
Spring 2022

Stanford
AA 203: Optimal and Learning-based Control

Homework #1, due April 18 by 11:59 pm

Problem 1: Backstepping

Consider the strict-feedback system

ẋ = f(x) +B(x)z

ż = u
,

with x ∈ Rn and z, u ∈ Rm, where f : Rn → Rn and B : Rn → Rn×m are known smooth functions,
and f(0) = 0.

Suppose the subsystem ẋ = f(x) + B(x)z can be stabilized by a smooth feedback law z = ϕ0(x)
with ϕ0(0) = 0, i.e., the closed-loop system ẋ = f(x) + B(x)ϕ0(x) is globally asymptotically stable
with respect to the origin x = 0. Moreover, suppose we know a smooth, positive-definite, radially
unbounded Lyapunov function V0 : Rn → R≥0 and positive definite function ρ : Rn → R≥0

satisfying
V̇0(x) = ∇V0(x)

T(f(x) +B(x)ϕ0(x)) ≤ −ρ(x),

for all x ∈ Rn.

We now consider the entire (x, z)-system, which we can only control through u ∈ Rm. We want to
use our knowledge of a stabilizing controller for the inner x-dynamics and the strict-feedback form
of the (x, z)-dynamics to “back out” a stabilizing controller for the entire system.

Use the Lyapunov candidate function

V1(x, z) = V0(x) +
1

2
∥z − ϕ0(x)∥22

to find a stabilizing controller u = ϕ1(x, z) for some function ϕ1 : Rn × Rm → Rm that ensures
(x, z) → (0, 0). Notice that V1 comprises the “inner” Lyapunov function V0 and a penalty term
for the difference between z and the value of the “inner” stabilizing control. Explicitly derive the
function ϕ1 and rigorously describe why it stabilizes the (x, z)-system using Lyapunov theory (i.e.,
prove V1(x, z) is positive-definite and radially unbounded, and V̇ (x, z) is negative-definite along
trajectories of the (x, z)-subsystem in closed-loop with u = ϕ1(x, z)).

Problem 2: Model reference adaptive control

Consider the continuous-time system

ẏ(t) + αy(t) = βu(t).

We want to control this system, but we do not know the true plant parameters α, β ∈ R. In this
problem, we will use direct Model-Reference Adaptive Control (MRAC) to match the behaviour of
the true plant with that of the reference model

ẏm(t) + αmym(t) = βmr(t)

where αm, βm ∈ R are known constant parameters, and r(t) is a chosen bounded reference signal.
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(a) Consider the control law
u(t) = kr(t)r(t) + ky(t)y(t)

where kr(t) and ky(t) are time-varying feedback gains. Write out the differential equation for
the resulting closed-loop dynamics. Use this to verify that, if y(0) = ym(0) and we knew α
and β, the constant control gains

k∗r :=
βm
β

, k∗y :=
α− αm

β

would make the true plant dynamics perfectly match the reference model.

(b) When we do not know α and β, we adaptively update our controller over time in response to
measurements of y(t). Specifically, we want an adaptation law for kr(t) and ky(t) to make y(t)
tend towards ym(t) asymptotically. For this, we define the tracking error e(t) := y(t)− ym(t)
and the parameter errors

δr(t) := kr(t)− k∗r , δy(t) := ky(t)− k∗y.

Determine a differential equation for e in terms of e, ė, y, r, δy, δr, and suitable constants.

We consider the adaptation law for kr and ky described by

k̇r(t) = − sign(β)γe(t)r(t)

k̇y(t) = − sign(β)γe(t)y(t)
,

where γ > 0 is a chosen constant adaptation gain. Since we are adapting the gains kr and ky of
our controller directly, rather than estimates of the system parameters α and β, this is a direct
adaptation law. We must at least know the sign of β, which indicates in what direction the input
u(t) “pushes” the output y(t). For example, when modeling a car, you could reasonably assume
that an increased braking force slows down the car. To show that the tracking error and parameter
errors are stabilized by our chosen control law and adaptation law, we use Lyapunov theory.

