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Dynamic Programming

Previous lectures: focus on discrete-time setting

This lecture: focus on continuous-time setting

* dynamic programming approach leads to HJB / HJI
equation: non-linear partial differential equation

» HJB application: solution to continuous LQR problem

* HJl application: reachability analysis

Readings: lecture notes and references therein, in
particular:

Bansal S., Chen M., Herbert S., Tomlin C. J., “Hamilton-Jacobi reachability: A brief overview and
recent advances,” 2017.

Chen M., Tomlin C. J., “Hamilton-Jacobi reachability: Some recent theoretical advances and
applicationsin unmanned airspace management,” 2018.
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https://arxiv.org/abs/1709.07523
https://sfumars.com/wp-content/papers/annurev-control-060117-104941.pdf

e
Continuous-time model

Last time:
* Model: Xy.1 = f(Xg, uy, k),
¢ COSt:](XO) = hN(XN) + ZIIX;(:JL g(xkl Ug, k)

This time:
* Model: x(t) = f(x(t),u(t),t),
+ Cost:J(x(ty)) = h(x(tr), tr) + [} gx(2), u(®),7) dr

where t, and tr are fixed

5/4/2022 AA 203 | Lecture 12 4



Two-person, zero-sum differential games

What if there is another player (e.g., nature) that interferes
with the fulfillment of our objective?

Two-person differential game:
* Model: x(t) = f(x(t),u(t), d(t)) (joint system dynamics),

+ Cost:/(x(to)) = h(x(0) + [, g(x(),u(®), d(x)) dr

* Player 1, with control u(7), will attempt to maximize J, while
Player 2, with control d(t), will aim to minimize ], subject to
the joint system dynamics

* x(7) is the joint system state
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Information pattern

 To fully specify the game, we need to specify the information pattern

* “Open-loop” strategies
* Player 1, with control u(t), declares entire plan
* Player 2, with control d(7), responds optimally
» Conservative, unrealistic, but computationally cheap

* “Nonanticipative” strategies

» Other agent acts based on state and control trajectory up to current time
* Notation: d(-) = I'[u](-)
 Disturbance still has the advantage: it gets to (instantaneously) react to the control!
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Hamilton-Jacobi-lIsaacs (HJI) equation

Key idea: apply principle of optimality

The “truncated” problem is

0
? max U g(x(r),u(r), d(r))dr + h(X(O))]
' t

J(x(6),£) = min ma

]
[[u]

Worst-case disturbance - aims to thwart the controller
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HJI equation

* Dynamic programming principle:

t+At
J(x(t),t) = max U g(x(r) u(7), d(r))dr + J(x(t + At), t + At)

Fu )u()

« Approximate integral and Taylor expand J(x(t + At), t + At)
» Derive Hamilton-Jacobi-lsaacs partial differential equation (HJI PDE)
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HJI equation

» Approximations for small At:

t+At
J(x(t),t) = Fr[rlll%?) rg(a)x Ut g(x(r), u(7), d(r))dt + J(x(t + At), t + At)
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HJI equation

» Approximations for small At:

t+At
J(x(t),t) = Fr[rlll%?) rg(a)x Ut g(x(r), u(7), d(r))dt + J(x(t + At), t + At)

g(x(®),u(t),d(t))At
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HJI equation

* Approximations for small At: x(t) + Atf (x,u,d)
t+At —

J(x(t),t) = Fr[rlll%?) rg(a)x U g(x(r), u(7), d(r))dt + J(x(t + At), t + At)

t

g(x(®),u(t),d(t))At
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HJI equation

* Approximations for small At: x(t) + Atf (x,u,d)
t+At —

J(x(t),t) = Fr[rll&?) rE(a)x [ j g(x(r), u(7), d(r))dr + J(x(t + At), t + At)

t \ Y ]

g(x(v), u(tl:), d(t))At J(x(b),t) + % - Atf(x(8),u(e),d(®)) + %At
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HJI equation

* Approximations for small At: x(t) + Atf (x,u,d)
t+At —
J(x(t),t) = Fr[rll&?) r&(a)x U g(x(r), u(7), d(T))dT +‘](X(t + At), t + At)']
t Y

' 9, 0
g(x(®),u(t),d(t))At J(x(b),t) + a—i - Atf(x(8),u(e),d(®)) + a_ltAt

* Omit t dependence...

B . af aJ
J(x,t) = max min [g(x, u d)At +/(x,t) + e Atf(x,u,d) + EM‘

\ * Assume (instantaneously) constant u and d = optimization over vectors, not functions!
e Order of max and min reverse (proof given in references)

* J(x,t) does notdepend onuord

aJ aJ
ox ot ]

J(x,t) =J(x,t) + ml?xmdin [g(x, u d)At + —-Atf(x,u,d) + = At
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HJI equation

* Approximations for small At: x(t) + Atf (x,u,d)
t+At —
J(x(t),t) = Fr[rll&?) r&(a)x U g(x(r), u(7), d(T))dT +‘](X(t + At), t + At)']
t Y

