
Spring 2022

Stanford
AA 203: Optimal and Learning-based Control

Homework #2, due May 2 by 11:59 pm

Problem 1: Shortest path through a grid

Consider the shortest path problem in Figure 1 where it is only possible to travel to the right and
the numbers represent the travel times for each segment. The control input is the decision to go
“up-right” or “down-right” at each node.

Figure 1: Shortest path problem on a grid.

(a) Use Dynamic Programming (DP) to find the shortest path from A to B.

(b) Consider a generalized version of the shortest path problem in Figure 1 where the grid has n
segments on each side. Find the number of computations required by an exhaustive search
algorithm (i.e., the number of routes that such an algorithm would need to evaluate) and the
number of computations required by a DP algorithm (i.e., the number of DP evaluations). For
example, for n = 3 as in Figure 1, an exhaustive search algorithm requires 20 computations,
while the DP algorithm requires only 15.

Problem 2: Machine maintenance

Suppose we have a machine that is either running or is broken down. If it runs throughout one
week, it makes a gross profit of $100. If it fails during the week, gross profit is zero. If it is running
at the start of the week and we perform preventive maintenance, the probability that it will fail
during the week is 0.4. If we do not perform such maintenance, the probability of failure is 0.7.
However, maintenance will cost $20. When the machine is broken down at the start of the week, it
may either be repaired at a cost of $40, in which case it will fail during the week with a probability
of 0.4, or it may be replaced at a cost of $150 by a new machine that is guaranteed to run through
its first week of operation. Find the optimal repair, replacement, and maintenance policy that
maximizes total profit over four weeks, assuming a new machine at the start of the first week.
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Problem 3: Markovian drone

In this problem, we will apply techniques for solving a Markov Decision Process (MDP) to guide
a flying drone to its destination through a storm. The world is represented as an n × n grid, i.e.,
the state space is

S := {(x1, x2) ∈ R2 | x1, x2 ∈ {0, 1 . . . , n− 1}}.

In these coordinates, (0, 0) represents the bottom left corner of the map and (n−1, n−1) represents
the top right corner of the map. From any location x = (x1, x2) ∈ S, the drone has four possible
directions it can move in, i.e.,

A := {up, down, left, right}.

The corresponding state changes for each action are:

• up: (x1, x2) 7→ (x1, x2 + 1)

• down: (x1, x2) 7→ (x1, x2 − 1)

• left: (x1, x2) 7→ (x1 − 1, x2)

• right: (x1, x2) 7→ (x1 + 1, x2)

Additionally, there is a storm centered at xeye ∈ S. The storm’s influence is strongest at its center

and decays farther from the center according to the equation ω(x) = exp
(
−∥x−xeye∥22

2σ2

)
. Given its

current state x and action a, the drone’s next state is determined as follows:

• With probability ω(x), the storm will cause the drone to move in a uniformly random direc-
tion.

• With probability 1− ω(x), the drone will move in the direction specified by the action.

• If the resulting movement would cause the drone to leave S, then it will not move at all. For
example, if the drone is on the right boundary of the map, then moving right will do nothing.

The quadrotor’s objective is to reach xgoal ∈ S, so the reward function is the indicator function
R(x) = Ixgoal

(x). In other words, the drone will receive a reward of 1 if it reaches the xgoal ∈ S, and
a reward of 0 otherwise. The reward of a trajectory in this infinite horizon problem is a discounted
sum of the rewards earned in each timestep, with discount factor γ ∈ (0, 1).

(a) Given n = 20, σ = 10, γ = 0.95, xeye = (15, 15), and xgoal = (19, 9), write code that uses
value iteration to find the optimal value function for the drone to navigate the storm. Recall
that value iteration repeats the Bellman update

V (x)← max
a∈A

(∑
x′∈S

p(x′;x, a)(R(x′) + γV (x′))

)

until convergence, where p(x′;x, a) is the probability distribution of the next state being x′

after taking action a in state x, and R is the reward function. Plot a heatmap of the optimal
value function obtained by value iteration over the grid S, with x = (0, 0) in the bottom left
corner, x = (n− 1, n− 1) in the top right corner, the x1-axis along the bottom edge, and the
x2-axis along the left edge.

(b) Recall that a policy π is a mapping π : S → A where π(x) specifies the action to be taken
should the drone find itself in state x. An optimal value function V ∗ induces an optimal
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policy π∗ such that

π∗(x) ∈ argmax
a∈A

(∑
x′∈S

p(x′;x, a)(R(x′) + γV ∗(x′))

)
Use the value function you computed in part (a) to compute an optimal policy. Then, use this
policy to simulate the MDP for N = 100 time steps with the state initialized at x = (0, 19).
Plot the policy as a heatmap where the actions {up, down, left, right} correspond to the
values {0, 1, 2, 3}, respectively. Plot the simulated drone trajectory overlaid on the policy
heatmap, and briefly describe in words what the policy is doing.

Problem 4: Cart-pole balance

In this problem, we will design a controller to balance an inverted pendulum on a cart, i.e., the classic
“cart-pole” benchmark. This system has two degrees of freedom corresponding to the horizontal
position x of the cart, and the angle θ of the pendulum (where θ = 0 occurs when the pendulum
is handing straight down). We can apply a force u ∈ R to push the cart horizontally, where u > 0
corresponds to a force in the positive x-direction. With the state s := (x, θ, ẋ, θ̇) ∈ R4, we can write
the continuous-time dynamics of the cart-pole system as

ṡ = f(s, u) =


ẋ

θ̇
mp(ℓθ̇2+g cos θ) sin θ+u

mc+mp sin2 θ

− (mc+mp)g sin θ+mpℓθ̇2 sin θ cos θ+u cos θ

ℓ(mc+mp sin2 θ)

 ,

where mp is the mass of the pendulum, mc is the mass of the cart, ℓ is the length of the pendulum,
and g is the acceleration due to gravity. We can discretize the continuous-time dynamics using
Euler integration with a fixed time step ∆t to get the approximate discrete-time dynamics

sk+1 ≈ sk +∆tf(sk, uk),

where sk and uk are the state and control input, respectively, at time t = k∆t.

