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Agenda

• Reviewing the reinforcement learning problem statement

• Tabular model-based RL

• Continuous model-based RL

• Readings:
• M. Ghavamzadeh, S. Mannor, J. Pineau, and A. Tamar, Bayesian Reinforcement 

Learning: A Survey, Foundations and Trends in ML, 2016. 
• R. Sutton and A. Barto. Reinforcement Learning: An Introduction, 2018.
• M. Kochenderfer. Decision Making Under Uncertainty, 2015.
• T. M. Moerland, J. Broekens, C. M. Jonker. Model-based Reinforcement Learning: 

A Survey, 2020 
• K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in 

a handful of trials using probabilistic dynamics models, NeurIPS, 2018.
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Reinforcement learning assumptions and 
information patterns
• Previously:

• Intro model-free RL: Q-learning, SARSA
• Multiple episodes, interleave data collection and policy improvement
• Tabular (discrete state space, discrete action space)

• System Identification
• Batch, offline data collection
• Primarily linear dynamics

• Adaptive Control
• Intra-episode/online adaptation
• Primarily linear dynamics
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How are these different?

• Short answer: different historical developments, thus different standard 
assumptions (e.g., “episodes” are the standard way to approach learning game-
playing agents)

• Currently, these fields are increasingly overlapping, thus it’s increasingly 
important to clearly state problem setting/assumptions, so that you can

• connect similar ideas in different fields

• know what works, and when 

• know what you should use for your problem
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Core assumptions

• Linear vs. nonlinear dynamics 

• Known vs. unknown cost function

• Episodic interaction vs. single episode (online)  vs. batch offline data
• Related: which policy was used to collect data (Offline vs online)? 
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Breaking down assumptions

System 
Identification

Adaptive Control Model-based RL Model-free RL

Dynamics Usually linear Linear or nonlinear, 
usually control 
affine

Discrete or 
nonlinear 
continuous

Discrete or 
nonlinear 
continuous

Reward knowledge? N/A Designed (thus 
known)

Typically assumed 
known (not always)

Typically assumed 
unknown, provided 
by environment

Data collection/ 
episodic structure

Dataset provided One episode Typically, repeated 
episodes

Typically, repeated 
episodes

What do we learn? Dynamics model Usually policy 
(MRAC) or model 
(MIAC)

Dynamics model, 
sometimes reward 
model, sometimes 
policy

Policy (or Q 
function)

Caveat: there are exceptions to all of the above.
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Unconstrained stochastic control problem

𝐽0
∗ 𝐱0 = min

𝝅0,…,𝝅𝑇−1
E[ 𝑝 𝐱𝑇 +෍

𝑘=0

𝑇−1

𝑐(𝐱𝑘 , 𝝅𝑘(𝐱𝑘)) ]

subject to 𝐱𝑘+1= 𝑓(𝐱𝑘 , 𝝅𝑘(𝐱𝑘),𝐰𝑘, 𝛉) 𝑘 = 0,… ,𝑁 − 1

𝛉 ∼ 𝑝 𝛉
𝐰𝑘 ∼ 𝑝(𝐰) iid, 𝑘 = 0,… ,𝑁 − 1
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Notes:
• Possibly instantiated over multiple episodes
• Soft constraints may be encoded in c



Generalization and exploration

• Linear time-invariant (LTI) dynamics: if 
dataset generated with sufficient 
excitation, gives global knowledge

• Nonlinear dynamics: extrapolation is 
difficult and can be misleading
• As AC/RL moves to more complex systems, 

have to consider uncertainty, exploration, 
and data collection process

5/23/22 AA 203 | Lecture 17 9



Tabular model-based RL

• Discrete state/action space with stochastic transitions

• If model is known, can use value iteration/policy iteration/etc. 

• Model unknown: want to build approximate model from observed 
transitions
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Tabular MBRL outline

• Assume initial policy

• Loop forever (i.e., until loop end of episode, then loop over episodes):
• Take some number of actions, resulting in transition/reward data

• Improve dynamics model

• Choose actions/policy

• Approaches for action selection:
• Dynamic programming/VI/DP on approximate model

• Expensive, gives optimal policy for model

• Plan suboptimal sequence of actions via online control optimization
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Dynamic programming for action selection

• Given an updated model, can perform value iteration/DP to yield new 
policy. Gives a global solution but…
• Can be very expensive for large MDPs!

• Effect of local model changes (often) has minor impact on far away states.
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Local methods for action selection

• Tree search methods:
• Similar idea to MPC: continuously generate short plans to approximate 

closed-loop policy.

