
Spring 2022

Stanford
AA 203: Optimal and Learning-based Control

Homework #4, due June 1 by 11:59 pm

Learning goals for this problem set:

Problem 1: To analyze the strengths and weaknesses of some fundamental reinforcement learning
algorithms.

Problem 2: To reason through some concepts involved in implementing a neural-network-based
actor-critic algorithm, to give insight into modern deep reinforcement learning practice.

Problem 1: Learning LQR

In this problem, you will study methods for learning an optimal policy for an unknown discrete-
time dynamical system with an unknown cost function. All of the methods will use some form of
episodic online reinforcement learning. That is, each method requires us to interact with the system,
observe state transitions and incurred costs, and update a parametric policy with each observation.

Specifically, at each time step t of episode i, we use the current policy to apply a control input u
(i)
t

that transitions the state from x
(i)
t to x

(i)
t+1, and we incur an observed cost of c

(i)
t . Depending on

the method, the policy is updated at each time step with the data (x
(i)
t , u

(i)
t , c

(i)
t , x

(i)
t+1), or at the

end of the episode with all of the associated data {(x(i)t , u
(i)
t , c

(i)
t , x

(i)
t+1)}

T−1
t=0 , where T is the number

of time steps in each episode.

Our goal is to learn a policy that minimizes the expected cost E[
∑T−1

t=0 γtct] with discount factor
γ ∈ [0, 1), where the expectation is taken over the initial system state, policy, and state transitions.

For this particular problem, the true underlying dynamics are linear time-invariant with the form

xt+1 = Axt +But,

with state xt ∈ Rn and control input ut ∈ Rm. Moreover, E[x0] = 0 and Var[x0] = Σx. The true
underlying stage cost function is

c(x, u) = xTQx+ uTRu,

with cost matrices Q ≻ 0 and R ≻ 0. To the learning agent, the matrices A, B, Q, and R are all a
priori unknown.

We will investigate three approaches to learning an optimal policy: a model-based method, a model-
free value-based method, and a model-free policy-based method. We provide high-level descriptions
for each method, some references, and results below.

Model-based recursive least-squares: The first approach is a natural formulation of model
identification adaptive control (MIAC). It consists of three steps performed at each time
step to iteratively update estimates (Â, B̂, Q̂, R̂) and compute a corresponding linear policy

u = Kx with parameter K ∈ Rm×n. Given the current state x
(i)
t , we:

1. Apply the control input u
(i)
t = Kx

(i)
t and observe the incurred cost c

(i)
t and next

state x
(i)
t+1.

1



2. Fit (Â, B̂) using recursive least-squares such that

(Â, B̂)← argmin
A,B

i−1∑
j=1

T−1∑
τ=0

∥Ax(j)τ +Bu(j)τ −x
(j)
τ+1∥

2
2+

t∑
τ=0

∥Ax(i)τ +Bu(i)τ −x
(i)
τ+1∥

2
2+η(∥A∥2F+∥B∥2F),

where η > 0 is a regularization constant and ∥·∥F denotes the Frobenius norm.

3. Fit (Q̂, R̂) using recursive least-squares such that

(Q̂, R̂)← argmin
Q,R

(
i−1∑
j=1

T−1∑
τ=0

∥(x(j)τ )TQx(j)τ + (u(j)τ )TRu(j)τ − c(j)τ ∥22

+

t∑
τ=0

∥(x(i)τ )TQx(i)τ + (u(i)τ )TRu(i)τ − c(i)τ ∥22 + η(∥Q∥2F + ∥R∥2F)

).

4. Solve the discounted discrete algebraic Ricatti equation

P = Q̂+ γÂTPÂ− γ2ÂTPB̂(R̂+ γB̂TPB̂)−1B̂TPÂ

for P , and update the policy K ← −γ(R̂+ γB̂TPB̂)−1B̂TPÂ.

