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Adaptive and Learning MPC

• Learning MPC as an example of learning/adaptive constrained control 

• Practical considerations 

• Learning quantities other than dynamics

• Reading:
• L. Hewing, K. P. Wabersich, M. Menner, M. N. Zeilinger. Learning-Based Model 

Predictive Control: Toward Safe Learning in Control. Annual Review of Control, 
Robotics, and Autonomous Systems, 2020. 

• U. Rosolia, X. Zhang, F. Borrelli. Data-Driven Predictive Control for Autonomous 
Systems. Annual Review of Control, Robotics, and Autonomous Systems, 2018. 
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Learning dynamics

• Approach: 
• Learn dynamics and maintain a measure of uncertainty

• Incorporate uncertainty into controller to guarantee constraint satisfaction
• Using, e.g., robust MPC 

• Model learning types: 
• Robust/Set-membership models 

• Typically easier analysis, potentially sensitive to problem misspecification 

• Statistical models (e.g., least squares estimation)
• More difficult analysis, able to account for more complicated interactions between 

uncertainties
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Robust estimation models

• Setting: given operation data 
𝑋 = 𝐱 0 ,… , 𝐱 𝐾 + 1 , 𝑈 = [𝐮 0 ,… , 𝐮(𝐾)]

from system
𝐱 𝑡 + 1 = 𝑓(𝐱 𝑡 , 𝐮 𝑡 ,𝐰 𝑡 , 𝛉)

𝐰 𝑡 ∈ 𝑊 ∀𝑡

• Approach: maintain feasible parameter set 
T𝐾 = {𝛉: ∀𝑡 = 0,… , 𝐾 ∃𝐰 ∈ 𝑊 s. t. 𝐱 𝑡 + 1 = 𝑓(𝐱 𝑡 , 𝐮 𝑡 ,𝐰 𝑡 , 𝛉)}

Set of non-falsified parameters
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Robust estimation models

• Note that 𝑇𝐾+1 ⊆ 𝑇𝐾: once a parameter value is falsified, it is 
removed from the feasible set forever. 

• Frequently used consequence: 
• Let 𝑈 = 𝐮 0 ,… , 𝐮 𝑁 denote a feasible open loop action sequence from 

state 𝐱 0 for all 𝛉 ∈ 𝑇𝐾. Then, 𝑈 is feasible for all 𝛉 ∈ 𝑇𝐾+𝑛 with 𝑛 ≥ 0
(from the same state 𝐱 0 ). 
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Additive linear example 

• Dynamics 
𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝐮 𝑡 + E𝛉 + 𝐰 𝑡 ; 𝐰 𝑡 ∈ 𝑊

E known, 𝛉 unknown. 

• Assume initial polytopic parameter uncertainty set 𝑇0.

• Polytopic constraints 𝐹𝐱 ≤ 𝐟, 𝐺𝐮 ≤ 𝐠.
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Additive linear example 

Bujarbaruah, Zhang, Rosolia, Borrelli. Adaptive MPC for Iterative 
Tasks, CDC 2019. 

• Let 𝑋𝑓 denote terminal invariant associated with dynamics and 𝑇0.

• Then, 𝑋𝑓 also invariant for 𝑇𝑛, n ≥ 0.

• Approach: At timestep n, consider combined disturbance 
𝐝 𝑡 = 𝐸𝛉 +𝐰 𝑡 , 𝛉 ∈ 𝑇𝑛

Use robust/tube MPC to solve.

• Can also adapt terminal invariant, will see later. 
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Additive linear example 
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Bujarbaruah, Zhang, Rosolia, Borrelli. Adaptive MPC for Iterative Tasks, CDC 2019. 



Robust Adaptive MPC

• Many similar approaches for 
• Multiplicative uncertainty 

𝐱 𝑡 + 1 = 𝜃𝐴𝐱 𝑡 + 𝜃𝐵𝐮 𝑡 + 𝐰(𝑡)

• Nonlinear (but linearly parameterized) uncertainty 
𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝐮 𝑡 + Φ 𝐱 𝑡 , 𝐮 𝑡 𝛉

• For nonlinear dependence on 𝛉, there also exist robust non-
parametric methods
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Stochastic estimation models

System

𝐱 𝑡 + 1 = 𝑓(𝐱 𝑡 , 𝐮 𝑡 ,𝐰 𝑡 , 𝛉)

with 𝐰 𝑡 ∼ 𝑝 𝐰 i.i.d. (independent and identically distributed)

Common assumption: noise appears linearly

𝐱 𝑡 + 1 = 𝑓 𝐱 𝑡 , 𝐮 𝑡 , 𝛉 + 𝐰 𝑡

Approach: 

• Use tools from probabilistic estimation (e.g. max likelihood, Bayesian inference, etc.)

