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-
Combining MB and MF RL ideas

* Review model-based RL
* Combining model and policy learning in the tabular setting

* Combinations in the nonlinear setting

* Readings:
* R. Sutton and A. Barto. Reinforcement Learning: An Introduction, 2018.
» Several papers, referenced throughout.
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Review: model-based RL

Choose initial policy g
Loop over episodes:

Get initial state x

Loop until end of episode:
u « my(x)
Take action u in environment, receive next state x’ and reward r
Update model based on x,u, x’, r

Update policy Ty based on updated model
X« x'
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Dyna: combining model-free and model-based RL

Dyna-Q:
Init Q (x, u), model(x,u) for all x, u; initialize state x
Loop forever:

u « argmax,Q(x,u) (possibly with exploration)
Take action u in environment, receive next state x' and reward r
Qlx,u) « Q(x,u) + a[r + VrrTIﬁXQ(x’,u’) — Q(x,u)]
model(x,u) « x',r
Forn=1,...,N:
x, U < random previously observed state/action pair
x',r < model(x,u)
Qlx,u) « Q(x,u) + a[r + VrrTIﬁXQ(x’,u’) — Q(x,u)]
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Dyna performance: I
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How to optimize policy?

Question: what should policy be?

Limited horizon open loop Monte Carlo tree search or search Model predictive control
of finite horizon action sequence

Closed-loop policy optimization Dynamic programming: value Main focus of today’s lecture
iteration or policy iteration

Why do limited search? Typically, if policy optimization is too expensive.
 Example: game of Go or other very large MDPs
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Policy optimization with nonlinear dynamics
models

* How can we optimize our policy?

* Simple local approach:
* iLQR

* DDP
* trajectory optimization + time varying LQR

* What about more complex policies than linear feedback?
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Policy optimization with models

* Want to optimize g via
0" = argmaxgE, [V (x)]

Approach: fit model f; (x, u), define value w.r.t. this model as

ys (x) — z Ext’”f»ut"’” [r(xt'ut)]
t

Want to compute gradient of this value w.r.t. policy parameters:
6 «— 60 + aVyVTe ¢ (x)
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Case study: PILCO | +

f(xi, ui)

Deisenroth and Rasmussen, Probabilistic inference for - .
learning control, ICML 2011. 54 5 2 0.1 5 4%
* Approach: use Gaussian process for dynamics model _—

* Gives measure of epistemic uncertainty O

* Extremely sample efficient J A e
 Pair with arbitrary (possibly nonlinear) policy S 420,z 3 48

* By propagating the uncertainty in the transitions, i
capture the effect of small amount of data 3

10
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GP reminder

* Gaussian processes: Gaussian distributions
over functions

* Typically, initialize with zero mean; behavior
determined entirely by kernel
cov(x,x") = k(x,x") ——— 3,

e Standard kernel choice: squared exponential, Squared Exponential Kernel

used in PILCO
* Has smooth interpolating behavior /\w

A KA. the Radial Basis Function kernel
—7)?
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e
PILCO mechanics

For GP conditioned on data, one step prediction is Gaussian

P(X¢| X1, 0—1) = N(Xt | e, Zt) ;
pe = xXe—1 + B [Ay],
Zt — varf [At] .
withA = x; —x;_1 +€,¢6 ~N(0,Z,), and
ms(X) = Ef[A] =k (K+ 021 ly =k 3,
a?(A*) ="VarplAl = Kue— k! (K +0%I)" 'k,

For k., = k(X, %.), k.. = k(%.,%.),K;; = k(%;, %), with ¥ = [xT,uT].
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Uncertainty propagation

* We have the one step posterior predictive

* But, need to make multistep predictions: so, need to derive multi-

step predictive distribution

* Turn to approximating distribution at each time with a Gaussian via

moment matching
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Uncertainty propagation

* Because of the squared exponential kernel, mean and variance can be
computed in closed form

* Choose cost

((X) =1- (‘XI)(—”X _ xtarg(‘t ”2/0.(2)

which is similarly squared exponential; thus expected cost can be
computed, factoring in uncertainty.

