
Spring 2022

Stanford
AA 203: Optimal and Learning-based Control

Homework #3, due May 24 by 11:59 pm

Learning goals for this problem set:

Problem 1: To gain experience with data-driven learning in a “real world” setting.

Problem 2: To study sequential convex programming in nonlinear trajectory optimization and
build familiarity with CVXPY.

Problem 3: To gain familiarity with tools for HJ reachability and develop an understanding of
sub-level sets in the context of backward reachability.

Problem 4: To understand the basics of feasibility in model predictive control.

Problem 5: To introduce algorithmic details in designing terminal ingredients for model predictive
control.

Problem 1: Widget sales

You have just purchased Widget Co., a small shop selling widgets. Congratulations! Widget Co. is
in the business of buying widgets wholesale, and selling them to consumers at a markup. While
the previous owners were losing money, you suspect that you can apply your knowledge of optimal
control and reinforcement learning to turn the business around.

The shop is able to store between 0 and 5 widgets at a time. We write the number of widgets held in
the shop on day t as st. Every day, you choose how many widgets to order from your supplier. You
can order either zero widgets, a “half order” of 2 widgets, or a “full order” of 4 widgets. We write
the number of widgets ordered to arrive on day t as at. A random number of customers (following
an unknown distribution, though this distribution may be assumed to be consistent across all days)
come to Widget Co. every day; each customer buys a widget if there are any available. We write
the demand on day t as dt, and assume dt ≤ 5. At the end of each day, you record a net profit rt
for that day.

(a) The previous owners were nice enough to give you the details of their last three years of
operation. In particular, they have provided a dataset D = {(st, at, rt)}Tt=1 containing records
for each day t of the last three years. In starter widget sales.py, implement a Q-learning
algorithm to learn tabulated Q-values from this dataset. Provide only the code you add to
the provided starter file.

While you were busy with your model-free learning, your modelling-inclined intern noticed that the
dynamics of the number of widgets in the shop each day are described by

st+1 = f(st, at, dt) :=


0, st + at − dt < 0

5, st + at − dt > 5

st + at − dt, otherwise

,

and the daily net profit is

r(st, at, dt) = csellmin(st + at, dt)− crent − cstoragest − gorder(at),

1



where csell = 1.2 is the price you set for each widget, crent = 1 is the fixed rent on your shop,
cstorage = 0.05 is the cost for storing each widget overnight, and gorder(at) =

√
at is the cost of

ordering widgets from your supplier. The quantity min(st + at, dt) is the “satisfied demand” on
day t.

Moreover, after a few weeks of sales, your intern determined that the daily demand distribution for
your widgets seems to be

dt =



0, with probability 0.1

1, with probability 0.3

2, with probability 0.3

3, with probability 0.2

4, with probability 0.1

.

(b) In starter widget sales.py, implement value iteration to learn tabulated Q-values from the
model your intern has provided. Submit only the code you add to the provided starter file.
Also submit the plot generated by starter widget sales.py of Q-values from Q-learning
compared to those from value iteration. What do you notice about the learned Q-values
compared to those from value iteration? Why do you think this occurs?

(c) In starter widget sales.py, compute an optimal policy π∗
QL(st) based on your Q-learning

work, and another optimal policy π∗
VI(st) based on your value iteration work. Report each

optimal policy, simulate each one over five years, and compute the cumulative profit
∑t

k=0 rk
for each day t and for each optimal policy. Submit only the code you add to the provided
starter file. Also submit the plot generated by starter widget sales.py comparing the
cumulative profits over time. What do you notice about the difference between the two
cumulative profit trends? Why do you think this occurs?

Problem 2: Cart-pole swing-up with limited actuation

In this problem, we will tackle the challenging cart-pole “swing up” problem, in which the pendulum
begins hanging downwards and is then brought to the upright position, with constraints on the
control input that moves the cart horizontally. In practice, such control constraints often arise from
motor limitations. We will solve this constrained optimal control problem with a direct method.
The transcribed optimal control problem we would like to solve is

minimize
s0:N ,u0:N−1

N−1∑
k=0

(
(sk − s∗)TQ(sk − s∗) + uTkRuk

)
subject to s0 = s̄0

sk+1 = fd(sk, uk), ∀k ∈ {0, 1, . . . , N − 1}
sN = s∗

uk ∈ U , ∀k ∈ {0, 1, . . . , N − 1}

,

where s̄0 ∈ Rn is the known initial state, s∗ = (0, π, 0, 0) is the goal state (i.e., the upright position),
Q ≻ 0 andR ≻ 0 are stage cost matrices, U is a convex control constraint set, and fd : Rn×Rm → Rn

is a discretized form of the cart-pole dynamics.

