AA203
Optimal and Learning-based Control

Combining model and policy learning

A Stanford ASEY
&%/ University :

Roadmap

Model-free RL

Control Adaptlve
optimal control
I |] Model-based RL
Feedback control Adaptive control
| Optimaland Unconstrained Constrained
learning control
Open-loop [--------------=mmmmmoom-- > MPC €= oo o mmm oo Closed-loop

Indf;’ect Dir"ect .)
methods methods DP HJB/HJI

I

+ A\ 4 + + +
AA 203 | Lecture 16 LQR iLQR DDP LQR Reachability

5/20/21 analysis

-
Combining MB and MF RL ideas

* Review model-based RL
* Combining model and policy learning in the tabular setting

* Combinations in the nonlinear setting

* Readings:
* R. Sutton and A. Barto. Reinforcement Learning: An Introduction, 2018.
» Several papers, referenced throughout.

5/20/21 AA 203 | Lecture 16 3

Review: model-based RL

Choose initial policy g
Loop over episodes:

Get initial state x

Loop until end of episode:
u « my(x)
Take action u in environment, receive next state x’ and reward r
Update model based on x,u, x’, r

Update policy Ty based on updated model
X« x'

5/20/21 AA 203 | Lecture 16

Dyna: combining model-free and model-based RL

Dyna-Q:
Init Q (x, u), model(x,u) for all x, u; initialize state x
Loop forever:

u « argmax,Q(x,u) (possibly with exploration)
Take action u in environment, receive next state x' and reward r
Qlx,u) « Q(x,u) + a[r + VrrTIﬁXQ(x’,u’) — Q(x,u)]
model(x,u) « x',r
Forn=1,...,N:
x, U < random previously observed state/action pair
x',r < model(x,u)
Qlx,u) « Q(x,u) + a[r + VrrTIﬁXQ(x’,u’) — Q(x,u)]

5/20/21 AA 203 | Lecture 16

e
Dyna performance: I
deterministic maze S i g JV

800

600+

Steps 0 planning steps
per 400 (direct RL only)
epISOde 5 planning steps

Main idea of Dyna: interleave
simulated and real experience in 200
policy optimization. |

50 planning steps

T T T T T 1
2 10 20 30 40 50

Episodes
Allows early model-based training WITHOUT PLANNING (7=0) WITH PLANNING (7=50)
acceleration, without performance " T TS
limitations of model-based s 9N ErEN [
methods. gy EaEar
~ ===

5/20/21 AA 203 | Lecture 16 6

-
How to optimize policy?

Question: what should policy be?

Limited horizon open loop Monte Carlo tree search or search Model predictive control
of finite horizon action sequence

Closed-loop policy optimization Dynamic programming: value Main focus of today’s lecture
iteration or policy iteration

Why do limited search? Typically, if policy optimization is too expensive.
 Example: game of Go or other very large MDPs

5/20/21 AA 203 | Lecture 16 7

Policy optimization with nonlinear dynamics
models

* How can we optimize our policy?

* Simple local approach:
* iLQR

* DDP
* trajectory optimization + time varying LQR

* What about more complex policies than linear feedback?

5/20/21 AA 203 | Lecture 16

Policy optimization with models

* Want to optimize g via
0" = argmaxgE, [V (x)]

Approach: fit model f; (x, u), define value w.r.t. this model as

ys (x) — z Ext’”f»ut"’” [r(xt'ut)]
t

Want to compute gradient of this value w.r.t. policy parameters:
6 «— 60 + aVyVTe ¢ (x)

5/20/21 AA 203 | Lecture 16 9

Case study: PILCO | +

f(xi, ui)

Deisenroth and Rasmussen, Probabilistic inference for - .
learning control, ICML 2011. 54 5 2 0.1 5 4%
* Approach: use Gaussian process for dynamics model _—

* Gives measure of epistemic uncertainty O

* Extremely sample efficient J A e
 Pair with arbitrary (possibly nonlinear) policy S 420,z 3 48

* By propagating the uncertainty in the transitions, i
capture the effect of small amount of data 3

10

5/20/21 AA 203 | Lecture 16

GP reminder

* Gaussian processes: Gaussian distributions
over functions

* Typically, initialize with zero mean; behavior
determined entirely by kernel
cov(x,x") = k(x,x") ——— 3,

e Standard kernel choice: squared exponential, Squared Exponential Kernel

used in PILCO
* Has smooth interpolating behavior /\w

A KA. the Radial Basis Function kernel
—7)?