• Construct confidence intervals or credible regions to probabilistically guarantee safety
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Confidence sets

• In set-membership identification, we constructed sets that 
contained the parameters with probability 1

• In this section, we will consider sets of the form 𝑇𝑘 𝛿 such that 
𝑝 𝛉 ∈ 𝑇𝑘 𝛿 𝐱0, … , 𝐱𝑘 , 𝐮0, … , 𝐮𝑘 ≥ 1 − 𝛿

• Similarly, can no longer reason about constraints being satisfied 
with probability 1, must work with chance constraints
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Computing confidence sets 

• Most common approach: assume noise is Gaussian, take Bayesian 
approach (i.e., compute a posterior distribution from which 
confidence sets can be computed)
• Model: linearly parameterized or Gaussian process

• Frequentist approaches:
• Statistical bootstrapping

• If noise model sub-Gaussian, can use concentration inequalities (effectively 
yields same result as Gaussian confidence intervals)
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Chance-constrained optimal control problem
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𝐽0
∗ 𝐱0 = min

𝐮0,…,𝐮𝑇−1
𝑝 𝐱𝑁 +෍

𝑘=0

𝑁−1

𝑐(𝐱𝑘 , 𝐮𝑘)

subject to 𝐱𝑘+1= 𝐴𝐱𝑘 + 𝐵𝐮𝑘 +𝐰𝑘, 𝑘 = 0,… ,𝑁 − 1

𝐰𝑘 ∼ 𝑝(𝐰) i.i.d., 𝑘 = 0,… ,𝑁 − 1

𝑝 𝐱𝑘 ∈ 𝑋 ∀𝑘 ≥ 1 − 𝛿𝑥

𝑝 𝐮𝑘 ∈ 𝑈 ∀𝑘 ≥ 1 − 𝛿𝑢



Chance-constrained optimal control problem
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𝐽0
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𝐮0,…,𝐮𝑇−1
𝑝 𝐱𝑁 +෍

𝑘=0

𝑁−1

𝑐(𝐱𝑘 , 𝐮𝑘)

subject to 𝐱𝑘+1= 𝐴𝐱𝑘 + 𝐵𝐮𝑘 +𝐰𝑘, 𝑘 = 0,… ,𝑁 − 1

𝐰𝑘 ∼ 𝑝(𝐰) i.i.d., 𝑘 = 0,… ,𝑁 − 1

𝑝 𝐱𝑘 ∈ 𝑋 ∀𝑘 ≥ 1 − 𝛿𝑥

𝑝 𝐮𝑘 ∈ 𝑈 ∀𝑘 ≥ 1 − 𝛿𝑢

Much difficulty in chance-constrained trajectory optimization 
stems from even evaluating this “trajectory-wise” probability



A robust approach to stochastic control

• Simple set-theoretic computations of robust MPC are convenient

• Common approach: divide “risk” equally over timesteps, so at each 

time constraints must be satisfied with probability 1 −
𝛿

2𝑁

• Then guarantee that all parameters in confidence set 𝑇𝐾
𝛿

2
satisfy 

per-timestep chance constraints; better chance constraint 
satisfaction typically relies on Monte Carlo methods

• Typically over-conservative in practice

• Recursive feasibility arguments difficult
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Application
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Hewing, Wabersich, Menner, Zeilinger, “Learning-Based Model Predictive Control: Toward Safe Learning in Control,” 2019.

As more and more laps are driven, 
the racecar is able to go faster as 
the dynamics are identified with 
high confidence (allowing for
more aggressive control)



Learning the terminal constraint

• Line of work from Rosolia and Borrelli over multiple papers (2017-2020)

• Assume we have access to terminal control invariant 𝑋𝑓

• Know that including backward reachable set of 𝑋𝑓 (i.e., Pre(𝑋𝑓) ∪ 𝑋𝑓) is 
also invariant

• Therefore, given trajectory 𝐱 0 ,… , 𝐱 𝑁 + 1 such that 𝑥 𝑁 + 1 ∈ 𝑋𝑓, 
know:

𝑋𝑓 ∪ 𝐱 0 ,… , 𝐱 𝑁

is control invariant.
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Learning the terminal constraint

• Algorithm: assume access to a demonstration trajectory or 
stabilizing controller

• Initialize 𝑋𝑓 = {0} (assuming 0 is an equilibrium)

• Iterate over episodes k = 1,… 
• Each episode k yields data 

𝐷𝑘 = 𝐱𝑘 0 ,… , 𝐱𝑘 𝑁 ,   𝐶𝑘 = 𝑐 𝐱𝑘 0 ,… , 𝑐 𝐱𝑘 𝑁
• Expand terminal constraint via 

𝑋𝑓 ← 𝑋𝑓 ∪ 𝐷𝑘
• Terminal cost 𝑝 𝐱 is the sum of all future costs from the last time that state 

was visited
• Solve MPC problem with terminal constraint 𝑋𝑓 and terminal cost 𝑝 𝐱
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Learning the terminal constraint

• Can show that for systems without disturbances, this results in 
monotonic performance improvement. 

• In practice, to make optimization problem tractable, use convex 
hull of sampled set and weighted sum of tail costs. 

• Blanchini & Pellegrino (2005) showed that the convex hull of the 
sampled set is also control invariant for LTI systems!
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Performance
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Rosolia, Borelli, “Learning 
Model Predictive Control for 
Iterative Tasks. A Data-Driven 
Control Framework,” TAC 2017.



Learning the terminal cost

• Important to also learn the terminal cost.

• Simple approach: use the tail cost from the previous visit to a 
given state 
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What else could we learn?

• Learn terminal cost: use, e.g., similar ideas to Q-learning 

• Learn controller hyperparameters (e.g., planning horizon)

• Learn constraints (based on e.g., binary signals of constraint 
violation)

• Learning from demonstrations (behavioral cloning, imitation 
learning–not covered in this class but practically very useful)
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Next time

• Unconstrained model-based methods 
in the tabular and nonlinear setting 
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