AA203 Optimal and Learning-based Control

Optimization theory

Outline

1. Unconstrained optimization

- 2. Computational methods for unconstrained optimization
- 3. Optimization with equality constraints
- 4. Optimization with inequality constraints

Unconstrained optimization

Unconstrained non-linear program

 $\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x})$

• *f* usually assumed continuously differentiable (and often twice continuously differentiable)

Local and global minima

• A vector \mathbf{x}^* is said to be an unconstrained *local* minimum if $\exists \epsilon > 0$ such that

 $f(\mathbf{x}^*) \le f(\mathbf{x}), \qquad \forall \mathbf{x} | ||\mathbf{x} - \mathbf{x}^*|| < \epsilon$

 A vector x^{*} is said to be an unconstrained global minimum if

$$f(\mathbf{x}^*) \le f(\mathbf{x}), \qquad \forall \mathbf{x} \in \mathbb{R}^n$$

• **x**^{*} is a strict local/global minimum if the inequality is strict

Necessary conditions for optimality

Key idea: compare cost of a vector with cost of its close neighbors

• Assume $f \in C^1$, by using Taylor series expansion

$$f(\mathbf{x}^* + \Delta \mathbf{x}) - f(\mathbf{x}^*) \approx \nabla f(\mathbf{x}^*)' \Delta \mathbf{x}$$

• If $f \in C^2$

$$f(\mathbf{x}^* + \Delta \mathbf{x}) - f(\mathbf{x}^*) \approx \nabla f(\mathbf{x}^*)' \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}' \nabla^2 f(\mathbf{x}^*) \Delta \mathbf{x}$$

Necessary conditions for optimality

 We expect that if x^{*} is an unconstrained local minimum, the first order cost variation due to a small variation Δx is nonnegative, i.e.,

$$\nabla f(\mathbf{x}^*)' \Delta \mathbf{x} = \sum_{i=1}^n \frac{\partial f(\mathbf{x}^*)}{\partial x_i} \Delta x_i \ge 0$$

 By taking Δx to be positive and negative multiples of the unit coordinate vectors, we obtain conditions of the type

$$\frac{\partial f(\mathbf{x}^*)}{\partial x_i} \ge 0, \quad \text{and} \quad \frac{\partial f(\mathbf{x}^*)}{\partial x_i} \le 0$$

• Equivalently we have the necessary condition

$$\nabla f(\mathbf{x}^*) = 0$$
 (\mathbf{x}^* is said a stationary point)

Necessary conditions for optimality $\nabla f(x^*) = 0$

 $\nabla f(\mathbf{x}^*) = 0$ (\mathbf{x}^* is said a stationary point)

AA 203 | Lecture 3

Necessary conditions for optimality

• Of course, also the second order cost variation due to a small variation Δx must be non-negative

$$\nabla f(\mathbf{x}^*)' \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}' \nabla^2 f(\mathbf{x}^*) \Delta \mathbf{x} \ge 0$$

• Since $\nabla f(\mathbf{x}^*)' \Delta \mathbf{x} = 0$, we obtain $\Delta \mathbf{x}' \nabla^2 f(\mathbf{x}^*) \Delta \mathbf{x} \ge 0$. Hence

 $\nabla^2 f(\mathbf{x}^*)$ has to be positive semidefinite

Necessary conditions for optimality

Theorem: NOC

Let \mathbf{x}^* be an unconstrained local minimum of $f : \mathbb{R}^n \to \mathbb{R}$ and assume that f is C^1 in an open set S containing \mathbf{x}^* . Then

$$abla f(\mathbf{x}^*) = 0$$
 (first order NOC)

If in addition $f \in C^2$ within S,

 $abla^2 f(\mathbf{x}^*)$ positive semidefinite (second order NOC)

Sufficient conditions for optimality

• Assume that \boldsymbol{x}^* satisfies the first order NOC

 $\nabla f(\mathbf{x}^*) = 0$

 and also assume that the second order NOC is strengthened to

 $\nabla^2 f(\mathbf{x}^*)$ positive *definite*

• Then, for all $\Delta \mathbf{x} \neq 0$, $\Delta \mathbf{x}' \nabla^2 f(\mathbf{x}^*) \Delta \mathbf{x} > 0$. Hence, *f* tends to increase *strictly* with small excursions from \mathbf{x}^* , suggesting SOC...