However, this optimal control problem is non-convex due to the nonlinear equality constraints
sk+1 = fd(sk, uk). We will circumvent this issue with Sequential Convex Programming (SCP).

2



Recall that the key idea of SCP is to iteratively re-linearize the dynamics around a nominal trajec-
tory and solve a convex approximation of the optimal control problem near this trajectory. Since
linearization provides a good approximation to the nonlinear dynamics only in a small neighbor-
hood around the nominal trajectory (s̄, ū), the accuracy of the convex model may be poor if (s, u)
deviates far from (s̄, ū). To ensure smooth convergence, we consider a convex trust region around
the state and input that is imposed as an additional constraint in the convex optimization problem.
Specifically, we consider a box around the nominal trajectory (s̄, ū) described by

∥s− s̄∥∞ ≤ ρ, ∥u− ū∥∞ ≤ ρ,

for some constant ρ > 0. Moreover, the terminal constraint sN = s∗ is difficult to enforce during
each iteration of SCP; any sub-problem for which the trust region does not contain a swing-up
maneuver will be infeasible. Thus, we will remove the terminal constraint sN = s∗ and add the
terminal state cost term (sN − s∗)TP (sN − s∗) as a proxy, where P ≻ 0 has large entries.

In starter cartpole swingup limited actuation.py, you will use JAX and CVXPY to con-
struct and solve a convex sub-problem at each SCP iteration. Carefully read all of the provided
code in starter cartpole swingup limited actuation.py before you continue. Only submit
code that you are asked to add to the provided starter file and plots.

(a) Derive the convex approximation of the nonlinear optimal control problem around a given
nominal trajectory (s̄0:N , ū0:N−1), including the control constraint set U := [−ru, ru] for some
ru > 0, trust region constraints, and the terminal state cost term in place of the terminal
state constraint. The convex problem should have linear equality constraints of the form
sk+1 = Aksk +Bkuk + ck obtained by linearizing the dynamics around (s̄0:N , ū0:N−1). Derive
Ak, Bk, and ck in terms of s̄k, ūk, and fd.

(b) Use JAX to complete the function linearize such that it computes Ak, Bk, and ck from s̄k,
ūk, and fd.

(c) Complete the function scp iteration. Specifically, given a nominal trajectory (s̄0:N , ū0:N−1),
use CVXPY to specify and solve the convex optimization problem derived in part (a) to obtain
an updated solution (s0:N , u0:N−1).

(d) Run starter cartpole swingup limited actuation.py. Submit the generated state and
control trajectory plots. You should notice that the pendulum just reaches the goal state
before the simulation ends. It would be more satisfying to swing the pendulum remain
upright and keep it there. In words, suggest a control scheme to do this.

Problem 3: Hamilton-Jacobi reachability

Consider the goal of developing a self-righting quadrotor, i.e., a flying drone that you can throw into
the air at various poses and velocities which will autonomously regulate itself to level flight while
obeying dynamics, control, and operational-envelope constraints. For this problem, we consider the
6-D dynamics of a planar quadrotor described by

ẋ
v̇x
ẏ
v̇y
ϕ̇
ω̇

 =



vx
−(T1+T2) sinϕ−Cv

Dvx
m
vy

(T1+T2) cosϕ−Cv
Dvy

m − g
ω

(T2−T1)ℓ−Cϕ
Dω

Iyy


, T1, T2 ∈ [0, Tmax], (1)

3



where the state is given by the position in the vertical plane (x, y), translational velocity (vx, vy),
pitch ϕ, and pitch rate ω; the controls are the thrusts (T1, T2) for the left and right prop respec-
tively. Additional constants appearing in the dynamics above are gravitational acceleration g, the
quadrotor’s mass m, moment of inertia (about the out-of-plane axis) Iyy, half-length ℓ, and transla-

tional and rotational drag coefficients Cv
D and Cϕ

D, respectively (see starter hj reachability.py

for precise values of these constants in PlanarQuadrotor. init ).

Figure 1: A planar quadrotor.

