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Model predictive control

• Introduction: basic setting and key ideas

• Persistent feasibility of MPC

• Further reading:
• F. Borrelli, A. Bemporad, M. Morari. Predictive Control 

for Linear and Hybrid Systems, 2017.

• J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model 
Predictive Control: Theory, Computation, and Design, 
2017.
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Model predictive control 
• Model predictive control (or, more broadly, receding horizon 

control) entails solving finite-time optimal control problems in a 
receding horizon fashion 
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Model predictive control 

Key steps:

1. At each sampling time 𝑡, solve an open-loop optimal control 
problem over a finite horizon

2. Apply optimal input signal during the following sampling interval 
𝑡, 𝑡 + 1

3. At the next time step 𝑡 + 1, solve new optimal control problem 
based on new measurements of the state over a shifted horizon
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Basic formulation

• Consider the problem of regulating to the origin the discrete-time 
linear time-invariant system 

𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝐮 𝑡 , 𝐱 𝑡 ∈ ℝ𝑛, 𝐮 𝑡 ∈ ℝ𝑚

subject to the constraints
𝐱 𝑡 ∈ 𝑋, 𝐮 𝑡 ∈ 𝑈, 𝑡 ≥ 0

where the sets 𝑋 and 𝑈 are polyhedra
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Basic formulation

• Assume that a full measurement of the state 𝐱(𝑡) is available at the 
current time 𝑡

• The finite-time optimal control problem solved at each stage is

𝐽𝑡
∗ 𝐱 𝑡 = min

𝐮𝑡|𝑡,…,𝐮𝑡+𝑁−1|𝑡
𝑝 𝐱𝑡+𝑁|𝑡 +෍

𝑘=0

𝑁−1

𝑐(𝐱𝑡+𝑘|𝑡 , 𝐮𝑡+𝑘|𝑡)
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subject to 𝐱𝑡+𝑘+1|𝑡= 𝐴𝐱𝑡+𝑘|𝑡 + 𝐵𝐮𝑡+𝑘|𝑡 , 𝑘 = 0,… ,𝑁 − 1

𝐱𝑡+𝑘|𝑡∈ 𝑋, 𝐮𝑡+𝑘|𝑡∈ 𝑈, 𝑘 = 0,… ,𝑁 − 1

𝐱𝑡+𝑁|𝑡∈ 𝑋𝑓

𝐱𝑡|𝑡= 𝐱(𝑡)
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subject to 𝐱𝑡+𝑘+1|𝑡= 𝐴𝐱𝑡+𝑘|𝑡 + 𝐵𝐮𝑡+𝑘|𝑡 , 𝑘 = 0,… ,𝑁 − 1

𝐱𝑡+𝑘|𝑡∈ 𝑋, 𝐮𝑡+𝑘|𝑡∈ 𝑈, 𝑘 = 0,… ,𝑁 − 1

𝐱𝑡+𝑁|𝑡∈ 𝑋𝑓

𝐱𝑡|𝑡= 𝐱(𝑡) Key MPC design choices!



Basic formulation

Notation:

• 𝐱𝑡+𝑘|𝑡 is the state vector at time 𝑡 + 𝑘 predicted at time 𝑡 (via the 
system’s dynamics)

• 𝐮𝑡+𝑘|𝑡 is the input 𝐮 at time 𝑡 + 𝑘 computed at time 𝑡

Note: 𝐱3|1≠ 𝐱3|2
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Basic formulation

• Let 𝑈𝑡→𝑡+𝑁|𝑡
∗ ≔ {𝐮𝑡|𝑡

∗ , 𝐮𝑡+1|𝑡
∗ , … , 𝐮𝑡+𝑁−1|𝑡

∗ } be the optimal solution, 
then 

𝐮 𝑡 = 𝐮𝑡|𝑡
∗ (𝐱(𝑡))

• The optimization problem is then repeated at time 𝑡 + 1, based on 
the new state 𝐱𝑡+1|𝑡+1= 𝐱(𝑡 + 1)

