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Adaptive and Learning MPC

 Learning MPC as an example of learning/adaptive constrained control
* Practical considerations
* Learning quantities other than dynamics

* Reading;:
* L. Hewing, K. P. Wabersich, M. Menner, M. N. Zeilinger. Learning-Based Model

Predictive Control: Toward Safe Learning in Control. Annual Review of Control,
Robotics, and Autonomous Systems, 2020.

* U. Rosolia, X. Zhang, F. Borrelli. Data-Driven Predictive Control for Autonomous
Systems. Annual Review of Control, Robotics, and Autonomous Systems, 2018.
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Learning dynamics

* Approach:
* Learn dynamics and maintain a measure of uncertainty

* Incorporate uncertainty into controller to guarantee constraint satisfaction
* Using, e.g., robust MPC

* Model learning types:
* Robust/Set-membership models
» Typically easier analysis, potentially sensitive to problem misspecification

» Statistical models (e.g., least squares estimation)

* More difficult analysis, able to account for more complicated interactions between
uncertainties

5/18/22 AA 203 | Lecture 16 4



Robust estimation models

* Setting: given operation data
X =1[x(0),...x(K+1)], U=[u(0),..,ulK)]

from system

x(t+1) = f(x(t),u(t), w(t),0)
w(t) EW Vt

* Approach: maintain feasible parameter set
Ty = {0:Vt=0,...,Kawe W s.t. x(t +1) = f(x(t),u(t), w(t), 0)}

Set of non-falsified parameters
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Robust estimation models

* Note that Ty, € Tk: once a parameter value is falsified, it is
removed from the feasible set forever.

* Frequently used consequence:

e Let U = [u(0),...,u(N)] denote a feasible open loop action sequence from
statex(0) forall @ € Tk. Then, U is feasible forall ® € Ty, ,, withn = 0
(from the same state x(0)).
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Additive linear example

* Dynamics
x(t+ 1) = Ax(t) + Bu(t) + EO + w(t); w(t) e W

E known, 8 unknown.
* Assume initial polytopic parameter uncertainty set T,.
* Polytopic constraints Fx < f,Gu < g.
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Additive linear example

Bujarbaruah, Zhang, Rosolia, Borrelli. Adaptive MPC for Iterative
Tasks, CDC 20109.

* Let Xr denote terminal invariant associated with dynamics and Tj,.

* Then, X¢ also invariant for T;,n = 0.

* Approach: At timestep n, consider combined disturbance
d(t) = E0 + w(t), 0eT,

Use robust/tube MPC to solve.
* Can also adapt terminal invariant, will see later.
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Bujarbaruah, Zhang, Rosolia, Borrelli. Adaptive MPC for Iterative Tasks, CDC 2019.
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Robust Adaptive MPC

* Many similar approaches for

* Multiplicative uncertainty
x(t+1) =6,x(t) + 0gu(t) + w(t)
* Nonlinear (but linearly parameterized) uncertainty
x(t + 1) = Ax(t) + Bu(t) + ®(x(t),u(t))0

* For nonlinear dependence on 0, there also exist robust non-
parametric methods
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Stochastic estimation models

System
x(t +1) = f(x(t),u(t), w(t), 0)

withw(t) ~ p(w) i.i.d. (independent and identically distributed)
Common assumption: noise appears linearly

x(t+1) = f(x(t),u(t),0) +w(t)
Approach:
« Use tools from probabilistic estimation (e.g. max likelihood, Bayesian inference, etc.)
 Construct confidence intervals or credible regions to probabilistically guarantee safety
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Confidence sets

* In set-membership identification, we constructed sets that
contained the parameters with probability 1

* In this section, we will consider sets of the form T (&) such that
p(0 € T,(6) | Xg, .o, X, Ug, ..., U ) =1 -6

* Similarly, can no longer reason about constraints being satisfied
with probability 1, must work with chance constraints
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Computing confidence sets

* Most common approach: assume noise is Gaussian, take Bayesian
approach (i.e., compute a posterior distribution from which
confidence sets can be computed)