Model-free policy iteration [BYB94]: The second approach relies on the fact that for a linear
time-invariant system with a quadratic cost function, we can write the Q function for a given
policy u = Kx in the form

QK(x, u) =

(
x
u

)T

HK

(
x
u

)
=

(
x
u

)T [
HK,11 HK,12

HT
K,12 HK,22

](
x
u

)
,

where the Hessian HK ≻ 0 is an implicit function of the current gain K. This approach
proceeds by alternating two steps of generalized policy iteration:

1. Policy evaluation: During episode i, apply the policy u
(i)
t = Kx

(i)
t + ε

(i)
t , where ε

(i)
t is

some zero-mean i.i.d. noise meant to excite the system, and observe (c
(i)
t , x

(i)
t+1). At the

end of each time step t, fit ĤK for the current policy K using recursive least-squares to
minimize the temporal difference error such that

ĤK ← argmin
HK

t∑
τ=0

∥QK(x(i)τ , u(i)τ )− c(i)τ − γQK(x
(i)
τ+1,Kx

(i)
τ+1)∥

2
2 + η∥HK∥2F

2. Policy improvement: At the end of episode i, improve the policy via the update

K ← argmin
K

QK(x,Kx) = −H−1
K,22H

T
K,12.

Model-free policy gradient [SB18, §13.3]: The third approach uses Monte Carlo policy gra-
dients via the REINFORCE algorithm to train a Gaussian policy distribution πK(u | x) :=
N (Kx,Σ), where K ∈ Rm×n is the gain parameter and Σ ≻ 0 is fixed. This approach
proceeds in two steps:

1. Policy rollout: During episode i, apply the stochastic policy πK(u | x) and observe the

data {(x(i)t , u
(i)
t , c

(i)
t , x

(i)
t+1)}

T−1
t=0 .

2



2. Policy gradient update: At the end of episode i, compute the empirical mean and stan-
dard deviation of all of the costs observed so far, i.e.,

µ(i) :=
1

iT

i∑
j=1

T−1∑
τ=0

c(j)τ , σ(i) :=
1

iT

i∑
j=1

T−1∑
τ=0

(
c(j)τ − µ(i)

)
.

Then compute the policy update

K ← K − α

T−1∑
t=0

γtv
(i)
t ∇K πK(u

(i)
t | x

(i)
t ).

where α > 0 is the learning rate, and the observed costs in computing the tail returns

v
(i)
t :=

T−1∑
τ=t

γτ−t

(
c
(i)
τ − µ(i)

σ(i)

)

are standardized using µ(i) and σ(i).

We have implemented all three algorithms and presented some results in Figure 1. It shows the
difference ∥K(i) −K∗∥F between the learned policy parameter K(i) and the optimal policy K∗ at

the end of each episode i. Figure 1 also displays the discounted cost
∑T−1

t=0 γtc
(i)
t at the end of each

episode i alongside the expected optimal cost-to-go Ex0 [V
∗(x0)] for the true dynamics and cost

function. Figure 2 shows a zoomed-in version of these plots.

Figure 1: Gain errors and discounted cost sums for learning LQR.

3



Figure 2: Gain errors and discounted cost sums for learning LQR (zoomed).

With these results in mind, your task is to answer the following conceptual questions:

(a) Each of the three described learning-based methods required access to some amount of
problem-specific information. For each of these methods, describe the problem information
that was used in the design of the algorithm. How does the amount of assumptions for each
of the methods compare to the performance of the methods?

(b) Suppose we had available additional information/assumptions about the problem, e.g., prior
belief distributions for A, B, Q, or R. To what degree could these beliefs be incorporated
into each of these learning methodologies?

4



Problem 2: Lunar lander

As we have observed in the context of learning LQR, a näıve Monte Carlo policy gradient method
(i.e., REINFORCE) can be quite unstable/slowly converging due to high estimator variance. As
discussed in lecture, a popular variance reduction technique is to implement an actor-critic method,
in which a value function is used as a baseline (referred to as the critic, which predicts the expected
return associated with actions), with the policy referred to as the actor (which selects the actions).
In particular, in this problem we will consider an advantage actor-critic algorithm which, with some
details omitted, is constructed as follows:

• To improve the parameters θ of the actor πθ, we combine the Q-function policy gradient with
the value function baseline and obtain the following formulation for our policy gradient:

∇θJ(θ) = E [δπ∇θ log πθ(ut | xt)] , (1)

with δπ an estimate of the advantage Aπ(x,u) = Qπ(x,u)− V π(x).

