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Unconstrained optimization
Unconstrained non-linear program

• 𝑓 usually assumed continuously 
differentiable (and often twice 
continuously differentiable)
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Local and global minima
• A vector 𝐱∗ is said to be an unconstrained 
localminimum if ∃𝜖 > 0 such that

• A vector 𝐱∗ is said to be an unconstrained 
globalminimum if

• 𝐱∗ is a strict local/global minimum if the 
inequality is strict
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Necessary conditions for optimality
Key idea: compare cost of a vector with cost 
of its close neighbors
• Assume 𝑓 ∈ 𝐶!, by using Taylor series 

expansion

• If 𝑓 ∈ 𝐶"
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Necessary conditions for optimality
• We expect that if 𝐱∗ is an unconstrained local 

minimum, the first order cost variation due to 
a small variation Δ𝐱 is nonnegative, i.e., 

• By taking Δ𝐱 to be positive and negative 
multiples of the unit coordinate vectors, we 
obtain conditions of the type

• Equivalently we have the necessary condition 
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Necessary conditions for optimality
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Necessary conditions for optimality
• Of course, also the second order cost variation due to a 

small variation Δ𝐱 must be non-negative

• Since ∇𝑓(x∗)′∆x=0, we obtain ∆x$∇"𝑓(x∗)∆x ≥ 0. Hence
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Necessary conditions for optimality

Theorem: NOC 
Let 𝐱∗be an unconstrained local minimum of 𝑓:ℝ% ↦ℝ and assume 
that 𝑓 is 𝐶! in an open set 𝑆 containing 𝐱∗. Then 

If in addition 𝑓 ∈ 𝐶" within 𝑆,
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(first order NOC)

positive semidefinite (second order NOC)
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Sufficient conditions for optimality
• Assume that 𝐱∗satisfies the first order NOC

• and also assume that the second order NOC is 
strengthened to

• Then, for all Δ𝐱 ≠ 0, ∆x$∇"𝑓(𝐱∗)∆x > 0. Hence, 
𝑓 tends to increase strictlywith small 
excursions from 𝐱∗, suggesting SOC…
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positive definite
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Sufficient conditions for optimality
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Theorem: SOC 
Let 𝑓:ℝ% ↦ℝ be 𝐶" in an open set 𝑆. Suppose that a vector 𝐱∗ ∈
𝑆 satisfies the conditions

Then 𝐱∗ is a strict unconstrained local minimum of 𝑓

and positive definite
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Special case: convex optimization

A subset 𝐶 of ℝ" is called convex if

Let 𝐶 be convex. A function 𝑓: 𝐶 → ℝ is 
called convex if
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Special case: convex optimization
Let 𝑓: 𝐶 → ℝ be a convex function over a 
convex set 𝐶
• A local minimum of 𝑓 over 𝐶 is also a 

global minimum over 𝐶. If in addition 𝑓 is 
strictly convex, then there exists at most 
one global minimum of 𝑓
• If 𝑓 is in 𝐶# and convex, and the set 𝐶 is 

open, ∇𝑓(x∗) = 0 is a necessary and 
sufficient condition for a vector x∗ ∈ 𝐶 to 
be a global minimum over 𝐶
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• Optimality conditions are important to 
filter candidates for global minima 
• They often provide the basis for the design 

and analysis of optimization algorithms
• They can be used for sensitivity analysis
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Discussion
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Computational methods (unconstrained case)

Key idea: iterative descent. We start at some point x&
(initial guess) and successively generate vectors 
x!, x", … such that 𝑓 is decreased at each iteration, i.e.,

The hope is to decrease 𝑓 all the way to the minimum
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Gradient methods
Given x ∈ ℝ% with ∇𝑓 𝐱 ≠ 0, consider the half 
line of vectors

From first order Taylor expansion (𝛼 small)

So for 𝛼 small enough 𝑓(𝐱𝛂) is smaller than 𝑓(𝐱)!

4/14/21 17AA 203 | Lecture 3



Gradient methods
Carrying this idea one step further, consider the half 
line of vectors

where ∇𝑓 𝐱 $𝐝 < 𝟎 (angle > 90∘)

By Taylor expansion

For small enough 𝛼, 𝑓(𝐱 + 𝛼𝐝) is smaller than 𝑓(𝐱)!
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Gradient methods
Broad and important class of algorithms: 
gradient methods

where if ∇𝑓 𝐱) ≠ 0, 𝐝) is chosen so that

and the stepsize 𝛼 is chosen to be positive  
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Gradient descent

Most often the stepsize is chosen so that

and the method is called gradient descent. 
“Tuning” parameters:
• selecting the descent direction
• selecting the stepsize
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Selecting the descent direction
General class

(Obviously, ∇𝑓 𝐱* $𝐝* < 0)

Popular choices:
• Steepest descent:

• Newton's method:                                        ,
provided
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Selecting the stepsize
• Minimization rule: 𝛼* is selected such that the cost 

function is minimized along the direction 𝐝*, i.e., 

• Constant stepsize: 𝛼* = 𝑠
• the method might diverge
• convergence rate could be very slow  

• Diminishing stepsize: 𝛼* → 0 and ∑*+&,- 𝛼* = ∞
• it does not guarantee descent at each iteration
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Undiscussed in this class

Mathematical analysis:
• convergence (to stationary points)
• termination criteria 
• convergence rate

Derivative-free methods, e.g., 
• coordinate descent
• Nelder-Mead
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Constrained optimization
• Constraint set usually specified in terms 

of equality and inequality constraints
• Sophisticated collection of optimality 

conditions, involving some auxiliary 
variables, called Lagrange multipliers

Viewpoints:
• Penalty viewpoint: we disregard the 

constraints and we add to the cost a high 
penalty for violating them 
• Feasibility direction viewpoint: it relies on 

the fact that at a local minimum there 
can be no cost improvement when 
traveling a small distance along a 
direction that leads to feasible points
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Optimization with equality constraints

• 𝑓:ℝ% → ℝ and ℎ.: ℝ% → ℝ are 𝐶!