Theorem 1 (Lyapunov). Consider the continuous-time system ẋ = f(x, t), where x = 0 is an
equilibrium point, i.e., f(0, t) ≡ 0. Suppose there exists a continuously differentiable scalar function
V (x, t) such that V is positive-definite in x for each t ≥ 0, and V̇ is negative semi-definite in x for
each t ≥ 0. Then x = 0 is a stable point in the sense of Lyapunov, i.e., ∥x(t)∥2 remains bounded
as long as ∥x(0)∥2 is bounded.

(c) Consider the state x := (e, δr, δy) and the Lyapunov function candidate

V (x) =
1

2
e2 +

|β|
2γ

(δ2r + δ2y).

Show that V̇ = −αme2. Based on Lyapunov theory, what can you say about e(t), δr(t), and
δy(t) for all t ≥ 0 if αm > 0?

In general, adaptive controllers yield time-varying closed-loop dynamics, even for LTI systems.
As a result, we require more mathematical machinery beyond basic Lyapunov theory to establish
anything stronger than Lyapunov stability. To this end, we use Barbalat’s Lemma.

Theorem 2 (Barbalat’s Lemma). Suppose g : R → R is differentiable. If g has a finite limit as
t → ∞ and ġ is uniformly continuous, then limt→∞ ġ(t) = 0.
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Boundedness of the derivative of a function is a sufficient condition for Lipschitz continuity and
hence uniform continuity. As a result, we have the following corollary.

Corollary 1. Suppose g : R → R is twice-differentiable. If g has a finite limit as t → ∞ and g̈ is
bounded, then limt→∞ ġ(t) = 0.

(d) Apply Barbalat’s Lemma to V to prove a stronger statement about e(t) than we could origi-
nally make with basic Lyapunov theory in part (c).

With the given control law and adaptation law, MRAC proceeds as follows. We choose a reference
signal r(t) to excite the reference output ym(t) and construct the input signal u(t). We use u(t) to
excite the true model, from which the output y(t) and tracking error e(t) are observed. The output
y(t) is fed back into the control law, while the tracking error e(t) is fed into the adaptation law.

(e) Apply MRAC to the unstable plant

ẏ(t)− y(t) = 3u(t).

That is, simulate an adaptive controller for this system that does not have access to the true
model parameters α = −1 and β = 3. The desired reference model is

ẏm(t) + 4ym(t) = 4r(t),

with αm = 4 and βm = 4. Use an adaptation gain of γ = 2, and zero initial conditions for y,
ym, kr, and ky. For t ∈ [0, 10], plot both y(t) and ym(t) in one figure, and kr(t), k

∗
r , ky(t), and

k∗y in another figure for r(t) ≡ 4. Then repeat this for r(t) = 4 sin(3t). Overall, you should
have four figures in total. What do you notice about the trends for different reference signals?
Why do you think this occurs? In your explanation, try to link your observations with the
statements about e(t), δr(t), and δy(t) we were able and unable to prove in parts (c,d).

Problem 3: Extremal curves

Given the functional

J(x) =

∫ 1

0

(
1

2
ẋ(t)2 + 5x(t)ẋ(t) + x(t)2 + 5x(t)

)
dt,

find an extremal curve x∗ : [0, 1] → R that satisfies x∗(0) = 1 and x∗(1) = 3.

Problem 4: Dubins car

The kinematics of the Dubins car are described by

ẋ = v cos θ

ẏ = v sin θ

θ̇ = u

,

where (x, y) ∈ R2 is the car’s position, θ ∈ R is the car’s heading, v > 0 is the car’s constant known
speed, and u is the controlled turn rate. The turn rate is bounded, i.e., u ∈ [−ω̄, ω̄], where ω̄ > 0
is a known constant.