We will approach the problem of self-righting through continuous-time dynamic programming,
specifically a Hamilton-Jacobi-Bellman (HJB) formulation.1 To help mitigate the curse of dimen-
sionality, we ignore the lateral motion (irrelevant to achieving level flight) and consider reduced
4-D dynamics with state vector x := (y, vy, ϕ, ω) ∈ R4. For these reduced dynamics, we define the
target set

T = [3, 7]× [−1, 1]× [−π/12, π/12]× [−1, 1] ⊂ R4.

We assume that once the planar quadrotor reaches this set, we have another controller (e.g., an
LQR controller linearized around hover) that can take over to maintain level flight.

To bound the domain of our dynamic programming problem (and also to ensure that our quadrotor
doesn’t plow into the ground), in addition to the dynamics and control constraints given in (1) we
would also like to constrain our planar quadrotor to stay within the operational envelope

E = [1, 9]× [−6, 6]× [−∞,∞]× [−8, 8].

Reaching the target set T while avoiding the obstacle set E∁ (i.e., the set complement of E) is
referred to as a reach-avoid problem. If we can construct two real-valued, Lipschitz continuous
functions h(x), e(x) defined over the state domain such that

x ∈ T ⇐⇒ h(x) ≤ 0, x ∈ E ⇐⇒ e(x) ≤ 0,

i.e., T , E are the zero-sublevel sets of h, e respectively, then it may be shown (see, e.g., [FCTS15,

1One might also consider an HJI-based extension to handle worst-case disturbances (e.g., wind), but for simplicity
in this exercise we just consider the undisturbed dynamics.

4



Theorem 1]) that the value function V (x, t) defined as

V (x0, t0) = min
u(·)

min
τ∈[t0,0]

h(x(τ))

s.t. ẋ(τ) = f(x(τ),u(τ)) ∀τ ∈ [t0, 0]

x(τ) ∈ E ∀τ ∈ [t0, 0]

x(t0) = x0

(where f is the relevant portion of the full dynamics (1)) satisfies the HJB PDE2

max

{
∂V

∂t
(x, t) + min{0, H(x,∇xV (x, t))}, e(x)− V (x, t)

}
= 0

where H(x,p) = min
u

pT f(x,u),

V (x, 0) = max{h(x), e(x)}.

Implementing an appropriate solver for this type of PDE is somewhat nontrivial (see, e.g., [Mit02]
for details); for this exercise we will use an existing solver – you will be responsible for setting the
problem up and interpreting the results.

If you are running your code locally on your own machine, install the solver at the command line
using pip via the command:

pip install --upgrade hj-reachability

Otherwise, if you are using Google Colab, run a cell containing:

!pip install --upgrade hj-reachability

For this problem, you will fill parts of starter hj reachability.py in with your own code. When
submitting code, only provide the methods or functions that you have been asked to modify.

(a) Subject to the control constraints T1, T2 ∈ [0, Tmax], derive the locally optimal action that
minimizes the Hamiltonian, i.e., for arbitrary x,p compute

u∗ = argmin
u

pT f(x,u),

where f denotes the last four rows of the dynamics defined by (1). Use this knowledge to
implement the method PlanarQuadrotor.optimal control.

(b) Write down a functional form for h(x) such that x ∈ T ⇐⇒ h(x) ≤ 0. Implement the
function target set.

Hint: Note that a(x) ≤ 0 ∧ b(x) ≤ 0 ⇐⇒ max{a(x), b(x)} ≤ 0. This means that if you
have multiple constraints represented as the zero-sublevel sets of multiple functions, then the
conjunction of the constraints may be represented as a pointwise maximum of the functions.

2This is similar to the backward reachable tube HJI PDE mentioned in class (omitting the disturbance), where
as before the inner min ensures the value function is nondecreasing in time (so that as BRT computation proceeds
backward in time, the value function is nonincreasing at successive iterations, i.e., you get to “lock in” the lowest
value you ever achieve). The outer max is the new addition in this formulation compared to what we saw in class, and
may be interpreted as always making sure V (x, t) ≥ e(x) so that if e(x) > 0 (i.e., the state is outside of the operating
envelope) then also V (x, t) > 0 (i.e., the state is outside the BRT of states that can reach the target collision-free).

5



(c) Write down a functional form for e(x) such that x ∈ E ⇐⇒ e(x) ≤ 0. Implement the
function envelope set.

