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1. Unconstrained optimization
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Unconstrained optimization

Unconstrained non-linear program

min f(x)

* f usually assumed continuously
differentiable (and often twice
continuously differentiable)
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Local and global minima

 Avector x™ is said to be an unconstrained
[ocal minimum if 3e > 0 such that

f(x*) < f(x),  vx|lx—x"| <e

e Avector x™is said to be an unconstrained
global minimum if

fx7) < f(x), VxeR"

* X" is a strict local/global minimum if the
inequality is strict
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____________________________________________________________
Necessary conditions for optimality

Key idea: compare cost of a vector with cost
of its close neighbors

« Assume f € C1, by using Taylor series
expansion

f(x*+ Ax) — f(x*) = Vf(x") Ax
*If f € C*

f(x*+ Ax) — f(x*) = Vf(x*) Ax + %AX,VZf(X*)AX
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Necessary conditions for optimality

* We expect thatif x™ is an unconstrained local
minimum, the first order cost variation due to
a small variation Ax is nonnegative, i.e.,

" — Of(x*)
Vix*)Ax = ; P Az; >0
* By taking Ax to be positive and negative

multiples of the unit coordinate vectors, we
obtain conditions of the type

of(x*) of(x*)

* Equivalently we have the necessary condition

>0, and

<0

Vfx*)=0 (x* is said a stationary point)
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Necessary conditions for optimality

Vx*)=0 (x™ is said a stationary point)
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Necessary conditions for optimality

* Of course, also the second order cost variation due to a
small variation Ax must be non-negative

Vix*)Ax + %AX,VQf(X*)AX >0

* Since Vf (x*)'Ax=0, we obtain AX'V?f (x*)Ax = 0. Hence

VZ f(x*) has to be positive semidefinite
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Necessary conditions for optimality

Theorem: NOC

Let x*be an unconstrained local minimum of f: R™ » R and assume
that fis C' in an open set S containing x*. Then

Vf(x*)=0 (first order NOC)

If in addition f € C# within S,

V2 f(x*) positive semidefinite (second order NOC)
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Sufficient conditions for optimality

 Assume that x*satisfies the first order NOC
Vix*)=0

* and also assume that the second order NOC is
strengthened to

V2 f(x*) positive definite

* Then, for all Ax # 0, AX'V?f(x*)Ax > 0. Hence,
f tends to increase strictly with small
excursions from x*, suggesting SOC...
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Sufficient conditions for optimality

Theorem: SOC

Let f:R™ » R be C?inan open setS. Suppose that a vector x* €
S satisfies the conditions

Vf(x*)=0 and VZ f(x*) positive definite

Then x* is a strict unconstrained local minimum of f
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Special case: convex optimization

A subset C of R" is called convex if
ax+ (1—a)yeC, Vx,ye (CVace]0,1]

Let C be convex. Afunction f: C — Riis
called convex if

flax+ (1 - a)y) < af(x)+ (1 -a)f(y)
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Special case: convex optimization

Let f: C = R be a convex function over a
convex set C

* Alocal minimum of f over C is also a
global minimum over C. If in addition f is
strictly convex, then there exists at most
one global minimum of f

* If fisin C! and convex, and the set C is
open, Vf(x*) = 0 isanecessary and
sufficient condition for a vector x™ € C to
be a global minimum over C
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Discussion

* Optimality conditions are important to
filter candidates for global minima

* They often provide the basis for the design
and analysis of optimization algorithms

* They can be used for sensitivity analysis
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2. Computational methods for unconstrained optimization
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Computational methods (unconstrained case)

Key idea: iterative descent. We start at some point x°
(initial guess) and successively generate vectors
x1,x?%, ... such that f is decreased at each iteration, i.e.,

FE) < f(xR),  k=0,1,...