The car starts at (x, y) = (0, 0) with a heading of θ = 0 at t = 0. We want the car to drive to
(x, y) = (0, c) in the least amount of time possible, where c > 0 is a given constant.
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(a) Use Pontryagin’s minimum principle to express the optimal control input u∗(t) as a function
of the optimal co-state p∗(t) := (p∗x(t), p

∗
y(t), p

∗
θ(t)) ∈ R3.

Hint: You should discover that the minimum condition for u∗(t) is not informative whenever
p∗θ(t) ≡ p̄θ for a particular fixed value p̄θ ∈ R. When such a lack of information persists over
a non-trivial time interval, i.e., any time interval [t1, t2] with t2 > t1 ≥ 0, this is known as a
singular arc. To compute u∗(t) in this case, use the fact that p∗θ(t) ≡ p̄θ is constant in time
along such an arc for this particular problem.

(b) Argue why p∗(t) might end in a singular arc depending on the boundary conditions. Suppose
we know p∗(t) begins on a non-singular arc, then switches once to and ends on a singular
arc. For this particular case, argue why u∗(0) = ω̄ and describe the optimal state trajectory
(x∗(t), y∗(t), θ∗(t)) and control trajectory u∗(t) in words without explicitly deriving them.

Problem 5: Single shooting for a unicycle

Consider the kinematic model of a unicycle

ẋ(t) = v(t) cos(θ(t)),

ẏ(t) = v(t) sin(θ(t)),

θ̇(t) = ω(t).

with state x = (x, y, θ) and control u = (v, ω). Suppose the objective is to drive from a starting
configuration to a target configuration with minimum time and control effort; specifically we want
to minimize the functional

J =

∫ tf

0

(
λ+ v(t)2 + ω(t)2

)
dt,

where λ > 0 is a weighting factor and tf is free, subject to the initial and terminal conditionsx(0)y(0)
θ(0)

 =

 0
0

π/2

 ,

x(tf )y(tf )
θ(tf )

 =

 5
5

π/2

 .

(a) Derive the Hamiltonian and necessary conditions for optimality, specifically (i) the ODE the
state and costate must satisfy, (ii) the optimal control as a function of the state and costate,
and (iii) the boundary conditions including the relevant transversality condition for free tf .

In practice, you might use a boundary value problem solver (e.g., scipy.integrate.solve bvp),
but in this problem we’ll use a bit of nonlinear optimization theory to write our own!

(a) In the file p5 unicycle single shooting.py, complete the implementations of dynamics,
hamiltonian, optimal control, and shooting ode.

Recall from class that the simplest shooting method1 basically boils down to guessing the correct
initial costate and propagating the dynamics and costate equations until the appropriate final time
(also a “guess” in free-final-time problems) at which the terminal boundary conditions are satisfied.

(a) Use the ODE integration performed by state and costate trajectories to implement
shooting residual, a measure of how far off each of your terminal boundary conditions
is from satisfaction, given guesses for the initial costate and final time.

1Single shooting as opposed to, e.g., multiple shooting.
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(b) Finally, in newton step and shooting method, implement Newton’s method for finding roots
of shooting residual. Now, if you provide an appropriate guess for the initial costate and
final time, you can run python3 p5 unicycle single shooting.py and see a plot of the
optimal solution. You may find that whether or not your BVP solver converges to a solution
is highly dependent on the quality of your initial guess – indeed, initialization is a major
challenge when applying indirect methods for optimal control!

Hint: Recall that for finding zeros of a function f : Rn → Rn, each iteration of Newton’s
method entails improving a current best guess xk using the formula

xk+1 = xk −∇f(xk)
−1f(xk),

where ∇f denotes the Jacobian of f .

Learning goals for this problem set:

Problem 1: Learn how to construct stabilizing controllers for complicated systems by exploiting
structure in the dynamics.

Problem 2: Explore the theoretical underpinnings of MRAC, and observe its behaviour on an
example system in simulation.

Problem 3: Become familiar with the process of solving calculus of variations problems.

Problem 4: Learn how singular arcs can complicate analyses that use Pontryagin’s minimum
principle.

Problem 5: Implement an indirect method for optimal control and gain familiarity with JAX.
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