5/20/21 AA 203 | Lecture 16 11

e
PILCO mechanics

For GP conditioned on data, one step prediction is Gaussian

P(X¢| X1, 0—1) = N(Xt | e, Zt) ;
pe = xXe—1 + B [Ay],
Zt — varf [At] .
withA = x; —x;_1 +€,¢6 ~N(0,Z,), and
ms(X) = Ef[A] =k (K+ 021 ly =k 3,
a?(A*) ="VarplAl = Kue— k! (K +0%I)" 'k,

For k., = k(X, %.), k.. = k(%.,%.),K;; = k(%;, %), with ¥ = [xT,uT].

5/20/21 AA 203 | Lecture 16 12

Uncertainty propagation

* We have the one step posterior predictive

* But, need to make multistep predictions: so, need to derive multi-

step predictive distribution

* Turn to approximating distribution at each time with a Gaussian via

moment matching

5/20/21 AA 203 | Lecture 16

| AN U

-0.5 0 0.5 1

-0.5 0 0.5 1
(X_y:Uy_¢)

Uncertainty propagation

* Because of the squared exponential kernel, mean and variance can be
computed in closed form

* Choose cost

((X) =1- (‘XI)(—”X _ xtarg(‘t ”2/0.(2)

which is similarly squared exponential; thus expected cost can be
computed, factoring in uncertainty.

* Choose also radial basis function or linear policy, to enable analytical
uncertainty propagation

5/20/21 AA 203 | Lecture 16 14

PILCO Summary

* Uncertainty prop: leverage specific form to derive analytical
expressions for mean and variance of trajectory under policy.

e Can use chain rule (aka backprop through time) to compute the
gradient of expected total cost w.r.t. policy parameters

* Algorithm:
* Roll out policy to get new measurements; update model
 Compute (locally) optimal policy via gradient descent
* Repeat

5/20/21 AA 203 | Lecture 16 15

PILCO results

Bd<3cmBlde (3.10)cm de (10,50)cm d > 50cm KK: Ki & Kob hi 1999
100 : Kimura & Kobayashi
D: Doya 2000
C: Coulom 2002
WP: Wawrzynski & Pacut 2004
R: Riedmiller 2005
RT: Raiko & Tornio 2009
vH: van Hasselt 2010

distance distribution in %
required interaction time in s

pilco: Deisenroth & Rasmussen 2011
- i 3 R RT VvH il
timeins P

For more results and algorithm info: Deisenroth, Fox, and Rasmussen, Gaussian Processes for Data-
Efficient Learning in Robotics and Control, TPAMI 2015.

5/20/21 AA 203 | Lecture 16 16

. . . 6
PILCO limitations

E 2r

30

82
* Treatment of uncertainty &

7P —Actual trajectories

* Propagates uncertainty via moment matching, so can’t % | Predicted rajectory

0 0.5 1 1.5 2 25

handle multi-modal outcomes Vs
* Limited in choice of kernel function

3.5
* Doesn’t capture temporal correlation 522 .
i — Actual trajectories
. . 3 o Predicted trajector
* Efficiency 2 oo mecton
* GPs are extremely data efficient; however, very slow £ 1
0.5
* Policy optimization (done after every rollout) can take So —
~ 0 0.5 1 15 2 25
on the order of ~1h Time in's
| Bayesian NP model Deterministic NP model
Learning success 94.52% 0%

5/20/21 AA 203 | Lecture 16 17

What about the same principles with neural
network models?

 McHutchon, Modelling nonlinear dynamical systems with Gaussian
processes, PhD thesis, 2014: particle propagation performs poorly.