• To improve the parameters w of the critic V π
w (which aims to estimate V π) we take gradient

descent steps to minimize (δπ)2 (note that V π
w is used in the computation of the advantage

estimate δπ).

As RL algorithm implementations can be quite time-consuming to run/debug, in our example from
class1 we have provided an already complete, albeit somewhat barebones2, implementation of an
advantage actor-critic algorithm. Your task in this problem is to review the code (a task you will
undoubtedly become familiar with in your professional careers, even if it seems a bit unusual for a
homework assignment) and answer the following conceptual questions:

(a) What estimator δπ of the advantage is this code using? Recalling our discussion in lecture,
where does this choice fall on the spectrum of the bias-variance tradeoff?

Note: In reviewing the code, you may observe the distinction between standardized returns

and returns (the former being what’s passed into train step for episode as “returns”).
For the purposes of this question, you may disregard this transformation, i.e., consider the
standardized returns = returns.

(b) Now considering the note from part (a), why might we wish to standardize the returns before
learning?

1View the notebook through Google Colab to see example output even without waiting to run the code.
2Many improvements over the method implemented are possible and can improve performance. A non-exhaustive

list is given below, feel free to experiment with these (you can also try them out on more complicated environments
such as BipedalWalker-v3):

• Experience replay: store transitions (xt, ut, rt, xt+1) in a buffer. Old examples are deleted as we store new
transitions. To update the parameters of our network, we sample a (mini-)batch from the buffer and perform
the stochastic gradient update on this batch.

• Try out different advantage estimators, e.g., the TD advantage estimate or n-step advantage estimate that
bootstrap learning with the value function.

• Play with the structure of generalized policy iteration, i.e., the current implementation does one step each
(synchronously) of policy improvement and policy evaluation; this ratio could be adjusted.

• Using decoupled policy or value networks (currently they are different heads on the same trunk network).

• Implement a more recent method (e.g., Proximal Policy Optimization (PPO), Soft Actor Critic (SAC), Deep
Deterministic Policy Gradient (DDPG), and many more variants/alternatives) from the deep RL literature!

5

https://github.com/StanfordASL/AA203-Examples/blob/master/Lecture-18/Advantage%20Actor%20Critic%20(A2C)%20--%20Lunar%20Lander.ipynb
https://github.com/StanfordASL/AA203-Examples/blob/master/Lecture-18/Advantage%20Actor%20Critic%20(A2C)%20--%20Lunar%20Lander.ipynb
https://colab.research.google.com/github/StanfordASL/AA203-Examples/blob/master/Lecture-18/Advantage%20Actor%20Critic%20%28A2C%29%20--%20Lunar%20Lander.ipynb


Hint: “Learning values across many orders of magnitude” by van Hasselt et al. [vHGH+16]
may provide some insight.

(c) jax.lax.stop gradient is a function that acts like the identity function (i.e., leaves its input
argument unchanged) but prevents the backpropagation of gradients through itself. That is,
stop gradient makes its input argument appear like a constant, as far as autodifferentiation
is concerned. What is the significance of using this function in computing the actor loss in
train loss for episode?

(d) Considering now the broader landscape of optimal and learning control, how else might
you approach this lunar lander problem? In a short paragraph (maximum 4-5 sentences),
sketch out an alternative approach for solving the lunar lander problem and discuss the
strengths/weaknesses you imagine it having vs. the model-free RL approach here. Feel free
to make whatever modeling assumptions you’d like (i.e., known vs. unknown dynamics,
deterministic vs. stochastic dynamics, known vs. unknown reward, etc.).

References

[BYB94] S. J. Bradtke, B. E. Ydstie, and A. G. Barto, Adaptive linear quadratic control using
policy iteration, American Control Conference, 1994.

[SB18] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, 2 ed., MIT
Press, 2018, Available at: http://incompleteideas.net/book/the-book-2nd.html.

[vHGH+16] H. van Hasselt, A. Guez, M. Hessel, V. Mnih, and D. Silver, Learning values across
many orders of magnitude, Conf. on Neural Information Processing Systems, 2016,
Available at: https://arxiv.org/abs/1602.07714.

6

https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.stop_gradient.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/1602.07714