' 9, 0
g(x(®),u(t),d(t))At J(x(b),t) + a—i - Atf(x(8),u(e),d(®)) + a_ltAt

 Omitt dependence... o

_ : af
J(x,t) = max min [g(x, u d)At +/(x,t) + e Atf(x,u,d) + EM‘

\ * Assume (instantaneously) constant u and d = optimization over vectors, not functions!
e Order of max and min reverse (proof given in references)

* J(x,t) does notdepend onuord
}@&t—}=}@&9—+m§1xmdin [g(x, u, d)At + % -Atf(x,u,d) + %At]
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HJI equation

* Approximations for small At: x(t) + Atf (x,u,d)
t+At —
J(x(t),t) = Fr[rll&?) r&(a)x U g(x(r), u(7), d(T))dT +‘](X(t + At), t + At)']
t Y

' 9, 0
g(x(®),u(t),d(t))At J(x(b),t) + a—i - Atf(x(8),u(e),d(®)) + a_ltAt

* Omit t dependence...

B . af aJ
J(x,t) = max min [g(x, u d)At +/(x,t) + e Atf(x,u,d) + EM‘

\ * Assume (instantaneously) constant u and d = optimization over vectors, not functions!
e Order of max and min reverse (proof given in references)

* J(x,t) does notdepend onuord

dJ . dJ
0= EA% + max min [g(x, u, d)At + % Atf (x,u, d)]
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HJI equation

* Approximations for small At: x(t) + Atf (x,u,d)
t+At —
J(x(t),t) = Fr[rll&?) r&(a)x U g(x(r), u(7), d(T))dT +‘](X(t + At), t + At)']
t Y

' 9, 0
g(x(®),u(t),d(t))At J(x(b),t) + a—i - Atf(x(8),u(e),d(®)) + a_ltAt

 Omitt dependence... o

_ : af
J(x,t) = max min [g(x, u d)At +/(x,t) + e Atf(x,u,d) + EM‘

\ * Assume (instantaneously) constant u and d = optimization over vectors, not functions!
e Order of max and min reverse (proof given in references)

* J(x,t) does notdepend onuord
aJ

. dJ
0= 3 + max min [g(x,u, d) +&-f(x,u, d)
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HJI equation
The end result is the Hamilton-Jacobi-Isaacs (HJI) equation
d/
O—a—+maxm1n g(xud)+ f(xud)
with boundary condition \,

The “Hamiltonian”

Jx,0) = h(x)

* Given the cost-to-go function, the optimal control for
Player 1is

u(x,t) = argmaxmlng(x u,d) + f(x u,d)
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-
HJB equation

In case there is no disturbance, end result is the
Hamilton-Jacobi-Bellman (HJB) equation

Without a disturbance, u is usually
selected to minimize cost

a d]
0= E_I_ min gx,u,t) +&-f(x,u,t)

with boundary condition | J(x(tf), tr) = h(X(tf), tf)

* Given the cost-to-go function, the optimal control is

0
u*(x,t) =argming(x,u,t) + a—i - f(x,u,t)
u
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Continuous-time LQR

Continuous-time LQR: select control inputs to minimize

T0) = x(tn)THx(tr) + 5 [ x(OTQUOX() +u(t) Ritu(o)d

subject to the dynamics

Assumptions:

cH=H"> 0, 0t) =0@®)" =0,R(t) =R(®)" > 0
* to and tr specitied

* X(t) and u(t) unconstrained
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Continuous-time LQR

1
- As before, value function takes the form: J(x(t),t) = §X(t)TV(t)X(t)
* The HJB equation reduces to an ODE (the Riccati equation):

V() = Q(t) = V()BHRE) BTV () + V(1) A(t) + A1) TV (1)

* Riccati equation is integrated backwards, with boundary
condition V(t;)=H
Once we find K (t), the control policy is

u (t) = —R(t)"'B)* V(t)x(t)

Analogously to the discrete case, under some additional
assumptions, K(t) — constant in the infinite horizon setting

See Notes §3.3 for more details
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https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf

Applications of differential games

* Pursuit-evasion games

* homicidal chauffeur problem
 the lady in the lake

* Reachability analysis

* And many more (e.g., in economics)
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Applications of differential games

* Pursuit-evasion games

* homicidal chauffeur problem
 the lady in the lake

* Reachability analysis

* And many more (e.g., in economics)
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Reachability analysis: avoidance

Reachable set Ur}safe region

Inputs: Control policy

* System model E—)

* Unsaferegion: Backward reachable set
e.g., obstacle (States leading to danger)

5/4/2022 AA 203 | Lecture 12 23



Reachability analysis: goal reaching

Backward reachable set
Target set
/

Control policy

Inputs: >

* System model Backward reachable set
* Goal region (States leading to goal)
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f

Reachability analysis &«

(8

o A(t) ={x:3l'[u](:),vu(-),x = f(x,u,d),x(t) =X,x(0) € T'}

Model of robot Backward reachable set (states leading to danger)

Unsafe region ‘

Control policy

Model of robot Control policy

Goal region ‘

Backward reachable set (states leading to goal)

o R(t) ={x:VI[u](-),Tu(),x = f(x,u,d),x(t) =X,x(0) € T}
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Reachability analysis @

