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Problem 1: Poisson Maximum Likelihood
Suppose we observe the number of customers to a store over n days x1, x2, ..., xn, and
we want to fit a Poisson distribution to this data. The Poisson distribution is a
distribution over non-negative integers with a single parameter λ ≥ 0. It is often used
to model arrival times of random events or count the number of random arrivals
within a given amount of time. It has probability mass function:

Pλ[X = k] =
e−λλk

k!
when X ∼ Poi(λ).

One way to do this is via Maximum Likelihood, where we choose the parameter of the
Poisson distribution to maximize the probability that the data x1, x2, ..., xn appears.
This can be done by maximizing the log-likelihood of the dataset x1, ..., xn with
respect to λ. The log-likelihood of x1, ..., xn under the Poisson model is

fλ(x1, ...xn) :=
n∑

i=1

ln

(
e−λλxi

xi!

)
.

Compute the Maximum Likelihood estimator λ̂ by finding a solution to

argmax
λ≥0

fλ(x1, ..., xn).

Problem 2: Discrete Linear Systems
Consider the discrete linear system xt+1 = Axt +But, where

A =

 4
5

0 0

0
√
3 1

0 −1
√
3

 , B =

 0 0
1 1
1 0

 .

a) In the absence of control (i.e. ut = 0), is this system stable? Why or why not?

b) Design a linear feedback controller ut = Kxt for some fixed matrix K ∈ R2×3 so
that the closed loop system will be stable.

Problem 3: Linear Regression
Recall that the least squares solution to minx∥Ax− b∥22 is given by the normal
equation x∗ = (A⊤A)−1A⊤b.



a) Suppose in addition to finding an x so that Ax is close to b, we prefer x to be
“small” as measured by x⊤Λx, where Λ is a positive definite matrix. This gives
rise to the ridge regression problem:

min
x

∥Ax− b∥22 + x⊤Λx.

Derive the normal equation (i.e. closed form solution) for the ridge regression
problem.

b) We obtain measurements (x1, y1), (x2, y2), ..., (xn, yn) on n asteroids, where xi, yi
are estimates of the diameter and mass of the ith asteroid respectively. If the
asteroids were radially symmetric and uniformly dense, then by a volume

argument, we could deduce that yi =
4π
3

(
xi

2

)3
. The asteroids however, are not

radially symmetric nor uniformly dense, but we still suspect that x, y exhibit a
cubic relationship, i.e. y = p(x) where p is a cubic polynomial. Using the data{
(xi, yi)

}n
i=1

in prob3data.csv, find the coefficients c0, c1, c2, c3 so that
p(x) := c0 + c1x+ c2x

2 + c3x
3 is the least squares cubic estimator of y from x.

Problem 4: Gradient Methods
Recall the polynomial fitting approach from Problem 3. Suppose we want a solution
that is robust to outliers. One way to do this is to replace the ℓ2 norm in least
squares with an ℓ1 norm, where for a vector x ∈ Rn, its ℓ1 norm is given by
∥x∥1 :=

∑n
i=1|xi|. This gives rise to the following optimization problem:

min
x

∥Ax− b∥1 . (1)

One common technique for optimization is called Gradient Descent which uses the
function’s derivative to iteratively reduce the objective value. Given a function f and
an initial starting point x0, Gradient descent produces a sequence of iterates x1, x2, ...
until convergence according to the following rule:

xk+1 = xk − α∇f(x)

where α ≥ 0 is the step size. Using the same A, b from Problem 3, implement a
Gradient Descent algorithm to solve (1).



Learning goals for this problem set:

Problem 1: To review unconstrained convex optimization.

Problem 2: To review stability analysis of discrete linear systems.

Problem 3: To review linear regression techniques and applications

Problem 4: To review first order optimization methods.