(a) Consider the upright state s∗ := (0, π, 0, 0) with u∗ := 0, and define ∆sk := sk−s∗. Linearizing
the approximate discrete-time dynamics sk+1 ≈ sk + ∆tf(sk, uk) about (s∗, u∗) yields an
approximate LTI system of the form

∆sk+1 ≈ A∆sk +Buk.

Express A and B in terms of mp, mc, ℓ, g, and ∆t. You may use the fact that

∂f

∂s
(s∗, u∗) =


0 0 1 0

0 0 0 1

0
mpg
mc

0 0

0
(mc+mp)g

mcℓ
0 0

 ,
∂f

∂u
(s∗, u∗) =


0

0
1
mc

1
mcℓ

 .

We will design a stabilizing LQR controller for this discrete-time LTI system to solve

minimize
{uk}∞k=0

∞∑
k=0

(
1

2
∆sTkQ∆sk +

1

2
uTkRuk

)
subject to ∆sk+1 = A∆sk +Buk, ∀k ∈ N≥0

,
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for fixed Q,R ≻ 0. Recall that after N iterations of the discrete-time Riccati recursion

Kk = −(R+BTPk+1B)−1BTPk+1A

Pk = Q+ATPk+1(A+BKk)
,

the cost-to-go matrices {Pk}Nk=0 and the time-varying feedback gains {Kk}N−1
k=0 describe the optimal

LQR controller for a finite-horizon version of the problem above. If (A,B) is stabilizable, then these
iterates asymptotically converge to some P∞ ≻ 0 and K∞, such that (s0 − s∗)TP∞(s0 − s∗) > 0
is the finite optimal cost-to-go for any initialization s0, and uk = K∞∆sk is the time-invariant
feedback law for the corresponding optimal LQR controller1.

(b) Write code to approximate P∞ and K∞ for the linearized, discretized cart-pole system by
initializing P∞ = 0 and then applying the Ricatti recursion until convergence with respect
to the maximum element-wise norm condition ∥Pk+1 − Pk∥max < 10−4. Use mp = 2 kg,
mc = 10 kg, ℓ = 1 m, g = 9.81 m/s2, ∆t = 0.1 s, Q = I4, and R = I1. Report the value of
K∞ up to two decimal places for each entry.

(c) Write code to simulate the continuous-time, nonlinear cart-pole system with the linear feed-
back controller u = K∞∆s. Initialize the system at s = (0, 3π/4, 0, 0), and use a controller
sampling rate of 10 Hz. Plot each state variable over time on separate plots for t ∈ [0, 30]. For
your own interest, we provide the function animate cartpole in animations.py to create a
video animation of the cart-pole over time2.

Hint: Write a function ds = cartpole(s,t,u) that computes the state derivative ds for
the continuous-time, nonlinear cart-pole dynamics. To simulate the cart-pole with the fixed
control input u[k] from state s[k] at time t[k] to state s[k+1] at time t[k+1], you can
use the following Python code:

from scipy.integrate import odeint

s[k+1] = odeint(cartpole, s[k], t[k:k+2], (u[k],))[1]

Make sure to review the documentation for odeint.

(d) To investigate the disturbance rejection ability of the controller, add noise to the system
dynamics. Specifically, after each controller sampling period (i.e., every 0.1 s), sample a
new noise vector w ∈ R4 from the Gaussian distribution with mean µ = 0 and covariance
Σ = diag(0, 0, 10−3, 10−3), and add it to the state. Simulate the noisy system and plot each
state variable over time for t ∈ [0, 30].

(e) We will now use an LQR controller to track a time-varying trajectory. Specifically, we will
aim to balance the pendulum upright (i.e., θ∗(t) ≡ π) while oscillating the position of the
cart to track a desired reference x∗(t) = a sin(2πt/T ), where a > 0 and T > 0 are known
constants.

i. Normally, as derived in class when applying LQR for trajectory tracking, you would
have to re-linearize the system around the desired trajectory at each time step; why is
this not the case for this particular problem (i.e., why can you just reuse A and B)?

1The infinite-horizon LQR problem also converges for fixed Q ⪰ 0 and R ≻ 0, as long as (A,B) is stabilizable and
(A,Q) is observable.

2See https://github.com/StanfordASL/AA203-Homework.
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ii. Repeat part (c) (i.e., without noise) for this case with a = 10 and T = 30, except this
time initialize the system upright at s(0) = (0, π, 0, 0). For each state plot, overlay the
corresponding entry from the reference trajectory s∗(t).

iii. You may notice that this controller does not have good tracking performance. You
could try increasing the state penalty matrix Q to, e.g., Q = 10I4. However, this should
only improve tracking for x and ẋ, while θ(t) and θ̇(t) still oscillate around zero. What
physical characteristic of the desired trajectory (or lack thereof) causes this to happen?

Learning goals for this problem set:

Problem 1: To familiarize with the DP algorithm and to appreciate the computational savings of
DP versus an exhaustive search algorithm.

Problem 2: To apply dynamic programming in stochastic environments by reasoning about ex-
pected utilities.

Problem 3: To solve a stochastic optimization problem with value iteration by formulating it as
an MDP.

Problem 4: To gain experience with implementing LQR controllers by coding them “from scratch”.
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