• notation: 𝐡 ≔ (ℎ!, … , ℎ/)
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Lagrange multipliers

• Basic Lagrange multiplier theorem: for a given local minimum 𝐱∗
there exist scalars 𝜆!, … , 𝜆/ called Lagrange multipliers such that
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Lagrange multipliers
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Lagrange multipliers
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Lagrange multipliers

• Basic Lagrange multiplier theorem: for a given local minimum 𝐱∗
there exist scalars 𝜆!, … , 𝜆/ called Lagrange multipliers such that

• Example
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Lagrange multipliers
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f(x) = x1 + x2
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Lagrange multipliers
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Lagrange multipliers

• Basic Lagrange multiplier theorem: for a given local minimum 𝐱∗
there exist scalars 𝜆!, … , 𝜆/ called Lagrange multipliers such that

• Example

Solution: 𝐱∗= (-1, -1)
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Lagrange multipliers

Interpretations:
1. The cost gradient ∇𝑓(𝐱∗) belongs to the subspace 

spanned by the constraint gradients at 𝐱∗. That is, 
the constrained solution will be at a point of 
tangency of the constrained cost curves and the 
constraint function 

2. The cost gradient ∇𝑓(𝐱∗) is orthogonal to the 
subspace of first order feasible variations

This is the subspace of variations Δ𝐱 for which the 
vector 𝐱 = 𝐱∗ + Δ𝐱 satisfies the constraint 𝐡 𝐱 = 0
up to first order. Hence, at a local minimum, the first 
order cost variation ∇𝑓 𝐱∗ "Δ𝒙 is zero for all 
variations Δ𝐱 in this subspace 
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NOC

Theorem: NOC
Let 𝐱∗ be a local minimum of 𝑓 subject to 𝐡 𝐱 = 0 and assume that 
the constraint gradients ∇ℎ!(𝐱∗), … , ∇ℎ/(𝐱∗) are linearly 
independent. Then there exists a unique vector (𝜆!, … , 𝜆/), called a 
Lagrange multiplier vector, such that 

2nd order NOC and SOC are provided in the lecture notes 
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Discussion
• A feasible vector 𝐱 for which ∇ℎ$ 𝐱 $ are 

linearly independent is called regular
• Proof relies on transforming the constrained 

problem into an unconstrained one
1. penalty approach: we disregard the constraints 

while adding to the cost a high penalty for 
violating them → extends to inequality constraints

2. elimination approach: we view the constraints as a 
system of 𝑚 equations with 𝑛 unknowns, and we 
express 𝑚 of the variables in terms of the 
remaining 𝑛 −𝑚, thereby reducing the problem to 
an unconstrained problem

• There may not exist a Lagrange multiplier for a 
local minimum that is not regular
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The Lagrangian function
• It is often convenient to write the necessary conditions 

in terms of the Lagrangian function 𝐿:ℝ"#$ → ℝ

• Then, if 𝐱∗ is a local minimum which is regular, the 
NOC conditions are  compactly written

System of 𝑛 +𝑚 equations 
with 𝑛 +𝑚 unknowns
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Optimization with inequality constraints

• 𝑓, ℎ., 𝑔0 are 𝐶!

• In compact form (ICP problem)
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Active constraints
For any feasible point, the set of active inequality 
constraints is denoted

If 𝑗 ∉ 𝐴(𝐱), then the constraint is inactive at 𝐱.

Key points
• if 𝐱∗ is a local minimum of the ICP, then 𝐱∗ is 

also a local minimum for the identical ICP 
without the inactive constraints
• at a local minimum, active inequality 

constraints can be treated to a large extent as 
equalities 
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Active constraints

• Hence, if 𝐱∗is a local minimum of ICP, then 
𝐱∗ is also a local minimum for the equality
constrained problem 
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Active constraints

• Thus if 𝐱∗ is regular, there exist Lagrange multipliers 
(𝜆%, … , 𝜆$) and 𝜇&∗, 𝑗 ∈ 𝐴(𝐱∗), such that

• or equivalently
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Karush-Kuhn-Tucker NOC
Define the Lagrangian function

Theorem: KKT NOC
Let 𝐱∗ be a local minimum for ICP where 𝑓, ℎ$, 𝑔% are 𝐶# and assume 𝐱∗ is 
regular (equality + active inequality constraints gradients are linearly 
independent). Then, there exist unique Lagrange multiplier vectors 
(𝜆#∗ , … , 𝜆&∗ ), 𝜇#∗ , … , 𝜇'∗ such that

4/14/21 43AA 203 | Lecture 3

<latexit sha1_base64="9vuL1YppBO/oIgD+HkA/SECEeqg="></latexit>

L(x,�, µ) := f(x) +
mX

i=1

�ihi(x) +
rX

j=1

µjgj(x)



Example

Solution: (0,0)
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min 𝑥" + 𝑦"
s. t. 2𝑥 + 𝑦 ≤ 2
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Next time

Dynamic programming
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