Sufficient conditions for optimality

Theorem: SOC

Let $f : \mathbb{R}^n \mapsto \mathbb{R}$ be C^2 in an open set S. Suppose that a vector $\mathbf{x}^* \in S$ satisfies the conditions

$$\nabla f(\mathbf{x}^*) = 0$$
 and $\nabla^2 f(\mathbf{x}^*)$ positive definite

Then \mathbf{x}^* is a strict unconstrained local minimum of f

Special case: convex optimization

A subset C of \mathbb{R}^n is called convex if

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in C, \quad \forall \mathbf{x}, \mathbf{y} \in C, \forall \alpha \in [0, 1]$$

Let C be convex. A function $f: C \to \mathbb{R}$ is called convex if

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

Special case: convex optimization

Let $f: C \to \mathbb{R}$ be a convex function over a convex set C

- A local minimum of *f* over *C* is also a global minimum over *C*. If in addition *f* is strictly convex, then there exists at most one global minimum of *f*
- If f is in C^1 and convex, and the set C is open, $\nabla f(\mathbf{x}^*) = 0$ is a necessary and sufficient condition for a vector $\mathbf{x}^* \in C$ to be a global minimum over C

Discussion

- Optimality conditions are important to filter candidates for global minima
- They often provide the basis for the design and analysis of optimization algorithms
- They can be used for sensitivity analysis

Outline

1. Unconstrained optimization

2. Computational methods for unconstrained optimization

- 3. Optimization with equality constraints
- 4. Optimization with inequality constraints

Computational methods (unconstrained case)

Key idea: iterative descent. We start at some point \mathbf{x}^0 (initial guess) and successively generate vectors $\mathbf{x}^1, \mathbf{x}^2, \dots$ such that f is decreased at each iteration, i.e.,

$$f(\mathbf{x}^{k+1}) \le f(\mathbf{x}^k), \qquad k = 0, 1, \dots$$

The hope is to decrease f all the way to the minimum

Gradient methods

Given $\mathbf{x} \in \mathbb{R}^n$ with $\nabla f(\mathbf{x}) \neq 0$, consider the half line of vectors

$$\mathbf{x}_{\alpha} = \mathbf{x} - \alpha \nabla f(\mathbf{x}), \qquad \forall \alpha \ge 0$$

From first order Taylor expansion (α small)

$$f(\mathbf{x}_{\alpha}) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})'(\mathbf{x}_{\alpha} - \mathbf{x}) = f(\mathbf{x}) - \alpha \|\nabla f(\mathbf{x})\|^2$$

So for α small enough $f(\mathbf{x}_{\alpha})$ is smaller than $f(\mathbf{x})$!

Gradient methods

Carrying this idea one step further, consider the half line of vectors

$$\mathbf{x}_{\alpha} = \mathbf{x} + \alpha \, \mathbf{d}, \qquad \forall \alpha \ge 0$$

where $\nabla f(\mathbf{x})' \mathbf{d} < \mathbf{0}$ (angle > 90°)

By Taylor expansion

$$f(\mathbf{x}_{\alpha}) \approx f(\mathbf{x}) + \alpha \nabla f(\mathbf{x})' \mathbf{d}$$

For small enough α , $f(\mathbf{x} + \alpha \mathbf{d})$ is smaller than $f(\mathbf{x})$!

Gradient methods

Broad and important class of algorithms: gradient methods

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \, \mathbf{d}^k, \qquad k = 0, 1, \dots$$

where if $\nabla f(\mathbf{x}^k) \neq 0$, \mathbf{d}^k is chosen so that

 $\nabla f(\mathbf{x}^k)'\mathbf{d}^k < 0$

and the stepsize α is chosen to be positive

Gradient descent

Most often the stepsize is chosen so that

$$f(\mathbf{x}^k + \alpha^k \, \mathbf{d}^k) < f(\mathbf{x}^k), \qquad k = 0, 1, \dots$$

and the method is called gradient descent. "Tuning" parameters:

- selecting the descent direction
- selecting the stepsize

Selecting the descent direction

General class

$$\mathbf{d}^{k} = -D^{k} \nabla f(\mathbf{x}^{k}), \quad \text{where } D^{k} > 0$$

(Obviously, $\nabla f(\mathbf{x}^{k})' \mathbf{d}^{k} < 0$)

Popular choices:

• Steepest descent: $D^k = I$

• Newton's method:
$$D^k = (\nabla^2 f(\mathbf{x}^k))^{-1}$$
,
provided $\nabla^2 f(\mathbf{x}^k) > 0$

Selecting the stepsize

• Minimization rule: α^k is selected such that the cost function is minimized along the direction \mathbf{d}^k , i.e.,

$$f(\mathbf{x}^k + \alpha^k \mathbf{d}^k) = \min_{\alpha \ge 0} f(\mathbf{x}^k + \alpha \mathbf{d}^k)$$