• Define 𝜋𝑡 𝐱 𝑡 ≔ 𝐮𝑡|𝑡
∗ (𝐱(𝑡))

• Then the closed-loop system evolves as
𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝜋𝑡 𝐱 𝑡 ≔ 𝐟cl(𝐱 𝑡 , 𝑡)

• Central question: characterize the behavior of closed-loop system
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Simplifying the notation

• Note that the setup is time-invariant, hence, to simplify the notation, we 
can let 𝑡 = 0 in the finite-time optimal control problem, namely 

• Denote 𝑈0
∗ 𝐱 𝑡 = {𝐮0

∗ , … , 𝐮𝑁−1
∗ }
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𝐽0
∗ 𝐱 𝑡 = min

𝐮0,…,𝐮𝑁−1
𝑝 𝐱𝑁 +෍

𝑘=0

𝑁−1

𝑐(𝐱𝑘 , 𝐮𝑘)

subject to 𝐱𝑘+1= 𝐴𝐱𝑘 + 𝐵𝐮𝑘 , 𝑘 = 0,… ,𝑁 − 1

𝐱𝑘∈ 𝑋, 𝐮𝑘∈ 𝑈, 𝑘 = 0,… ,𝑁 − 1

𝐱𝑁∈ 𝑋𝑓

𝐱0= 𝐱(𝑡)



Simplifying the notation

• With new notation,
𝐮 𝑡 = 𝐮0

∗ 𝐱 𝑡 = 𝜋(𝐱(𝑡))

and closed-loop system becomes 
𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝜋 𝐱 𝑡 ≔ 𝐟cl(𝐱 𝑡 )
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Typical cost functions

• 2-norm:

𝑝 𝐱𝑁 = 𝐱𝑁
T𝑃𝐱𝑁 , 𝑐 𝐱𝑘 , 𝐮𝑘 = 𝐱𝑘

T𝑄𝐱𝑘+ 𝐮𝑘
T𝑅𝐮𝑘 , 𝑃 ≽ 0, 𝑄 ≽ 0, 𝑅 ≻ 0

• 1-norm or ∞-norm:

𝑝 𝐱𝑁 = 𝑃𝐱𝑁 𝑝 𝑐 𝐱𝑘 , 𝐮𝑘 = 𝑄𝐱𝑘 𝑝+ 𝑅𝐮𝑘 𝑝, 𝑝 = 1 or ∞

where 𝑃, 𝑄, 𝑅 are full column ranks
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Online model predictive control 

repeat
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measure the state 𝐱(𝑡) at time instant 𝑡

obtain 𝑈0
∗ 𝐱 𝑡 by solving finite-time optimal control problem

if 𝑈0
∗ 𝐱 𝑡 = ∅ then ‘problem infeasible’ stop

apply the first element 𝐮0
∗ of 𝑈0

∗ 𝐱 𝑡 to the system

wait for the new sampling time 𝑡 + 1



Main implementation issues

1. The controller may lead us into a situation where after a few steps 
the finite-time optimal control problem is infeasible → persistent 
feasibility issue 

2. Even if the feasibility problem does not occur, the generated 
control inputs may not lead to trajectories that converge to the 
origin (i.e., closed-loop system is unstable) → stability issue 

Key question: how do we guarantee that such a “short- sighted” 
strategy leads to effective long-term behavior?
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Analysis approaches

1. Analyze closed-loop behavior directly → generally very difficult

2. Derive conditions on terminal function 𝑝, and terminal constraint 
set 𝑋𝑓 so that persistent feasibility and closed-loop stability are 
guaranteed
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Addressing persistent feasibility

Goal: design MPC controller so that feasibility for all future times is 
guaranteed

Approach: leverage tools from invariant set theory
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Set of feasible initial states 