• For example, Monte Carlo tree search (MCTS); in its simplest form: 
• Sample random action sequences

• Choose best sequence and execute first action
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Combining local and global methods

• Many ways to combine local search (e.g., MCTS) with global/dynamic 
programming methods
• Can use (possibly old) running value estimate as tail value in search

• Forward search gives a TD update for value
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Learning a tabular model from data

• States 𝐱1, 𝐱2, … , 𝐱𝑛
• Actions 𝐮1, 𝐮2, … , 𝐮𝑚

• Want to learn 𝑝 𝐱𝑖 𝐱j, 𝐮𝑘) for all 𝑖, 𝑗, 𝑘

• We will discuss both max likelihood point estimation and fully 
Bayesian approaches 
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Max likelihood for tabular MBRL

• Categorical likelihood: 𝑝 𝐱𝑖 𝐱𝑗 , 𝐮𝑘 , 𝛉 = 𝛉𝑖𝑗𝑘; σ𝑖 𝛉𝑖𝑗𝑘 = 1

• Assume data 𝐷 = { 𝐱, 𝐮, 𝐱′ }𝑖=1
𝑑

• Max likelihood: 

max
𝜃∈Θ

෍

𝐷

log 𝑝(𝐱′|𝐱, 𝐮, 𝛉)

• Optimizing this gives the maximum likelihood estimate

෡𝛉𝑖𝑗𝑘 =
𝑁 𝐱𝑗 , 𝐮𝑘 , 𝐱𝑖

𝑁 𝐱𝑗 , 𝐮𝑘
where 𝑁 ⋅,⋅ is the empirical count 
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Max likelihood for tabular MBRL

• 𝛉𝑖𝑗𝑘 = 𝑁(𝐱𝑗 , 𝐮𝑘 , 𝐱𝑖)/𝑁 𝐱𝑗 , 𝐮𝑘
• Problem: what if 𝑁 𝐱𝑗 , 𝐮𝑘 = 0? 

• For example, if we are starting with zero information, this model 
estimation scheme breaks

• Simple solution: start all of our counts at 1, i.e.,
• Store 𝑁(𝐱𝑗 , 𝐮𝑘 , 𝐱𝑖); note that 𝑁 𝐱𝑗 , 𝐮𝑘 = σ𝐱𝑖𝑁(𝐱𝑗 , 𝐮𝑘 , 𝐱𝑖)
• Replace 𝑁(𝐱𝑗 , 𝐮𝑘 , 𝐱𝑖) with 𝑁 𝐱𝑗 , 𝐮𝑘 , 𝐱𝑖 + 1
• Gives 𝛉𝑖𝑗𝑘 = (𝑁 𝐱𝑗 , 𝐮𝑘 , 𝐱𝑖 + 1)/(𝑁 𝐱𝑗 , 𝐮𝑘 + 𝑛)

• We will see: corresponds to weak prior over transition 
probability mass function (pmf)
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Bayesian inference for categorical distribution

• Bayesian inference:
• Instead of a single “point estimate” ෡𝛉, we want to 

reason about a distribution 𝑝 𝛉 𝐷

• Computable using Bayes rule given prior 𝑝 𝛉 and 
observation model 𝑝 𝐷 𝛉

• Example:
• Beta distribution: interpretable as a “probability 

distribution on probabilities”, conjugate prior of 
Bernoulli (coin toss)

• 𝑝 𝜃 = Beta 𝛼, 𝛽

• 𝑝 𝐷|𝜃 = Bernoulli(𝜃)

• ➔ 𝑝 𝜃|𝐷 = Beta 𝛼 + 𝑁 𝐷=1 , 𝛽 + 𝑁 𝐷=0

• Parameters 𝛼, 𝛽 interpretable as “pseudocounts”
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Bayesian inference of transition probabilities

• Fix Dirichlet distribution prior
• Corresponds to a probability distribution over

discrete probability distributions
• Write Dir 𝜶 with pdf 𝑝(x1, … , x𝑛|𝛼1, … , 𝛼𝑛)

• Ε x𝑖 = 𝛼𝑖/σ𝑗 𝛼𝑗

• Dirichlet is conjugate with categorical 
distribution:
• Dirichlet prior with parameters 𝛼1, … , 𝛼𝑛, plus 

Categorical distribution gives Dirichlet 
posterior Dir 𝜶 + 𝒄

• 𝒄 = 𝑐1, … , 𝑐𝑛 is counts of data 

For details on derivation of posterior, see: The Dirichlet-Multinomial and Dirichlet-Categorical models for Bayesian inference, Stephen Tu (available online). 
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Bayesian posterior