- Constant stepsize: $\alpha^k = s$
 - the method might diverge
 - convergence rate could be very slow
- Diminishing stepsize: $\alpha^k \to 0$ and $\sum_{k=0}^{+\infty} \alpha^k = \infty$
 - it does not guarantee descent at each iteration

Undiscussed in this class

Mathematical analysis:

- convergence (to stationary points)
- termination criteria
- convergence rate

Derivative-free methods, e.g.,

- coordinate descent
- Nelder-Mead

Constrained optimization

- Constraint set usually specified in terms of equality and inequality constraints
- Sophisticated collection of optimality conditions, involving some auxiliary variables, called Lagrange multipliers

Viewpoints:

- <u>Penalty viewpoint</u>: we disregard the constraints and we add to the cost a high penalty for violating them
- <u>Feasibility direction viewpoint</u>: it relies on the fact that at a local minimum there can be no cost improvement when traveling a small distance along a direction that leads to feasible points

Outline

- 1. Unconstrained optimization
- 2. Computational methods for unconstrained optimization
- 3. Optimization with equality constraints
- 4. Optimization with inequality constraints

Optimization with equality constraints

min $f(\mathbf{x})$ subject to $h_i(\mathbf{x}) = 0, \qquad i = 1, \dots, m$

- $f: \mathbb{R}^n \to \mathbb{R}$ and $h_i: \mathbb{R}^n \to \mathbb{R}$ are C^1
- notation: $\mathbf{h} \coloneqq (h_1, \dots, h_m)$

• Basic Lagrange multiplier theorem: for a given local minimum \mathbf{x}^* there exist scalars $\lambda_1, \ldots, \lambda_m$ called Lagrange multipliers such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla h_i(\mathbf{x}^*) = 0$$

AA 203 | Lecture 3

AA 203 | Lecture 3

• Basic Lagrange multiplier theorem: for a given local minimum \mathbf{x}^* there exist scalars $\lambda_1, \ldots, \lambda_m$ called Lagrange multipliers such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla h_i(\mathbf{x}^*) = 0$$

• Example

$$\begin{array}{ll} \min & x_1 + x_2 \\ \text{subject to} & x_1^2 + x_2^2 = 2 \end{array}$$

 $\begin{array}{ll} \min & x_1 + x_2 \\ \text{subject to} & x_1^2 + x_2^2 = 2 \end{array}$

 $f(\mathbf{x}) = x_1 + x_2$

$$h(\mathbf{x}) = x_1^2 + x_2^2 - 2$$

 $\begin{array}{ll} \min & x_1 + x_2 \\ \text{subject to} & x_1^2 + x_2^2 = 2 \end{array}$

• Basic Lagrange multiplier theorem: for a given local minimum \mathbf{x}^* there exist scalars $\lambda_1, \dots, \lambda_m$ called Lagrange multipliers such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla h_i(\mathbf{x}^*) = 0$$

• Example

$$\min x_1 + x_2$$
 $ext{subject to} x_1^2 + x_2^2 = 2$ $ext{Solution: } \mathbf{x}^* = (-1, -1)$

Lagrange multipliers

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla h_i(\mathbf{x}^*) = 0$$

Interpretations:

- 1. The cost gradient $\nabla f(\mathbf{x}^*)$ belongs to the subspace spanned by the constraint gradients at \mathbf{x}^* . That is, the constrained solution will be at a point of tangency of the constrained cost curves and the constraint function
- 2. The cost gradient $\nabla f(\mathbf{x}^*)$ is orthogonal to the subspace of first order feasible variations

 $V(\mathbf{x}^*) = \left\{ \Delta \mathbf{x} \middle| \nabla h_i(\mathbf{x}^*)' \Delta \mathbf{x} = 0, \ i = 1, \dots, m \right\}$

This is the subspace of variations $\Delta \mathbf{x}$ for which the vector $\mathbf{x} = \mathbf{x}^* + \Delta \mathbf{x}$ satisfies the constraint $\mathbf{h}(\mathbf{x}) = 0$ up to first order. Hence, at a local minimum, the first order cost variation $\nabla f(\mathbf{x}^*)' \Delta \mathbf{x}$ is zero for all variations $\Delta \mathbf{x}$ in this subspace

NOC

Theorem: NOC

Let \mathbf{x}^* be a local minimum of f subject to $\mathbf{h}(\mathbf{x}) = 0$ and assume that the constraint gradients $\nabla h_1(\mathbf{x}^*), \dots, \nabla h_m(\mathbf{x}^*)$ are linearly independent. Then there exists a <u>unique</u> vector $(\lambda_1, \dots, \lambda_m)$, called a Lagrange multiplier vector, such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla h_i(\mathbf{x}^*) = 0$$