* Model: linearly parameterized or Gaussian process

* Frequentist approaches:

* Statistical bootstrapping

* If noise model sub-Gaussian, can use concentration inequalities (effectively
yields same result as Gaussian confidence intervals)
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Chance-constrained optimal control problem

N-1
Jo(Xp) = min pXxy) + Z c(Xy, Uy)
Up,..., Uur—q e

subjectto Xxp,1=A4Xy +Bu,+wg, k=0,..,N—1
w, ~p(w)iid, k=0,..,N—1
p(X EXVk)=>1-6,
p(u, EUVEk)>1-94,
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Chance-constrained optimal control problem

N-1
Jo(Xp) = min pXxy) + Z c(Xy, Uy)
Up,...,UT—-1 e

subjectto Xxp,1=A4Xy +Bu,+wg, k=0,..,N—1
w, ~p(w)iid, k=0,..,N—1
p(X EXVk)=>1-6,
p(u, EUVEk)>1-94,

Much difficulty in chance-constrained trajectory optimization
stems from even evaluating this “trajectory-wise” probability
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A robust approach to stochastic control

» Simple set-theoretic computations of robust MPC are convenient

 Common approach: divide “risk” equally over timesteps, so at each

time constraints must be satisfied with probability 1 — %

* Then guarantee that all parameters in confidence set Ty (g) satisfy
per-timestep chance constraints; better chance constraint
satisfaction typically relies on Monte Carlo methods

 Typically over-conservative in practice

* Recursive feasibility arguments difficult
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Application

As more and more laps are driven,

the racecar is able to go faster as

the dynamics are identified with

, high confidence (allowing for
more aggressive control)

(s/w) paads

0

Hewing, Wabersich, Menner, Zeilinger, “Learning-Based Model Predictive Control: Toward Safe Learning in Control,” 2019.
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Learning the terminal constraint

* Line of work from Rosolia and Borrelli over multiple papers (2017-2020)
* Assume we have access to terminal control invariant Xr

* Know that including backward reachable set of X¢ (i.e., Pre(Xr) U X¢) is
also invariant

* Therefore, given trajectory {x(0), ...,x(N + 1)} such that x(N + 1) € X,
know:

Xr U {x(0),...,x(N)}
is control invariant.
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Learning the terminal constraint

* Algorithm: assume access to a demonstration trajectory or
stabilizing controller

* Initialize Xy = {0} (assuming 0 is an equilibrium)

* [terate over episodes k=1,...
» Each episode k yields data
Dy = {x4(0), .., x,(N)}, C = {c(x4£(0)), ..., c(x,(N))}
* Expand terminal constraint via
* Terminal cost p(x) is the sum of all future costs from the last time that state
was visited
* Solve MPC problem with terminal constraint X and terminal cost p(x)
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Learning the terminal constraint

« Can show that for systems without disturbances, this results in
monotonic performance improvement.

* |[n practice, to make optimization problem tractable, use convex
hull of sampled set and weighted sum of tail costs.

* Blanchini & Pellegrino (2005) showed that the convex hull of the
sampled set is also control invariant for LTI systems!
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Iteration Cost

Iteration
i=0
i1=1
j=2
j:‘}
j=4
j=35
j=60
j=7
j==8

6:5.000000000000000
33.634529488066327
24.216166714512450
19.625000000001727
19.625000000000004
17.625000000022546
17.625000000000000
16.625000000000000
16.625000000000000

Rosolia, Borelli, “Learning
Model Predictive Control for

Iterative Tasks. A Data-Driven
Control Framework,” TAC 2017.
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Learning the terminal cost

* Important to also learn the terminal cost.

» Simple approach: use the tail cost from the previous visit to a
given state
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What else could we learn?

* Learn terminal cost: use, e.g., similar ideas to Q-learning
* Learn controller hyperparameters (e.g., planning horizon)

* Learn constraints (based on e.g., binary signals of constraint
violation)

* Learning from demonstrations (behavioral cloning, imitation
learning-not covered in this class but practically very useful)
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Next time

 Unconstrained model-based methods
in the tabular and nonlinear setting
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