• Prior parameter 𝜶 corresponds to number of prior observations

• For 𝐱1, … , 𝐱n ∼ 𝐷𝑖𝑟 𝛼 , Ε 𝐱𝑖 = 𝛼𝑖/σ𝑗 𝛼𝑗

• Posterior predictive is p 𝐱′ 𝐱, 𝐮, 𝜶, 𝐷 =
𝑁 𝐱,𝐮,𝐱′ +𝛼

𝐱,𝐮,𝐱′

σ𝐱′ 𝑁 𝐱,𝐮,𝐱′ +𝛼𝐱,𝐮,𝐱′

• Choosing 𝜶 = (1,… , 1) gives our previous correction

• But, we have more than just the point estimate of our model. How 
can we use this? 
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Bayes-adaptive MDPs

• Have model parameters 𝛉 (i.e., 𝜶), which summarizes “counts” for Dirichlet 
posterior for every state/action/next state combination. 

• Recalling our brief discussion of dual control, we can consider a 
Bayes-adaptive MDP, with hyperstate (𝐱, 𝛉)
• Transition dynamics 𝑝 𝐱′, 𝛉′ 𝐱, 𝐮, 𝛉 can be factored as p 𝐱′ 𝐱, 𝐮, 𝛉 p 𝛉′ 𝐱′, 𝐱, 𝐮, 𝛉

• p 𝐱′ 𝐱, 𝐮, 𝛉 =
𝜃
𝐱,𝐮,𝐱′

σ𝐱′ 𝜃𝐱,𝐮,𝐱′
=

𝑁 𝐱,𝐮,𝐱′ +𝜃
𝐱,𝐮,𝐱′
prior

σ𝐱′ 𝑁 𝐱,𝐮,𝐱′ +𝜃
𝐱,𝐮,𝐱′
prior

• Model parameter count increases by 1 for corresponding transition count

• Problem: state space grows infinitely, so cannot do dynamic programming
• Approximate DP/local search is possible; a good reference on review of Bayes-

adaptive RL and approximate methods: Michael Duff’s PhD thesis, 2003.
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Exploration heuristics: Thompson sampling

• Even in tabular and linear MDPs, dual control/Bayes-adaptive MDP 
(solving which would yield optimal exploration) is intractable

• So we turn to heuristics to explore, e.g., as previous mentioned
• In the context of system identification: noise addition (persistent excitation)

• In the context of RL: epsilon-greedy exploration

• Simple approach using posterior over models: Thompson sampling
• Sample MDP from posterior

• Act optimally w.r.t. this MDP for episode (allows for “deep exploration”)

• Update model posterior and loop
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Continuous MBRL

• Will now consider general non-LTI continuous models 

• Many possible model choices:
• Nonlinear features in linear regression

• Time varying linear dynamics

• Gaussian processes

• Neural networks

• Many possible control choices: 
• MPC (often without persistent feasibility/stability guarantees)

• Repeated direct methods/trajectory optimization (e.g., iLQR)

• Many variants: gradient-based vs. sampling, with/without final cost

• Directly optimize policy (next week)

Abbeel et al., NeurIPS 2008 
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Gaussian process models

• Place prior over dynamics, 𝑓 ∼ 𝐺𝑃 𝑚 ⋅ , k ⋅,⋅
• Corresponds to infinite dimensional gaussian distribution, prior over functions

• Strengths
• Data efficient
• Exact posterior
• Predictable behavior via kernel choice

• Weaknesses
• High computational complexity
• Assume Gaussian measurement error
• Can not learn expressive features

Rasmussen and Williams, 2006.

Hewing et al., 2019.5/23/22 AA 203 | Lecture 17 24
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Neural network models

• Parameterize model using neural network

• Strengths
• Can learn complex, expressive features
• Can be paired with arbitrary loss functions

• Weaknesses
• Data inefficient
• Difficult to represent uncertainty
• Unpredictable extrapolation

Finn et al., 2017.
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Case study: PETS

• Probabilistic Ensembles with 
Trajectory Sampling

• Key idea:
• Use ensemble (collection) of NNs to 

approximate posterior over model
• Incorporate model uncertainty into 

control

• Ensembling: 
• Initialize several networks with 

different weights
• Will agree where there is a lot of data, 

disagree elsewhere
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PETS findings

• Consider both probabilistic network (outputs mean + variance) and 
deterministic

• Use particle-based MPC controller (random action sampling)

• Either re-sample dynamics at each time, or keep fixed
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Why model-based?

• Advantages
• Transitions give strong signal

• Data efficiency, improved multi-task performance, generalization

• Weaknesses
• Optimizing the wrong objective (i.e., not your ultimate task of optimizing reward)

• May be very difficult/intractable for systems with high dimensional 
observations/states
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Next time

• Model-free RL: policy gradient, 
variance reduction, actor-critic.

5/23/22 AA 203 | Lecture 17 29


