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Preliminaries
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Why study Convex Optimization?

Observation 1: Iterative methods like Gradient method and Newton Method can find local
minima.

Observation 2: These methods can also get trapped in local minima and thus fail to converge
to the global minima.

Observation 3: This issue doesn’t show up for convex problems. For convex optimization
problems, every locally optimal solution is also globally optimal.
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Convex Sets

Definition (Convex Set)

A set S ⊂ Rd is convex if and only if: for any x , y ∈ S and any α ∈ [0, 1], we also have
αx + (1− α)y ∈ S .

Examples:

Yes! No
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Convex Functions

Definition (Convex Functions)

A function f : S → R over a convex set S ⊂ Rd is convex if the set

epigraph(f ) :=
{

(x , y) ∈ Rd+1 : x ∈ S , y ∈ R and y ≥ f (x)
}

is convex.

Equivalently: If the chord between f (x1) and f (x2) overestimates f between x1 and x2.
Examples:

Yes! No
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Convex Program

Definition (Convex Program)

A convex program (aka convex optimization problem) is a minimization problem of a convex
function over a convex set:

minimize f (x)

subject to x ∈ S

where S is a convex set and f : S → R is a convex function.

Definition (Local Minimum)

For an optimization problem minx∈S f (x), a point x∗ is a local minimum if there exists some
ε > 0 so that for every x ∈ S with ||x − x∗||2 ≤ ε, f (x∗) ≤ f (x).
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Convex Program: Local Optima are Global Optima

Theorem (Equivalence of Local and Global Optima)

Let minx∈S f (x) be a convex program. If x∗ is a local minimum, then f (x∗) ≤ f (x) for every
x ∈ S . In other words, x∗ is a global minimum.

Proof Idea: (by contradiction) Suppose x∗ is a local but not global minimum.
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Convex Program: Local Optima are Global Optima

Proof: (by contradiction) Suppose x∗ is a local but not global minimum.

Since x∗ is a local optima, there exists ε > 0 so that f (x∗) ≤ f (x) for all x ∈ S ,
||x − x∗||2 ≤ ε.
Since x∗ is not a global minimum, we can find x0 ∈ S where f (x0) < f (x∗).

Since S is convex, αx∗ + (1− α)x0 ∈ S for every α ∈ [0, 1].

Note that f ((1− α)x∗ + αx0) ≤ (1− α)f (x∗) + αf (x0) < f (x∗).

Pick α′ = ε
2||x∗−x0||2

and set x ′ := (1− α′)x∗ + α′x0.

We have f (x ′) < f (x∗) and ||x∗ − x ′||2 ≤ ε.
This contradicts the fact that x∗ is a local minimum.
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Convex Program: Local Optima are Global Optima

The result relies on both S , f being convex.

S not convex examples: Optimal Control of Nonlinear Systems, Integer Programming.

f not convex examples: Maximum Likelihood for Gaussian Mixtures, Training Neural Networks.
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Linear Matrix Inequalities (LMI)

Goal: Introduce notation to efficiently express convex constraints.

Definition (Vector Inequality)

For x , y ∈ Rd , we use x � y to denote that x is element-wise less than y . Concretely, x � y
if for every 1 ≤ i ≤ d , xi ≤ yi .

Example: x � 0 means all entries of x are non-negative.

We can also use inequalities to define sets: {x : x � y}.

Example:

{
x : x �

[
1
2

]}
0

0
1 2

2

1

0
0

1 2

2

1

0
0

1 2

2

1
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Matrix Inequalities

Definition (Positive Semidefinite Matrices)

We say a matrix A ∈ Rd×d is positive semidefinite if x>Ax ≥ 0 for every x ∈ Rd . The relation
A � 0 is often used to denote positive semidefiniteness of A.

Definition (Matrix Inequalities)

We say A � B if 0 � B − A, i.e. B − A is positive semidefinite.

The set {A : A � 0} is a convex set (in fact, it is a cone). Optimizations of convex functions
over this set are Semidefinite Programs (SDP).

Applications of SDPs: Sum of Squares Programming, Lyapunov Stability analysis,
approximation algorithms for combinatorial optimization.
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Optimization Models and Tools
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Optimization Models and Tools

Common Optimization Models

Linear Programming (LP).

Quadratic Programming (QP).

Semidefinite Programming (SDP).

Convex Programming (CP).

Mixed-Integer Linear Programming (IP).

Optimization Software

CVXPY (LP, QP, SDP, CP, IP).

CPLEX (LP, QP, IP).

CVXPY Examples

Least Squares.

Discrete Linear Quadratic Regulator.
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Linear Programming

Goal: Minimize a linear function subject to linear equality and inequality constraints.
Mathematically,

minimize
x∈Rn

c>x

subject to Ax � b

Aeqx = beq.

A linear programming instance is specified by
c ∈ Rn, b ∈ Rp,A ∈ Rp×n, beq ∈ Rq,Aeq ∈ Rq×n.