The hope is to decrease f all the way to the minimum
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Gradient methods

Given x € R™ with Vf(x) # 0, consider the half
line of vectors

X, =X — aV f(x), Va >0

From first order Taylor expansion (a small)
f(Xa) = f(x) + V(%) (Xa — %) = f(x) — af|Vf(x)]*

So for a small enough f(x,) is smaller than f(x)!
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Gradient methods

Carrying this idea one step further, consider the half
line of vectors

X, =X+ ad, Va > 0
where Vf(x)'d < 0 (angle > 90°)

By Taylor expansion

f(xa) = f(x) +aVf(x)'d

For small enough a, f (X + ad) is smaller than f(x)!
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Gradient methods

Broad and important class of algorithms:
gradient methods

xFtl = x* 4 oF d”, k=0,1,...
where if Vf(xX) # 0, d* is chosen so that
Vf(xF)d* <0

and the stepsize a is chosen to be positive
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Gradient descent

Most often the stepsize is chosen so that
f(xF+ad®) < f(xF), k=0,1,...

and the method is called gradient descent.
“Tuning” parameters:

* selecting the descent direction
* selecting the stepsize

4/14/21 AA 203 | Lecture 3 20



Selecting the descent direction

General class
d* = —D*Vf(x*),  where D¥ > 0
(Obviously, Vf(x")'dk <0)

Popular choices:
* Steepest descent: D* =T

e Newton's method: D* = (V2j‘"(xl")),_1

provided V2 f(x*) > 0
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Selecting the stepsize

« Minimization rule: a¥ is selected such that the cost
function is minimized along the direction d¥, i.e.,

f(xF + afd*) = m>118 f(x* + ad®)

» Constant stepsize: a® = s

* the method might diverge
* convergence rate could be very slow

» Diminishing stepsize: a® —» 0 and Y%, a* = o
* it does not guarantee descent at each iteration
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Undiscussed in this class

Mathematical analysis:
 convergence (to stationary points)
* termination criteria

* convergence rate

Derivative-free methods, e.g.,
e coordinate descent
 Nelder-Mead
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Constrained optimization

 Constraint set usually specified in terms
of equality and inequality constraints

 Sophisticated collection of optimality
conditions, involving some auxiliary
variables, called Lagrange multipliers

Viewpoints:

* Penalty viewpoint: we disreﬁard the
constraints and we add to the cost a high
penalty for violating them

* Feasibility direction viewpoint: it relies on
the tact that at a local minimum there
can be no cost improvement when
traveling a small distance along a
direction that leads to feasible points
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3. Optimization with equality constraints
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Optimization with equality constraints

min f(x)

subject to h;(x) =0, b= 1os 55000

« f:R™ »> Rand h;: R® -» RareC?
* notation: h := (hy, ..., hy,)
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Lagrange multipliers

* Basic Lagrange multiplier theorem: for a given local minimum x*
there exist scalars 14, ..., 4,,, called Lagrange multipliers such that

VIx*)+ ) AiVhi(x*) =0
=1
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Lagrange multipliers
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Lagrange multipliers
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Lagrange multipliers

* Basic Lagrange multiplier theorem: for a given local minimum x*
there exist scalars 14, ..., 4,,, called Lagrange multipliers such that

VIx*)+ ) AiVhi(x*) =0
=1

* Example
min x1 + o

subject to z% + 25 = 2
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Lagrange multipliers

min xi + xo

subject to  x% + 23 = 2

f (X) = X1+ I9
2.0
15 N\
1.0 N
N
i 3
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Lagrange multipliers

min xjp + o

subject to x2 + 3 = 2 i
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Lagrange multipliers

* Basic Lagrange multiplier theorem: for a given local minimum x*
there exist scalars 14, ..., 4,,, called Lagrange multipliers such that

VIx*)+ ) AiVhi(x*) =0
=1

* Example
min x1 + o

subject to z% + 25 = 2 Solution: x*= (-1, -1)
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Lagrange multipliers
V(™) + zm: eVl )=0

Interpretations:

1. Thecost gradient Vf (x*) belongs to the subspace
spanned by the constraint %radlents atx*. Thatis,
the constrained solution will be at a point of
tangency of the constrained cost curves and the
constraint function

2. Thecostgradient Vf(x”) is orthogonal to the
subspace of first order féasible variations

VA(oe* ) = Jeteoc Ruslloc® ) A = Oy 4 = Lyemmgil}

This is the subspace of variations Ax for which the
vector X = X* + Ax satisfies the constrainth(x) = 0
up to first order. Hence, at a local minimum, the first
order cost variation Vf(x*)'Ax is zero for al
variations Ax in this subspace
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NOC

Theorem: NOC

Let x* be a local minimum of f subject to h(x) = 0 and assume that
the constraint gradients Vh, (x¥), ..., Vh,, (X*) are linearly

independent. Then there exists a unique vector (44, ..., 4,,), called a
Lagrange multiplier vector, such that

Vx4 AVhi(x*) =0
=1

2"d order NOC and SOC are provided in the lecture notes
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Discussion

* Afeasible vector x for WhiChéVhi(X)}i are
linearly independent is called reqular

* Proof relies on transforming the constrained
problem into an unconstrained one
1. penalty approach: we disregard the constraints

while adding to the cost a high penalty for .
violating them — extends to inequality constraints

2. elimination approach: we view the constraints as a
system of m equations with n unknowns, and we
express m of the variables in terms of the
remaining n — m, thereby reducing the problem to
an unconstrained problem

* There may not exist a Lagrange multiplier for a
local minimum that is not regular

4/14/21 AA 203 | Lecture 3 36



The Lagrangian function

* |tis often convenient to write the necessary conditions
in terms of the Lagrangian function L: R™*™ —» R

L(x,\) = f(x) + Z Aihi(x)

* Then, if x* is a local minimum which is regular, the
NOC conditions are compactly written

VxL(x", \*)
V)\L(X*, /\*)

0 System of n + m equations
with n + m unknowns
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Outline

4. Optimization with inequality constraints
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Optimization with inequality constraints

min  f(x)
subject to  h;(x) =0 =2 Tosng m
g9;(x) <0 j=1,..., r

*f,h;, gjareC’
* In compact form (ICP problem)

min  f(x)
subject to h(x)

0
g(x) <0

IA
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Active constraints

For any feasible point, the set of active inequality
constraints is denote

A(x) == {j] g;(x) = 0}

Ifj € A(X), then the constraintis inactive at x.

Key points

* if X" is a local minimum of the ICP, then x™ is
also a local minimum for the identical ICP
without the inactive constraints

* at a local minimum, active inequality
constraints can be treated to a large extent as

equalities
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Active constraints

* Hence, if Xx*is a local minimum of ICP, then
x* is also a local minimum for the equality
constrained problem

min f(x

)
subject to h(x) =
9(x) =
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Active constraints

* Thusifx™ isregular, there exist Lagrange multipliers
(A1, -, Amp) @and pj, j € A(X"), such that

Vi) 4D ANVh(E)+ Y Ve (x*) =0
=1

JEA(x")

* or equivalently

+Z)\*Vh +Zu3vgj *) =0

71=1

p; =0 Vj §é A(x™) (indeed p > 0)
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Karush-Kuhn-Tucker NOC

Define the Lagrangian function

L(x, A, 1) ZA hi(x) + Y pig5(x)
j=1

Theorem: KKT NOC

Let x* be a local minimum for ICP where f, h;, g; are C! and assume x* is

regular (equality + active inequality constraints gradients are linearly
independent). Then, there exist unique Lagrange multiplier vectors

(AL, oy Ary), (U7, ..., uy) such that
VxL(x*,\*, u*) =0
p:; 20, j=1,...,r
p; =0 Vj¢ Ax)
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Example
min x?% + y?
s.t. 2x+y <2

Solution: (0,0)
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Next time

Dynamic programming
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