(d) Run the rest of the script/cells to compute V (x,−5) and take a look at some of the controlled
trajectories; hopefully they look reasonable (see the note below if you’re picky/have extra
time, though if the quad rights itself and gets to the target set T that’s sufficient for our
purposes). Do not submit any trajectory plots; instead include a 3D plot of the zero isosurface
(equivalent of a contour/isoline, but in 3D) for a slice of the value function at some fixed y
value (e.g., y = 7.5 as pre-selected in the starter code). Explain why one of the bumps/ridges
(e.g., as highlighted by the red or blue arrow in Figure 2, which you may also use to check
your work) has the shape that it does.

Figure 2: Example zero isosurface views. Can you explain why the red valley
(outside the isosurface, i.e., unrecoverable initial conditions) or blue ridge (in-
side the isosurface, i.e., initial conditions that can reach the target collision-free)
exhibit the “tilt” they have by considering the corresponding states?

Note: If the behavior of your control policy isn’t as nice as you’d like (e.g., height/pitch oscil-
lations), consider modifying your target set function h(x) (e.g., by scaling how you account
for each dimension in your construction). For the purpose of reachable set computation, at
least theoretically3 the zero-sublevel set of the value function V (corresponding to the set of
feasible initial states) is unaffected by the details of h as long as h(x) ≤ 0 ⇐⇒ x ∈ T . In the
context of dynamic programming to compute an optimal control policy, however, h(x) also
defines the terminal cost in a way that materially affects the policy once the set is reached
(though in practice, this is where we’d have some other stabilizing controller take over).

(e) In a few sentences, write down some pros/cons of this approach (i.e., computing a policy using
dynamic programming) for a self-righting quadrotor vs. alternatives, e.g., applying model-
predictive control. Potential things to think/write about: computational resources (time,

3With a relatively coarse grid discretization and not-particularly-high-accuracy finite difference schemes/time
integrators for PDE solving (sacrifices made so you don’t have to wait for hours to see results), for numerical reasons
the BRT may have some dependence on your formulation of h(x).

6



memory) required for online operation, local/global optimality, flexibility to accommodate
additional obstacles in the environment, bang-bang controls, etc.

Problem 4: MPC feasibility

Consider the discrete-time LTI system

xk+1 = Axk +Buk.

We want to compute a receding horizon controller for a quadratic cost function, i.e.,

J(x0:N , u0:N−1) = xTNPxN +
N−1∑
k=0

(
xTkQxk + uTkRuk

)
,

where P,Q,R ≻ 0 are weight matrices. We must satisfy the state and input constraints ∥xk∥∞ ≤ rx
and ∥uk∥∞ ≤ ru, respectively. Also, we will enforce the terminal state constraint ∥xN∥∞ ≤ rf ,
where we will tune rf ≥ 0. For rf = 0, the terminal state constraint is equivalent to xN = 0, while
for rf ≥ rx we are just left with the original state constraint ∥xN∥∞ ≤ rx.

For this problem, you will work with the starter code in starter mpc feasibility.py. Carefully
review all of the code in this file before you continue. Only submit code you add and any plots
that are generated by the file.

(a) Implement a receding horizon controller for this system using CVXPY in the function do mpc.
Run the remaining code to simulate closed-loop trajectories with rf ≥ rx from two different
initial states, each with either P = I or P as the unique positive-definite solution to the
discrete algebraic Riccati equation (DARE)

ATPA− P −ATPB(R+BTPB)−1BTPA+Q = 0.

Submit your code and the plot that is generated, which displays both the realized closed-
loop trajectories and the predicted open-loop trajectories at each time step. Discuss your
observations of any differences between the trajectories for the different initial conditions and
values of P .

(b) Finish the function compute roa, which computes the region of attraction (ROA) for fixed
P ≻ 0 and different values of N and rf . Submit your code and the plot of the different ROAs.
Compare and discuss your observations of the ROAs.

Hint: While debugging your code, you can set a small grid dim to reduce the amount of time
it takes to compute the ROAs. See Figure 3 for the ROAs with grid dim = 5. However, you
must submit your plot of the ROAs with at least grid dim = 30.

7



Figure 3: ROAs with a coarse grid resolution.

Problem 5: Terminal ingredients

Consider the discrete-time LTI system xk+1 = Axk +Buk with

A =

[
0.9 0.6
0 0.8

]
, B =

[
0
1

]
.

We want to synthesize a model predictive controller to regulate the system to the origin while
minimizing the quadratic cost function

J(x0:N , u0:N−1) = xTNPxN +

N−1∑
k=0

(
xTkQxk + uTkRuk

)
,

subject to ∥xk∥2 ≤ rx, ∥uk∥2 ≤ ru, and xN ∈ Xf . For this problem, set N = 4, rx = 5, ru = 1,
Q = I and R = I.