Software:

CPLEX: x = cplexlp(c, A, b, Aeq, beq).

MATLAB: x = linprog(c, A,b, Aeq, beq).
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LP Example #1 - Multi-Robot Task Allocation

Consider a scenario where n robots {r1, r2, ..., rn} must collectively perform m tasks
{t1, t2, ..., tm}.

Each robot can perform at most 1 task.

Each task requires only 1 robot.

uij is the utility achieved when ri performs tj .

Objective: Match robots to tasks to maximize the total utility.
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LP Example #1 - Multi-Robot Task Allocation

Graph Representation:
Construct a graph where the vertices are
{r1, ..., rn, t1, ..., tm}.
Include an edge between ri and tj of
weight uij if uij > 0.
Finding the maximum utility matching
becomes a maximum weight bipartite
matching problem in this graph!
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LP Example #1 - Multi-Robot Task Allocation

Cast the maximum weight bipartite matching problem as a linear program:

Decision variable: x ∈ Rmn, where xij determines whether or not ri will perform tj .

maximize
x∈Rmn

n∑
i=1

m∑
j=1

uijxij (1)

subject to
m∑
j=1

xij ≤ 1 for all 1 ≤ i ≤ n (2)

n∑
i=1

xij ≤ 1 for all 1 ≤ j ≤ m (3)

x � 0.

(2) ensures each robot performs at most one task, (3) ensures that no task is assigned to more
than 1 robot.
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LP Example #1 - Multi-Robot Task Allocation

Even though fractional solutions are feasible for (1), we can always find an optimal solution
which is integral x∗ ∈ {0, 1}mn!

If x∗ij = 1, have robot ri perform task tj .
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LP Example #2 - Discrete Optimal Transport

Goal: Re-distribute supplies between warehouses w1,w2, ...,wn to align with regional demand.
Perform redistribution with minimum cost (cost = volume × distance).

Initial supply distribution: x ∈ Rn
+,

Target supply distribution: y ∈ Rn
+,

with ||x ||1 = ||y ||1 = 1.

Seattle San Francisco Denver Chicago Seattle San Francisco Denver Chicago
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LP Example #2 - Discrete Optimal Transport

Decision variable: P ∈ Rn×n where Pij is the volume of supplies we send from wi to warehouse
wj .
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LP Example #2 - Discrete Optimal Transport
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Seattle

San Francisco

Denver

Chicago

Seattle San Francisco Denver Chicago
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LP Example #2 - Discrete Optimal Transport

Decision variable: P ∈ Rn×n where Pij is the volume of supplies we send from wi to warehouse
wj .

Seattle

San Francisco

Denver

Chicago

Seattle San Francisco Denver Chicago Row Sum

Column Sum
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LP Example #2 - Discrete Optimal Transport

Denote d(wi ,wj) as the distance between wi and wj .
The Optimal Transport problem is the following LP:

minimize
P∈Rn×n

n∑
i=1

n∑
j=1

d(wi ,wj)Pij

s.t. P1 = x (4)

P>1 = y (5)

Pij ≥ 0 for all 1 ≤ i , j ≤ n. (6)

Where (4) and (5) enforce initial and terminal conditions respectively.

AA 203 Recitation #1 Convex Optimization & Optimization Tools April 9th, 2021 22 / 38



LP Example #2 - Discrete Optimal Transport

Remarks:
Can view P ∈ Rn×n as a joint distribution over (W1,W2), where

the marginal distribution of W1 is x ,

the marginal distribution of W2 is y .

The optimal transportation cost is a distance function for distributions, known as the
Wasserstein Distance.
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Linear Programming - Properties

Linear programs can be solved efficiently (millions of variables and constraints); They are
among the easiest convex optimization problems to solve.

There are many applications: Pattern planning, minimum weight matching, multi-commodity
maximum flow, production planning, etc.

Definition (Extreme Point)

Given a convex set S , a point x is called extreme if it cannot be written as a convex
combination of other points in S .

As a consequence, all points in S can be written as convex combinations of the extreme points
of S .
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Linear Programming - Properties

For a linear program, the constraint set is comprised of linear equality and inequality
constraints.

This means the constraint set is a polyhedron.

Extreme points of polyhedra are the corners.
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Linear Programming - Properties

Theorem (Extreme Solutions of Linear Programs)

If a linear program minx∈P c>x has a finite optimal value (i.e. it has a non-empty solution
set), then the solution set contains at least one extreme point of P.

Proof: Let x∗ ∈ P be an optimal solution.

Let EP be the set of extreme points of P.

Since x∗ ∈ P, we can write it as a convex combination of points in EP .

Thus x∗ =
∑

x∈EP
αxx where

∑
x∈EP

αx = 1 and αx ≥ 0.

Thus c>x∗ =
∑

x∈EP
αxc

>x ≥ minx∈EP
c>x , since the minimum is always at most the

average.

