18 20

Performance improvement on gridworld

-10 » W _' Dast i
' R AN P 7 81 L BUN EAC L) el e e
20| L
{ -L' .Ij'l‘"""
.ﬁﬁ'RDNFORCE
& 0 40 - 5'11 o
Total reward A
on episode ’
averaged over 100 runs 0
|
-80 !
—90_* _ |
1 200 400 600 800 1000

Episode R. Sutton and A. Barto, Reinforcement

5/25/22 AA 203 | Lecture 18 Learning: An Introduction, 2018. 1

Actor-critic

Particularly good baseline choice: value function
Actor-critic: use both actor (policy y) and critic (value function ;).

Loop forever:

Generate episode xg, Uy, 1y, X1, U1, T ... With TTg

Loop forallt =0,..,N — 1:
G« Zg:tﬂrk . . .
5y — G —V,(x;) / (fits V,, through MC policy evaluation)

w w

w<w+ a,d,V,V,(x;) | | |
0 — 0+ ayd,,Vglogmy(u|x,)— (baselined policy gradient)

5/25/22 AA 203 | Lecture 18 22

Policy gradient theorem with Q function

* Previously, have used J(0) = Ey ., [2¢s07(Xe Up)]

* Note that, by definition (of Q),
J(@) = By () Q7 (e, ut)]

Yields policy gradient
Vo] (0) = Eypomy() [Q7 (Xt) Vg log mg (ug | x;)]

Note that Q™ (x¢, ue) = Buyprrg () [T X0) + V7 (X 40)]

5/25/22 AA 203 | Lecture 18 23

Advantage policy gradient

* Combining the Q function policy gradient and the value baselines, we have
VoJ(0) = E[6"Vgq log mg (us|x;)]

For 6™ = (rt + VT (xpp1) — V”(xt)). This is the TD error for policy evaluation!

“TD advantage estimate”

* Note that E[6™|x, u] = Q™ (x,u) — V™ (x) = A™(x, u).
* This is called the advantage.
(the value of taking a specific action vs. following your policy)

5/25/22 AA 203 | Lecture 18 24

Advantage actor-critic (A2C)

Loop forever:
Generate episode xg, ug, 1y, X1, U1, T ... With TTg
Loop forallt =0,..,N — 1:
Ow < 1 + Wy (Xp41) — Uy () -
w e w+ a6, Vi, Wy () —
0« 0+ agd, Vg logmg(us|x;)

(a “one point” estimate
of the advantage)

(now fits I}, by minimizing TD error)

5/25/22 AA 203 | Lecture 18 25

Alternative estimators

* Many possible estimators for the advantage

* Aproblem withry +V,,(x;+1) — W, (x;) is that during learning, I/, (x;) may
be quite inaccurate, and thus this will be a biased estimator of A™(x, u)

* Using a multistep TD error, we get the “T-step advantage estimate”:
0 < Tp+Ty1+ ot Tegr + Vw(xt+r+1)) — W (%)

\

!

less biased estimate of expected return (or even unbiased, if
you sum all the way to end of episode), but higher variance

As T gets larger, this gets closer to Monte Carlo with value baseline.

5/25/22 AA 203 | Lecture 18 26

-
Deterministic policy gradient (DPG)

Silver et al., ICML 2014]

* Instead of using stochastic policy with value estimation baseline:
* Maintain estimate of Q function via minimizing TD error
* Optimize deterministic policy via

max E,[Q (x, g (x))]

* Policy simply amortizes optimization of the Q function (the “argmax”
of policy improvement).

* Can be used off policy, relatively unstable in practice.

5/25/22 AA 203 | Lecture 18 27

Double Q-learning

Addressing maximization bias:

* Several possible solutions; in general, want to avoid using max of
estimates as estimate of max.

* Double Q-learning [van Hasselt, NeurlPS 2010]: use two independent
estimates (4, 0,

e u* = argmax,Q;(x,u)
* Use value estimate Q,(x,u™)

 Alternative approach: maintain two independent critics, always use
min [Fujimoto et al, ICML 2018]

5/25/22 AA 203 | Lecture 18 28

-
Trust region policy optimization (TRPO)
[Schulman et al., ICML 2015]

* Main idea : instead of choosing step size, use trust region

max E [o (uelxy) -
"Oola g, (Uelxt) ‘
S. t ExNPOld [DKL (T[Hold(. |X)||T[9 (|x))] S 5

* Can show that this leads to monotonic improvement in the ideal case.