2nd order NOC and SOC are provided in the lecture notes

AA 203 | Lecture 3

Discussion

- A feasible vector **x** for which $\{\nabla h_i(\mathbf{x})\}_i$ are linearly independent is called *regular*
- Proof relies on transforming the constrained problem into an unconstrained one
 - 1. penalty approach: we disregard the constraints while adding to the cost a high penalty for violating them → extends to inequality constraints
 - 2. elimination approach: we view the constraints as a system of m equations with n unknowns, and we express m of the variables in terms of the remaining n m, thereby reducing the problem to an unconstrained problem
- There may not exist a Lagrange multiplier for a local minimum that is not regular

The Lagrangian function

• It is often convenient to write the necessary conditions in terms of the Lagrangian function $L: \mathbb{R}^{n+m} \to \mathbb{R}$

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i h_i(\mathbf{x})$$

• Then, if **x**^{*} is a local minimum which is regular, the NOC conditions are compactly written

$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \lambda^*) = 0 \qquad \text{System of } n + m \text{ equations} \\ \nabla_{\lambda} L(\mathbf{x}^*, \lambda^*) = 0 \qquad \text{with } n + m \text{ unknowns} \end{cases}$$

Outline

- 1. Unconstrained optimization
- 2. Computational methods for unconstrained optimization
- 3. Optimization with equality constraints
- 4. Optimization with inequality constraints

Optimization with inequality constraints

 $\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{subject to} & h_i(\mathbf{x}) = 0, \qquad i = 1, \dots, m \\ & g_j(\mathbf{x}) \le 0, \qquad j = 1, \dots, r \end{array}$

- f, h_i, g_j are C^1
- In compact form (ICP problem)

 $\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{subject to} & \mathbf{h}(\mathbf{x}) = 0 \\ & \mathbf{g}(\mathbf{x}) \leq 0 \end{array} \end{array}$

Active constraints

For any feasible point, the set of active inequality constraints is denoted

$$A(\mathbf{x}) := \{ j \mid g_j(\mathbf{x}) = 0 \}$$

If $j \notin A(\mathbf{x})$, then the constraint is *inactive* at \mathbf{x} .

Key points

- if x* is a local minimum of the ICP, then x* is also a local minimum for the identical ICP without the inactive constraints
- at a local minimum, active inequality constraints can be treated to a large extent as equalities

Active constraints

 Hence, if x*is a local minimum of ICP, then x* is also a local minimum for the equality constrained problem

min
$$f(\mathbf{x})$$

subject to $\mathbf{h}(\mathbf{x}) = 0$
 $g_j(\mathbf{x}) = 0, \quad \forall j \in A(\mathbf{x}^*)$

Active constraints

• Thus if \mathbf{x}^* is regular, there exist Lagrange multipliers $(\lambda_1, ..., \lambda_m)$ and $\mu_j^*, j \in A(\mathbf{x}^*)$, such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(\mathbf{x}^*) + \sum_{j \in A(\mathbf{x}^*)} \mu_j^* \nabla g_j(\mathbf{x}^*) = 0$$

• or equivalently

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(\mathbf{x}^*) + \sum_{j=1}^r \mu_j^* \nabla g_j(\mathbf{x}^*) = 0$$
$$\mu_j^* = 0 \quad \forall j \notin A(\mathbf{x}^*) \qquad \text{(indeed } \mu_j^* \ge 0\text{)}$$

Karush-Kuhn-Tucker NOC

Define the Lagrangian function

$$L(\mathbf{x}, \lambda, \mu) := f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i h_i(\mathbf{x}) + \sum_{j=1}^{r} \mu_j g_j(\mathbf{x})$$

Theorem: KKT NOC

Let \mathbf{x}^* be a local minimum for ICP where f, h_i , g_j are C^1 and assume \mathbf{x}^* is regular (equality + active inequality constraints gradients are linearly independent). Then, there exist <u>unique</u> Lagrange multiplier vectors $(\lambda_1^*, \dots, \lambda_m^*)$, $(\mu_1^*, \dots, \mu_r^*)$ such that

$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \lambda^*, \mu^*) = 0$$

$$\mu_j^* \ge 0, \quad j = 1, \dots, r$$

$$\mu_j^* = 0 \qquad \forall j \notin A(\mathbf{x}^*)$$

Example

min $x^2 + y^2$ s.t. $2x + y \le 2$

Next time

Dynamic programming