* Choose also radial basis function or linear policy, to enable analytical
uncertainty propagation
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PILCO Summary

* Uncertainty prop: leverage specific form to derive analytical
expressions for mean and variance of trajectory under policy.

e Can use chain rule (aka backprop through time) to compute the
gradient of expected total cost w.r.t. policy parameters

* Algorithm:
* Roll out policy to get new measurements; update model
 Compute (locally) optimal policy via gradient descent
* Repeat
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PILCO results

Bd<3cmBlde (3.10)cm de (10,50)cm d > 50cm KK: Ki & Kob hi 1999
100 : Kimura & Kobayashi
D: Doya 2000
C: Coulom 2002
WP: Wawrzynski & Pacut 2004
R: Riedmiller 2005
RT: Raiko & Tornio 2009
vH: van Hasselt 2010

distance distribution in %
required interaction time in s

pilco: Deisenroth & Rasmussen 2011
- i 3 R RT VvH il
timeins P

For more results and algorithm info: Deisenroth, Fox, and Rasmussen, Gaussian Processes for Data-
Efficient Learning in Robotics and Control, TPAMI 2015.
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. . . 6
PILCO limitations

E 2r
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82
* Treatment of uncertainty &

7P —Actual trajectories

* Propagates uncertainty via moment matching, so can’t % | Predicted rajectory

0 0.5 1 1.5 2 25

handle multi-modal outcomes Vs
* Limited in choice of kernel function

3.5
* Doesn’t capture temporal correlation 522 .
i — Actual trajectories
. . 3 o Predicted trajector
* Efficiency 2 oo mecton
* GPs are extremely data efficient; however, very slow £ 1
0.5
* Policy optimization (done after every rollout) can take So —
~ 0 0.5 1 15 2 25
on the order of ~1h Time in's
| Bayesian NP model  Deterministic NP model
Learning success 94.52% 0%
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What about the same principles with neural
network models?

 McHutchon, Modelling nonlinear dynamical systems with Gaussian
processes, PhD thesis, 2014: particle propagation performs poorly.

* Gal, McAllister, Rasmussen, Improving PILCO with Bayesian neural network
dynamics models, 2017.
e Use a Bayesian network that provides samples from posterior

* Again use moment matching; this time not necessary for analytical variance
computation, but for performance

0.9F — F;:Zp? PILCO
o8 For much deeper discussion of gradient
07| estimation with particles, see:
8 os Parmas, Rasmussen, Peters, Doya, PIPPS:
05 Flexible model-based policy search robust to
- | the curse of chaos, ICML 2018.

10° 10! 10° 10°
Gu et al. (2016) Lillicrap et al. (2016)
Trials (log scale)
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-
Policy optimization via backpropagation
through neural network dynamics

* Backpropagate through computation graph of dynamics and policy

* Same instability as shooting methods in trajectory optimization
* However, in shooting methods, each time step is an independent action

* Here, the policy is the same at each time step: so very small changes
in policy dramatically change trajectory
* Accumulated gradients become very large as you backprop further
* Similar to exploding/vanishing gradient problems in recurrent NNs
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Solution 1: use policy gradient from model-free RL

* E.g., policy gradient algorithm such as TRPO, PPO, Advantage actor
critic, etc.

* Doesn’t require multiplying many Jacobians, which leads to large
gradient
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Example: MBRL for Atari
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* Atari pIaying from pixels one of the first major
successes of deep RL o
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* Seems like quintessential domain in which
model-free makes sense
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Aside: Pathwise derivative
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Comparing gradient estimators

— Score function Score function + variance reduction —  Pathwise — Measure-valued + variance reduction
— Value of the cost - - Derivative of the cost
103 103

~N

[
o

~N
1}

10

10* -

Variance of the estimator for
Variance of the estimator for o

Monte Carlo Gradient Estimation in Machine Learning, Mohamed et al., JIMLR 2020.
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Solution 2: Use value function for tail return

* Clavera, Fu, Abbeel, Model-augmented
actor critic: Backpropagating through
paths, ICLR 2020.

 Stochastic policy and dynamics: compute
gradient via pathwise derivative

H-1
J1:(8) =E | +'r(se) + 17 Qs am]

t=0

e Use ensemble of dynamics models, two Q
functions, Dyna-style training
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Summary and Conclusion

* Discussed two possible solutions; infinitely many more

* Very busy research direction! Many topics not covered here
* Many possible combinations of planning/control, policies, values, and models

e Quite practical: model learning is data efficient and parameterized
policy is cheap to evaluate at run time
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Next time

* Back to optimal control! Indirect methods
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