States at time t satisfying the following:

Model of robot
Unsafe region

Model of robot
Goal region

5/4/2022

)

&

there exists a disturbance such that for all
control, system enters target setatt = 0

-

-

o A(t) ={x:3T[u](:),Vu(-),x = f(x,u,d),x(t) =x,x(0) € 7'}

Backward reachable set (states leading to danger)

Control policy

Control policy

Backward reachable set (states leading to goal)

o R(t) ={x:VvIl[u](),Ju(),x=f(xud),x(t) =xx(0) € T}

States at time ¢ satisfying the following;:

for all disturbances, there exists a control such that system

enters targetsetatt =0
AA 203 | Lecture 12
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From HIJI to reachability analysis

» Computation of the BRS entails solving a
differential game where the outcome is
Boolean (the system either reaches the
target set or not)

* One can “encode” this Boolean outcome in
the HJI PDE by (1) removing the running
cost and (2) picking the final cost to denote
set membership

* Value function at each state is the worst case
terminal value you can reach
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From HIJI to reachability analysis

* Hamilton-Jacobi Equation
c0=24 max min s ud) +3 fxud), J(x,0) = h®)

* Remove running cost

e 0= %+ mé;lxmuin [%-f(x,u,d)], J(x,0) = h(x)

* Pick final cost such that

XET (9 %0 gl ol
« Example: IfT = {x:\/x,? +y2 < R} C R3, 5 \9 6,
we can pick S

R

h(x’r" Vr 97‘) = xrz' + yr? —R
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Pick Final Cost

* Why is this correct?
* Final state x(0) isin T if and only if h(x(0)) < 0

» To avoid T, control should maximize h(x(0))
* Worst-case disturbance would minimize

. ](X, t) = rl_l"HlI]l mlle h(X(O))

Xg (lé))

Xp ()

](Xb (0)1 O) <0
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Reaching vs. Avoiding

,
* Avoiding danger (A0 B * Reaching a goal

* BRS definition * BRS definition
A(t) = {x:3Al'u](), Vu(-),x = f(x,u,d),x(t) = X,x(0) € T} R(t) = {x:VI'[u](-),3u(),x = f(x,u,d),x(t) =X,x(0) € T}

* Value function * Value function
J(x,t) = m1n max h(x(O)) J(x,t) = max m1n h(x(O))

 HJI . * HJI .

8] 8] il aJ B

at+maxm&n[<a > f(xud)]—O a+m1nm&ax[<a fx,u,d)|=0
* Optimal control * Optimal control

AN or\
u” —argmaxm&n< > f(x,u,d) u” —argmlnm(?x( ) f(x,u,d)
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“Sets” vs. “Tubes”

» Backward reachable set (BRS)
* Only final time matters

* Initial states that pass
through target are not
necessarily in BRS

* Not ideal for safety

J(x4(0),0) >0  *o(¥)
J(x,(0),0) <0
J(x5(0),0) >0

Xp (t)

5/4/2022

» Backward reachable tube (BRT)
» Keep track of entire time duration

* Initial states that pass through
target are in BRT

» Used to make safety guarantees
Xg(g())

X (0)

. J(x,4(0),0) >0
@éeisgi) J(x,(0),0) <0
J(xp(0),0) <0

AA 203 | Lecture 12
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“Sets” vs. “Tubes”

» Backward reachable set (BRS) » Backward reachable tube (BRT)

Xg(g())
x,(0)
J(x4(0),0) > 0 Xq () T J(x4(0),0) > 0
J(x5(0),0) <0 G, J(x,(0),0) <0
J(x5(0),0) >0 J(x5(0),0) <0
Xp(t)
Value function definition Value function definition
J(x,£) = minmax h(x(0)) J(x,t) = minmax min h(x(7))
Value function obtained from Value function obtained from
T
%_I_ max mdln [(2]) f(x,u, d)‘ _ %+ min {maxm&n l(0]> f(x,u, d)] }
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Computational aspects

« Computational complexity (traditional PDE solver)
* J(x,t) iscomputed on an (n + 1)-dimensional grid
* n < 5isreasonable; larger requires some compromises

* Dimensionality reduction methods (decoupling)
sometimes help

* Alternatives/related approaches
« Sacrifice global optimality
* Give up guarantees

* NN-based PDE solvers
« Sampling-based methods
* Reinforcement learning
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Example: pursuit/evasion with two identical vehicles

« With evader (a), pursuer (b) dynamics

Tq vcos(f,) Ty v cos(6y)
y:a = | Sin(ea) ; gb = |V Sin(eb> y  Ug,Up € [_umam umax]
b

o, Ug 0, U

we consider the relative systemin (a)’s frame

T —v + v cos(x3) + UgTo
To| = vsin(xrsg) — ug Ty

I3 Up — Ug

Vi, X
Courtesy of X,

lan Mitchell, : v

“ToolboxLS”, 0

Section 2.6.1 evader (player 1) pursuer (player Il)
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https://www.cs.ubc.ca/~mitchell/ToolboxLS/toolboxLS-1.1.pdf

Next time

 Model Predictive Control
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