* Gal, McAllister, Rasmussen, Improving PILCO with Bayesian neural network
dynamics models, 2017.
e Use a Bayesian network that provides samples from posterior

* Again use moment matching; this time not necessary for analytical variance
computation, but for performance

0.9F — F;:Zp? PILCO
o8 For much deeper discussion of gradient
07| estimation with particles, see:
8 os Parmas, Rasmussen, Peters, Doya, PIPPS:
05 Flexible model-based policy search robust to
- | the curse of chaos, ICML 2018.

10° 10! 10° 10°
Gu et al. (2016) Lillicrap et al. (2016)
Trials (log scale)

5/20/21 AA 203 | Lecture 16 18

-
Policy optimization via backpropagation
through neural network dynamics

* Backpropagate through computation graph of dynamics and policy

* Same instability as shooting methods in trajectory optimization
* However, in shooting methods, each time step is an independent action

* Here, the policy is the same at each time step: so very small changes
in policy dramatically change trajectory
* Accumulated gradients become very large as you backprop further
* Similar to exploding/vanishing gradient problems in recurrent NNs

5/20/21 AA 203 | Lecture 16 19

Solution 1: use policy gradient from model-free RL

* E.g., policy gradient algorithm such as TRPO, PPO, Advantage actor
critic, etc.

* Doesn’t require multiplying many Jacobians, which leads to large
gradient

5/20/21 AA 203 | Lecture 16 20

Example: MBRL for Atari

ms_pacman
crazy climber
asterix

kung fu _master

* Atari pIaying from pixels one of the first major
successes of deep RL o

road_runner

* Seems like quintessential domain in which
model-free makes sense

alien

assault

* Use video prediction model (shown below) +
PPO frostbite

battle_zone
kangaroo
[| up_n_down
| Legend: d .m |
| - — - I jamesbond
| | deconv | [recurrent] [attention| | _
¢ amidar
hero
..................... .7, Prﬁgﬁ‘tgd bank_heist
| 5
s gopher
krull .
N by T demon_attack .
| & 1] 48 [£ =
H T i 33 ﬂ private_eye |[J
Predicted 0 2 4 6 8 10 12 14 16
P Reward 1le5

5/20/21 AA 203 | Lecture 16 21

Aside: Pathwise derivative

5/20/21 AA 203 | Lecture 16 22

Comparing gradient estimators

— Score function Score function + variance reduction — Pathwise — Measure-valued + variance reduction
— Value of the cost - - Derivative of the cost
103 103

~N

[
o

~N
1}

10

10* -

Variance of the estimator for
Variance of the estimator for o

Monte Carlo Gradient Estimation in Machine Learning, Mohamed et al., JIMLR 2020.

5/20/21 AA 203 | Lecture 16 23

Solution 2: Use value function for tail return

* Clavera, Fu, Abbeel, Model-augmented
actor critic: Backpropagating through
paths, ICLR 2020.

 Stochastic policy and dynamics: compute
gradient via pathwise derivative

H-1
J1:(8) =E | +'r(se) + 17 Qs am]

t=0

e Use ensemble of dynamics models, two Q
functions, Dyna-style training

5/20/21 AA 203 | Lecture 16

eturn

R

eturn

erage

AntEnv HalfCheetahEnv

a 10000
2 7500
' 5000
2500
100
. - —— 0
0.25 0.f (1.00 1.25 1.50 0.0 0.2 0.4). €

).O0 0.75 (1.4 £ & !
Time-steps le5 Time-steps

HopperEnv Walker2dEnv

— SVg mbpo = steve = Sac — ours

24

Summary and Conclusion

* Discussed two possible solutions; infinitely many more

* Very busy research direction! Many topics not covered here
* Many possible combinations of planning/control, policies, values, and models

e Quite practical: model learning is data efficient and parameterized
policy is cheap to evaluate at run time

5/20/21 AA 203 | Lecture 16 25

Next time

* Back to optimal control! Indirect methods

5/20/21 AA 203 | Lecture 16 26