• Set of feasible initial states 

𝑋0 ≔ 𝐱0 ∈ 𝑋 ∃ 𝐮0, … , 𝐮𝑁−1 such that 𝐱𝑘 ∈ 𝑋, 𝐮𝑘 ∈ 𝑈, 𝑘 = 0,… ,𝑁 − 1,
𝐱𝑁 ∈ 𝑋𝑓 where 𝐱𝑘+1 = 𝐴𝐱𝑘 + 𝐵𝐮𝑘 , 𝑘 = 0,… ,𝑁 − 1}

• A control input can be found only if 𝐱(0) ∈ 𝑋0!
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Controllable sets

• For the autonomous system 𝐱 𝑡 + 1 = 𝜙(𝐱(𝑡)) with constraints 
𝐱 𝑡 ∈ 𝑋, 𝐮 𝑡 ∈ 𝑈, the one-step controllable set to set 𝑆 is defined as

Pre 𝑆 ≔ {𝐱 ∈ ℝ𝑛 ∶ 𝜙 𝐱 ∈ 𝑆}

• For the system 𝐱 𝑡 + 1 = 𝜙 𝐱 𝑡 , 𝐮 𝑡 with constraints 𝐱 𝑡 ∈ 𝑋,
𝐮 𝑡 ∈ 𝑈, the one-step controllable set to set 𝑆 is defined as

Pre 𝑆 ≔ {𝐱 ∈ ℝ𝑛 ∶ ∃𝐮 ∈ 𝑈 such that 𝜙 𝐱, 𝐮 ∈ 𝑆}
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Control invariant sets

• A set 𝐶 ⊆ 𝑋 is said to be a control invariant set for the system 𝐱 𝑡 + 1 =
𝜙 𝐱 𝑡 , 𝐮 𝑡 with constraints 𝐱 𝑡 ∈ 𝑋, 𝐮 𝑡 ∈ 𝑈, if:

𝐱 𝑡 ∈ 𝐶 ⇒ ∃𝐮 ∈ 𝑈 such that 𝜙 𝐱 𝑡 , 𝐮 𝑡 ∈ 𝐶, for all 𝑡

• The set 𝐶∞ ⊆ 𝑋 is said to be the maximal control invariant set for the system 
𝐱 𝑡 + 1 = 𝜙 𝐱 𝑡 , 𝐮 𝑡 with constraints 𝐱 𝑡 ∈ 𝑋, 𝐮 𝑡 ∈ 𝑈, if it is control 
invariant and contains all control invariant sets contained in 𝑋

• For autonomous systems: a set 𝐴 ⊆ 𝑋 is said to be a positive invariant set for 
the system 𝐱 𝑡 + 1 = 𝜙 𝐱 𝑡 if 𝐱 𝑡 ∈ 𝐴 ⇒ 𝜙 𝐱 𝑡 ∈ 𝐴; the maximal 
positive invariant set contains all other positive invariant sets.

• These sets can be computed by using the MPT toolbox https://www.mpt3.org/
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https://www.mpt3.org/


Persistent feasibility lemma

• Define “truncated” feasibility set:
𝑋1 ≔ 𝐱1 ∈ 𝑋 ∃ 𝐮1, … , 𝐮𝑁−1 such that 𝐱𝑘 ∈ 𝑋, 𝐮𝑘 ∈ 𝑈, 𝑘 = 1,… ,𝑁 − 1,

𝐱𝑁 ∈ 𝑋𝑓 where 𝐱𝑘+1 = 𝐴𝐱𝑘 + 𝐵𝐮𝑘 , 𝑘 = 1,… ,𝑁 − 1}

• Feasibility lemma: if set 𝑋1 is a control invariant set for system:

𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝐮 𝑡 , 𝐱 𝑡 ∈ 𝑋, 𝐮 𝑡 ∈ 𝑈, 𝑡 ≥ 0

then the MPC law is persistently feasible
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Persistent feasibility lemma

• Proof:

1. Pre 𝑋1 = {𝐱 ∈ ℝ𝑛 ∶ ∃𝐮 ∈ 𝑈 such that 𝐴𝐱 + 𝐵𝐮 ∈ 𝑋1}

2. Since 𝑋1 is control invariant 
∀𝐱 ∈ 𝑋1 ∃𝐮 ∈ 𝑈 such that 𝐴𝐱 + 𝐵𝐮 ∈ 𝑋1

3. Thus 𝑋1 ⊆ Pre 𝑋1 ∩ 𝑋

4. One can write

𝑋0 = 𝐱0 ∈ 𝑋 ∃𝐮0 ∈ 𝑈 such that 𝐴𝐱0 + 𝐵𝐮 ∈ 𝑋1} = Pre 𝑋1 ∩ 𝑋

5. Thus, 𝑋1 ⊆𝑋0

5/9/21 AA 203 | Lecture 13 23



Persistent feasibility lemma

• Proof:

6. Pick some 𝐱0 ∈ 𝑋0. Let 𝑈0
∗ be the solution to the finite-time 

optimization problem, and 𝐮0
∗ be the first control. Let

𝐱1 = 𝐴𝐱0 + 𝐵𝐮0
∗

7. Since 𝑈0
∗ is clearly feasible, one has 𝐱1 ∈ 𝑋1. Since 𝑋1 ⊆𝑋0, one 

has 
𝐱1 ∈ 𝑋0

hence the next optimization problem is feasible!
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Practical significance 

• For 𝑁 = 1, we can set 𝑋𝑓 = 𝑋1. If we choose the terminal set to be 
control invariant, then MPC will be persistently feasible independent
of chosen control objectives and parameters

• Designer can choose the parameters to affect performance (e.g., 
stability)

• How to extend this result to 𝑁 > 1?
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Persistent feasibility theorem

• Feasibility theorem: if set 𝑋𝑓 is a control invariant set for system:

𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝐮 𝑡 , 𝐱 𝑡 ∈ 𝑋, 𝐮 𝑡 ∈ 𝑈, 𝑡 ≥ 0

then the MPC law is persistently feasible
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Persistent feasibility theorem

• Proof

1. Define “truncated” feasibility set at step 𝑁 − 1:
𝑋𝑁−1 ≔ 𝐱𝑁−1 ∈ 𝑋 ∃ 𝐮𝑁−1 such that 𝐱𝑁−1 ∈ 𝑋, 𝐮𝑁−1 ∈ 𝑈,

𝐱𝑁∈ 𝑋𝑓 where 𝐱𝑁 = 𝐴𝐱𝑁−1 + 𝐵𝐮𝑁−1}

2. Due to the terminal constraint
𝐴𝐱𝑁−1 + 𝐵𝐮𝑁−1 = 𝐱𝑁 ∈ 𝑋𝑓
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Persistent feasibility theorem

• Proof

3. Since 𝑋𝑓 is a control invariant set, there exists a 𝐮 ∈ 𝑈
such that 

𝐱+ = 𝐴𝐱𝑁 + 𝐵𝐮 ∈ 𝑋𝑓

4. The above is indeed the requirement to belong to set 𝑋𝑁−1

5. Thus, 𝐴𝐱𝑁−1 + 𝐵𝐮𝑁−1 = 𝐱𝑁 ∈ 𝑋𝑁−1

6. We have just proved that 𝑋𝑁−1 is control invariant 

7. Repeating this argument, one can recursively show that 
𝑋𝑁−2, 𝑋𝑁−3, ⋯ , 𝑋1 are control  invariant, and the 
persistent feasibility lemma then applies
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Practical aspects of persistent feasibility

• The terminal set 𝑋𝑓 is introduced artificially for the sole purpose of 
leading to a sufficient condition for persistent feasibility

• We want it to be large so that it does not compromise closed-loop 
performance

• Though it is simplest to choose 𝑋𝑓 = {0}, this is generally undesirable 

• We’ll discuss better choices in the next lecture
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Next time

• Stability of MPC

• Explicit MPC

• Practical considerations
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