So there is some x ′ ∈ EP with c>x ′ ≤ c>x∗.

Since x∗ is a minimizer, x ′ must also be a minimizer.
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Quadratic Programming

Goal: Minimize a quadratic function subject to linear constraints. Mathematically,

minimize
x∈Rn

1

2
x>Hx + f >x

subject to Ax � b

Aeqx = beq

where H � 0.

A quadratic programming instance is specified by
f ∈ Rn,H ∈ Rn×n, b ∈ Rp,A ∈ Rp×n, beq ∈ Rq,Aeq ∈ Rq×n.

Software:

CPLEX: x = cplexqp(H, f, A, b, Aeq, beq).

MATLAB: x = quadprog(H, f, A,b, Aeq, beq).
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QP Example: Discrete LQR

Given a discrete linear dynamical system

xt+1 = Axt + Bu

The goal is to efficiently drive the state from x0 to the origin. We incur a large cost if (a) the
state is far from the origin or (b) we use a lot of control effort.

1

2
x>TQT xT +

1

2

T−1∑
t=0

x>t Qxt + u>t Rut

There are also control effort constraints.
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QP Example: Discrete LQR

The discrete Linear Quadratic Regulator (LQR) with control effort constraints uLB , uUB can be
formulated as a QP.

minimize
u∈RT

1

2
x>TQT xT +

1

2

T−1∑
t=0

x>t Qxt + u>t Rut

subject to xt+1 = Axt + But for all 0 ≤ t ≤ T − 1 (7)

x0 = initial condition (8)

uLB � ut � uUB for all 0 ≤ t ≤ T − 1. (9)
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CVXPY: Convex Optimization in Python
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Problem Objects in CVXPY

Instantiate by specifying an objective function and constraints.

prob = cvx.Problem(objective, constraints)

Specify a decision variable x = cvx.Variable(n).

The objective is an expression, i.e. a function of the decision variable.

The constraints is a list of constraint objects.

Use prob.solve() to solve the problem.

Use prob.status to see if the optimization was successful.

The solution can then be found at x.value

The objective value of the solution can be found at prob.value

AA 203 Recitation #1 Convex Optimization & Optimization Tools April 9th, 2021 31 / 38



Least Squares in CVXPY

Recall the Least squares problem:

min
x∈Rm

||Ax − b||22

where A ∈ Rn×m, b ∈ Rn.

Problem setup

import numpy as np

import cvxpy as cvx

n = 10

m = 5

A = np.random.normal(0,1,(n,m))

b = np.random.normal(0,1,(n,))
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Least Squares in CVXPY

Solving the problem

x = cvx.Variable(m)

objective = cvx.Minimize(cvx.sum_squares(A @ x - b))

constraints = []

prob = cvx.Problem(objective, constraints)

prob.solve()

print(prob.status)

print(prob.value) # optimal objective value

print(x.value) # get the optimal solution
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Discrete LQR in CVXPY

Recall the Discrete LQR problem:

minimize
u∈RT

1

2
x>TQT xT +

1

2

T−1∑
t=0

x>t Qxt + u>t Rut

subject to xt+1 = Axt + But for all 0 ≤ t ≤ T − 1

x0 = initial condition

uLB � ut � uUB for all 0 ≤ t ≤ T − 1.
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Discrete LQR in CVXPY

Problem setup

import numpy as np

import cvxpy as cvx

n = 5 # state dimension (x)

m = 5 # control dimenion (u)

T = 20 # number of timesteps in planning horizon

u_bound = 1.0 # bound on control effort

Q = np.eye(n) # state deviation cost

R = 2*np.eye(m) # control effort cost

A = np.random.normal(0,1,(n,n)) # dynamics

B = np.random.normal(0,1,(n,m))

x_0 = np.random.normal(0,1,(n,)) # initial condition
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Discrete LQR in CVXPY

Iterative building of objective and constraints

X = {}

U = {}

cost_terms = []

constraints = []
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Discrete LQR in CVXPY

Iterative building of objective and constraints

for t in range(T):

X[t] = cvx.Variable(n) # state variable for time t

U[t] = cvx.Variable(m) # control variable for time t

cost_terms.append( cvx.quad_form(X[t],Q) ) # state cost

cost_terms.append( cvx.quad_form(U[t],R) ) # control cost

constraints.append( cvx.norm(U[t],"inf") <= u_bound ) # control effort

if (t == 0):

constraints.append( X[t] == x_0) # initial condition

if (t < T-1 and t > 0):

# dynamics constraint

constraints.append( A @ X[t-1] + B @ U[t-1] == X[t] )
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Discrete LQR in CVXPY

Solving the Problem

objective = cvx.Minimize(cvx.sum(cost_terms))

prob = cvx.Problem(objective, constraints)

prob.solve()

print(prob.status) # optimal, infeasible, etc.

print(prob.value) # optimal objective value

print(U[0].value) # optimal control
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