
AA203
Optimal and Learning-based Control

Course overview; control, stability, performance metrics



Course mechanics

Teaching team:

• Instructor: Ed Schmerling (OH: M 1pm-2pm; Project OH: W 4pm-5pm)

• CAs: Spencer M. Richards and Devansh Jalota (OH: TBD)

Logistics:

• Lecture slides, homework assignments: http://asl.stanford.edu/aa203/

• Lecture recordings, announcements: https://canvas.stanford.edu/courses/151934

• Discussion forum: https://edstem.org/us/courses/21368

• Homework submission: https://www.gradescope.com/courses/380844

• For urgent questions: aa203-spr2122-staff@lists.stanford.edu
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Course requirements 

• Homework: there will be a total of four graded problem sets
• Mixture of theory and implementation (Python)

• Final project: details on the course website
• Open-ended, groups of (up to) 3 people

• Grading:
• Homework: 60% (15% per HW)

• Final project: 40% (5% proposal, 10% midterm report, 25% final report)

• Ed Discussion: bonus up to 5%, 0.5% per endorsed post

• Late day policy: 6 total, maximum of 3 on any given assignment
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Course material

• Course notes: an evolving set of partial course notes is available at 
https://github.com/StanfordASL/AA203-Notes

• Recitations: Friday lecture sessions (F 9:45-11:15AM, weeks 1-4) led by 
the CAs covering relevant tools (computational and mathematical)

• Textbooks that may be valuable for context or further reference are 
listed in the syllabus 
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Prerequisites 

• Familiarity with a standard undergraduate engineering mathematics 
curriculum (e.g., CME100-106; vector calculus, ordinary differential equations, 
introductory probability theory)

• Strong familiarity with linear algebra (e.g., EE263 or CME200)

• Nice-to-have: a course in optimization (e.g., EE364A, CME307, CS269O, AA222)

• To get the most out of this class, at least one of:

• A course in machine learning (e.g., CS229, CS230, CS231N)
or

• A course in control (e.g., ENGR105, ENGR205, AA212)

Homework 0 (ungraded) is out now to help you gauge your preparedness.
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Caveats

• Arguably, this class aims for “breadth over depth”
• Past students have found self-study of the details necessary

• The subject matter is a moving target
• Past students have lamented bugs in new HW problems

• This class is quite challenging/demanding
• Past students have noted that project progress is difficult to pace with HWs

• Projects focused on learning-based control may require some self-study 
before the relevant lectures (talk to the teaching staff for pointers)
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Today’s Outline

1. Context and course goals

2. State-space models

3. Problem formulation for optimal control 
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Feedback control
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Feedback control
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Feedback control
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Reinforcement learning
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Feedback control desiderata
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• Stability: multiple notions; loosely system output is “under control”

• Tracking: the output should track the reference “as closely as possible”

• Disturbance rejection: the output should be “as insensitive as possible” 
to disturbances/noise

• Robustness: controller should still perform well up to “some degree of” 
model misspecification



What’s missing?
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• Performance: mathematical quantification of the above desiderata, 
and providing a control that best realizes the tradeoffs between them

• Planning: providing an appropriate reference trajectory for the 
controller to track (particularly nontrivial, e.g., when controlling 
mobile robots)

• Learning: a controller that adapts to an initially unknown, or possibly 
time-varying system



Course overview
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Course goals

To learn the theoretical and implementation aspects of main 
techniques in optimal and learning-based control
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Course goals

To learn the theoretical and implementation aspects of main 
techniques in optimal and learning-based control

To provide a unified framework and context for understanding and
relating these techniques to each other
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Today’s Outline

1. Context and course goals

2. State-space models

3. Problem formulation for optimal control 
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Mathematical model

Where

• are the state variables

• are the control inputs
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Mathematical model

• a history of control input values during the interval 𝑡0, 𝑡𝑓 is called a 
control history

• a history of state values during the interval 𝑡0, 𝑡𝑓 is called a state 
trajectory
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Illustrative example
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• Double integrator: point mass under 
controlled acceleration



Illustrative example
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Example system
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Example system
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Example system
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controlled acceleration



Example controller
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Example controller
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Example controller
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Analyzing stability
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Analyzing stability
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Analyzing stability
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Analyzing stability

3/28/2022 AA 203 | Lecture 1 34

→ exponential growth (> 0),
exponential decay (< 0),
or constant (=0)

→ sinusoidal oscillation

at least one eigenvalue has positive 
real part; system blows up

or

system oscillatessystem drifts off

system exponentially 
converges to 0

system comes to a 
stop somewhere



Mathematical definitions of stability
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Many notions:

• Asymptotic stability
• Global: all trajectories converge to the equilibrium
• Local: all trajectories starting near the equilibrium converge to the 

equilibrium

• Exponential stability
• Same as asymptotic stability, but with exponential rate

• Marginal stability

• Bounded-input, bounded-output stability

• Lyapunov stability



Quantifying performance
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Quantifying performance
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Quantifying performance
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Today’s Outline

1. Context and course goals

2. State-space models

3. Problem formulation for optimal control 
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Problem formulation
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• Mathematical description of the system to be controlled

• Statement of the constraints

• Specification of a performance criterion



Performance measure

• ℎ (terminal cost) and 𝑔 (stagewise/running cost) are scalar functions

• 𝑡𝑓 may be specified or free
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Constraints

• initial and final conditions (boundary conditions)

• constraints on state trajectories

• control authority

• and many more...
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Constraints

• A control history which satisfies the control constraints during the 
entire time interval 𝑡0, 𝑡𝑓 is called an admissible control 

• A state trajectory which satisfies the state variable constraints 
during the entire time interval 𝑡0, 𝑡𝑓 is called an admissible 
trajectory 
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Optimal control problem

Find an admissible control u∗ which causes the system

to follow an admissible trajectory x∗ that minimizes the performance 
measure 
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Optimal control problem

Comments:

• minimizer (𝐱∗, 𝐮∗) called optimal trajectory-control pair

• existence: in general, not guaranteed

• uniqueness: optimal control may not be unique

• minimality: we are seeking a global minimum

• for maximization, we rewrite the problem as min
u

−𝐽
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Form of optimal control

1. if u∗ = 𝜋(𝐱 𝑡 , 𝑡), then 𝜋 is called optimal control law or optimal 
policy (closed-loop)
• important example: 𝜋 𝐱 𝑡 , 𝑡 = 𝐹 𝐱 𝑡

2. if u∗ = 𝑒(𝐱 𝑡0 , 𝑡), then the optimal control is open-loop
• optimal only for a particular initial state value
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Discrete-time formulation

• System: 𝐱𝑘+1 = 𝐟 𝐱𝑘 , 𝐮𝑘 , 𝑘 , 𝑘 = 0,… ,𝑁 − 1

• Control constraints: 𝐮𝑘∈ 𝑈

• Cost: 

𝐽(𝐱0; 𝒖0, … , 𝒖𝑁−1 ) = ℎ𝑁 𝐱𝑁 + 

𝑘=0

𝑁−1

𝑔𝑘 𝐱𝑘 , 𝐮𝑘 , 𝑘

• Decision-making problem:

𝐽∗(𝐱0) = min
𝐮𝑘∈𝑈,𝑘=0,…,𝑁−1

𝐽(𝐱0; 𝒖0, … , 𝒖𝑁−1 )
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Extension to stochastic setting will be covered later in the course
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Next class
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Introduction to learning;

System identification and adaptive control