* Simpler, more popular version: proximal policy optimization (PPO).
* Replaces TRPO CG solve with simple adaptive KL penalty.

5/25/22 AA 203 | Lecture 18 29

Criticism of model-free methods

* Des p Ite rece nt p rog ress (+ Muc h N Ot Simple random search of static linear policies is
d iSCU Ssed h e re)’ q u EStIO NS a bo ut Wh eth er competitive for reinforcement learning
model-free methods are doing more than N

ra n d O m S e a rc h i n p a ra m Ete r S p a C e ¢ hmania@berli::r};‘lijtlof Elecltiicj;z:i(:;eﬁyn.ge::d Comp:::cs}:jniirkeley. h

University of California, Berkeley

Why did TD-Gammon Work? Abstract

Model-free reinforcement learning aims to offer off-the-shelf solutions for con-
trolling dynamical systems without requiring models of the system dynamics. We

Jordan B. Pollack & Alan D. Blair introduce a model-free random search algorithm for training static, linear policies
Computer Science Department for continuous control problems. Common evaluation methodology shows that our
Brandeis University method matches state-of-the-art sample efficiency on the benchmark MuJoCo loco-
Waltham, MA 02254 motion tasks. Nonetheless, more rigorous evaluation reveals that the assessment
{pollack,blair} @cs.brandeis.edu of performance on these benchmarks is optimistic. We ev.a]uatf: the performance
of our method over hundreds of random seeds and many different hyperparameter
configurations for each benchmark task. This extensive evaluation is possible
Abstract because of the small computational footprint of our method. Our simulations
{\lthpugh TD-Gammop i§ one of thc'major successes in_ machine]cax:n- \ Jacob Andreas J{ #acl2022nlp .
ing, it has not led to similar impressive breakthroughs in temporal dif- .
ference learning for other applications or even other games. We were - @jacobandreas

able to replicate some of the success of TD-Gammon, developing a
competitive evaluation function on a 4000 parameter feed-forward neu-

ral network, without using back-propagation, reinforcement or temporal D ee p R |_ iS p 0O pl_,] |a I bec alse |‘t '5 the on |y area | N M L
difference learning methods. Instead we apply simple hill-climbing in a . . .
relative fitness environment. These results and further analysis suggest Where It '5 SDC|a| |)," acce pta ble to train on the test set.

that the surprising success of Tesauro’s program had more to do with the

co-evolutionary structure of the learning task and the dynamics of the .) .
backgammo:rgyame itself. 12:27 PM - Oct 28, 2017 - Twitter Web Client

5/25/22 AA 203 | Lecture 18 30

5/25/22

Avg. cos sim with true grad

1.0

0.5

0.0

Are Deep Policy Gradient Algorithms
Truly Policy Gradient Algorithms?

Andrew Ilyas*!, Logan Engstrom*!, Shibani Santurkar!, Dimitris Tsipras!,
Firdaus Janoos?, Larry Rudolph'?, and Aleksander Madry!

Iteration: 0 # Iteration: 150 # Iteration: 300 # Iteration: 450
' o ' o ' © !
— © 1.0 e © 1.0 © 1.0
TRPO g TRPO = g TRPO £ TRPO
) PPO] [} PPO
3 / = = /
= PPO-M / E 5 PPO-M 7
i £ 0.5 i ; k= 0.5 ; < 0.5 i /
| E E | E |
£ 7 £ i - 5
i o 0.0 ———a 0.0 R ——
1 o 1 o 1 (o] 1
i v i O ! O i
i o : o E o i
: > : > ! > :
' < 05 ' < 05 < 05 '
102 103 104 10° 108 107 102 103 104 105 108 107 10?2 103 104 10° 106 107 102 103 104 105 108 107
State-Action Pairs # State-Action Pairs # State-Action Pairs # State-Action Pairs
2,000 state-action pairs 20,000 state-action pairs 100,000 state-action pairs
(19 trajectories) (198 trajectories) (1068 trajectories)

£ 0. 3.0 - 0. 3.0 0. 3.0
> 20 25 e} 20 25 e} 20 25

05 10 13 fon 05 10 13 fon 05 10 L3 fon
00 05 “fepdired 00 05 “lepdired 00 05 gep dired

AA 203 | Lecture 18

31

Why model-free?

* Advantages
* Very few assumptions

* Many state of the art methods reach better performance
than model-based methods

* Weaknesses
e Extremely high sample complexity

5/25/22 AA 203 | Lecture 18 32

Next time

* Combining policy optimization
with model learning

* AA 203 recap!

5/25/22 AA 203 | Lecture 18 33