Recall from lecture that the design of the terminal ingredients Xf and P is critical to guaranteeing
the asymptotic stability and persistent feasibility of the resulting closed-loop system under receding
horizon control.

(a) For this particular problem, explain why and how we can design Xf and P in an open-loop
manner, i.e., by only considering the uncontrolled system xk+1 = Axk.

8



We want to find as large of a positive invariant set Xf for xk+1 = Axk as possible that satisfies the
state constraints. While maximal positive invariant sets may be computed via iterative methods
using tools from computational geometry4, we restrict our search to ellipsoids of the form

Xf = {x ∈ Rn | xTPx ≤ 1}

for P ≻ 0. Since vol(Xf ) ∼
√
det(P−1), we can formulate our search for the largest ellipsoidal Xf

as the semi-definite program (SDP)

maximize
P

log det(P−1)

subject to P ≻ 0

ATPA− P ≺ 0

I − r2xP ≺ 0

.

(b) Prove that ATPA− P ≺ 0 and I − r2xP ≺ 0 together are sufficient conditions for Xf to be a
positive invariant set satisfying the state constraints.

(c) For a maximization problem, we want the objective to be a concave function. Unfortunately,
the given SDP is not concave since log det(Q−1) = − log det(Q) is convex with respect to its
argument Q ≻ 0. Reformulate the given SDP in P as a concave SDP in M := P−1.

Hint: Use Schur’s complement lemma, which states that for any conformable matrices A, B,
and C where A is invertible,

A ≻ 0 and C −BTA−1B ≻ 0 ⇐⇒
[
A B
BT C

]
≻ 0.

(d) Use NumPy and CVXPY to formulate and solve the SDP for M . Plot the ellipsoids Xf , AXf ,
and X := {x | ∥x∥22 ≤ r2x} in the same figure. You should see that AXf ⊆ Xf ⊆ X . Submit
your code and plot, and report P := M−1 with three decimal places for each entry.

Hint: Consult the CVXPY documentation to help you write your code. Specifically, look
at the list of functions in CVXPY (https://www.cvxpy.org/tutorial/functions/index.
html) and the SDP example (https://www.cvxpy.org/examples/basic/sdp.html). You
can write any definite constraints in the SDP with analogous semi-definite constraints (i.e.,
treat “≻” as “>>” for the purposes of writing your CVXPY code).

For plotting purposes, you can use the following Python function to generate points on the
boundary of a two-dimensional ellipsoid.

1 import numpy as np

2

3 def generate_ellipsoid_points(M, num_points=100):

4 """Generate points on a 2-D ellipsoid.

5

6 The ellipsoid is described by the equation

7 { x | x.T @ inv(M) @ x <= 1 }.

8 The returned array has shape (num_points, 2).

4See the MPT3 library (https://www.mpt3.org/) for some examples tailored to model predictive control.

9

https://www.cvxpy.org/tutorial/functions/index.html
https://www.cvxpy.org/tutorial/functions/index.html
https://www.cvxpy.org/examples/basic/sdp.html
https://www.mpt3.org/


9 """

10 L = np.linalg.cholesky(M)

11 θ = np.linspace(0, 2*np.pi, num_points)

12 u = np.column_stack([np.cos(θ), np.sin(θ)])
13 x = u @ L.T

14 return x

(e) Use NumPy and CVXPY to setup the MPC problem, then simulate the system with closed-
loop MPC from x0 = (0,−4.5) for 15 time steps. Overlay the actual state trajectory and the
planned trajectories at each time on the plot from part (d). Also, separately plot the actual
control trajectory over time in a second plot. Overall, you should have two plots for this
entire question. Submit both plots and all of your code.

Hint: Instead of forming the MPC problem in CVXPY during each simulation iteration,
form a single CVXPY problem parameterized by the initial state and replace its value before
solving (https://www.cvxpy.org/tutorial/intro/index.html#parameters).

References

[FCTS15] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry, Reach-avoid problems with time-
varying dynamics, targets and constraints, Hybrid Systems: Computation and Control,
2015.

[Mit02] I. M. Mitchell, Application of level set methods to control and reachability problems in
continuous and hybrid systems, Ph.D. thesis, Stanford University, 2002.

10

https://www.cvxpy.org/tutorial/intro/index.html#parameters

