AA203
Optimal and Learning-based Control

Direct methods for optimal control, sequential convex programming (SCP)

Stanford "

7 University

Autocnomous Systems Lab



Logistics

* HW2 out (refresh for typo fixes!), due Monday 5/3

* Project midterm report due Friday 5/7
 1/3-quarter feedback

e Course feedback

« HW1 was too long Poor o* |~
.. . Fair 3 respondents 23 %

« Too much optimization o SEdE o -_ Thus far, how would you

theory Very Good srespondens 22 [N rate this course overall?
* TAs are great! Excelent 0% |

* Actionable feedback
Far too slow. 1 respondent g% - v

L More examples Slightly too slow. 0% I HOW WOUId you
i PU b“Sh HW tex ﬁleS Just right. 5 respondents 38 % _ descnbe the pace Of
° Theory 9 practice Slightly too fast. 2 respondents 15 " - AA203 so far?

WithOUt head_bashing Far too fast. 3 respondents 23 % -
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Last time: iLQR and DDP

* Trajectory optimization with a linear
feedback tracking policy as a bonus

* Interpretation as variants of Newton’s method in
Nm dimensions

* Drawbacks
* Output policy applies only locally
» Dependent on feasible initial trajectory
* (seealso Jurvan den Berg, “Extended LOR,” 2013.)

e Otherthan dynamics, only soft-constraints may
be incorporated
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http://arl.cs.utah.edu/pubs/ISRR2013.pdf
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Optimal control problem

ty
min j Gx(0),u(e),t) dt
0

x(t) = f(x(¢),u(t),t), t €0, tf]

(OCP) <(0) = xq

x(tf) € My = {x € R"F(x) = 0}
u(t) eU S R™, t €0, tf]

For simplicity:

 We assume the terminal cost h is
equalto0

* Weassumety, =0

4/28/2021

 Direct Methods:

1. Transcribe (OCP) into a
nonlinear, constrained
optimization problem

2. Solve the optimization problem
via nonlinear programming

* |ndirect Methods:

1. Apply necessary conditions
for optimality to (OCP)

2. Solve a two-point
boundary value problem
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Direct methods

Resources:

* Notes Chapter 5 and references
therein, and also:

* Rao A. V., “Asurvey of numerical
methods for optimal control,” 2009.

 Kelly, M., “An Introduction to
Trajectory Optimization,” 2017.
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https://www.anilvrao.com/Publications/ConferencePublications/trajectorySurveyAAS.pdf
https://epubs.siam.org/doi/10.1137/16M1062569

Transcription methods

Optimization: what are the
decision variables?

1. State and control
parameterization methods

e “Collocation”/“simultaneous”

2. Control parameterization
methods

* “Shooting”
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Transcription into nonlinear programming
(state and control parametrization method)

min f 7 (O a6 dt vl
0 miny; uy) z hig(x;,u;,t;)
x(t) = f(x(t),u(t),t), t € [0, t;] i=0
(0CP) +(0) = x, (NLOP) % +hfxou,t), =0, N—1
x(tr) € My = {x € R™: F(x) = 0}

weU,i=0,..,N—1, F(xy)=0
u(t) EU S R™, te€lo,ty] ' (xn)

Forward Euler time discretization

1. Selectadiscretization0 =t, <t; < - <ty = tf forthe
interval [0, t¢] and, foreveryi = 0, ..., N — 1, define
X;~x(t), u; ~u(t), t €[t; t;+1) and x,~x(0)

2. Bydenoting h; = t;,1 — t;, (OCP) is transcribed into the
following nonlinear, constrained optimization problem
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llustrative example: Zermelo’s Problem

Current
flow

u(t)

ty
min ] u(t)? dt
x(t) =0v cos(u(t)) + flow(y(t)), t € [0, tf]
(OCP) y(t)=v sin(u(t)), t € [0, tf]

(x,¥)(0) =0, (x,y)(tr) = (M,?)
lu(®)| < Umax, tEIO, trl
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Example: Zermelo’s Problem

State and control parameterization method

* Transcribe optimal control problem into a non-
linear program, and solve it via fmincon (MATLAB),
scipy.optimize.minimize (python), etc.

min ftfu(t)z dt
x(t) =Ov cos(u(t)) + flow(y(t)), t € [0, tf]
(OCP) y(t) = vsin(u(t)), t €O, tf]

(x,¥)(0) =0, (x,y)(ty) = (M, £)
[u(®] < tmax, tEIO, tr]

(NLOP)
xis1 = x; + h(v cos(w;) + flow(y;))
Yis1 = Yi thvsin(w), [u;| < upmax
(x0,¥0) =0, (xy, yn) = (M, )
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Results

a) Optimal Trajectory

y (m)

a) Optimal Trajectory

y (m)
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b) Optimal Control

lu(t)| <1
(effectively, no control
constraint)

b) Optimal Control

lu(t)] < 0.75
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Transcription into nonlinear programming
(control parametrization method)

| jtf(o())d -
min | gx(6),u(t),t) dt .
: ming, ) hig(x(t), us, t)
i=0

x(t) = f(x(t),u(t),t), t € [0, t;] (NLOP-C)

(0CP) +(0) = x, wWeEU,i=0,..,N—1, F(x(ty)) =0
x(tr) € My = {x € R™: F(x) = 0}
u(t) eU S R™, telo,ty] where each x(t;) is recursively computed via

X(ti+1) = x(t;) + hif(x(t;), v, t),i=0,...,N—1
Time and control discretization

1. Selectadiscretization0 = t, < t; < -+ <ty = trforthe
interval [0, ts] and, forevery i =0, ..., N — 1, define
u; ~u(t), t€ft;,tipq)

2. Bydenoting h; = t;;1 — t;, (OCP) is transcribed into the
following nonlinear, constrained optimization problem
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Example: Zermelo’s Problem

Control parameterization method

* Transcribe optimal control problem into a non-
linear program, and solve it via fmincon (MATLAB),
scipy.optimize.minimize (python), etc.

min ftfu(t)z dt

x(t) =Ov cos(u(t)) + flow(y(t)), t € [0, tf]
(OCP) y(t) = vsin(u(t)), t €O, tf]

(x,¥)(0) =0, (x,y)(ts) = (M, ?)

[u(®)| < Upmax, tEIO, tf]

$

N-1
| 2
iy Z(; h (NLOP-C)
(o, y)(tn) = (M, 0), |l < umax

where, recursively:
N-1

i
Xy =Xo+ h z (v cos(u;) + ﬂow(yl-)), Vi =Yo + hz v sin(u;)
i=0 j=0

4/28/2021 AA 203 | Lecture 9 13



Results

a) Optimal Trajectory

B)
=
’ ) ’ @ (sm) ’
a) Optimal Trajectory
-
e Ern) '
4/28/2021

a

b) Optimal Control

lu(t)| <1
(effectively, no control
constraint)

4 5 6 7 8 9 10
t (s)

b) Optimal Control

lu(t)| < 0.75

. tzs) s
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Example: Zermelo’s Problem

tf N-1
min j u(t)? dt min Z h u?
0 (xl-,ui) l
x(t)=v cos(u(t)) + ﬂow(y(t)), t € [0, tf] (NLOP) i=0
(OCP) y(t) = vsin(u(t)), t€ [0, tf] o | |
(x,y)(O) =0, (x,y)(tf) _ (M,f) Xi+1 = X + h(v Cos(ul) + ﬂOW(YL))

Vi1 =¥ + hvsin(w), [u;| < upqy
(XO;yo) = 0, (eryN) = (le)

‘ Direct Transcription

N-1
miny, ) hf (NLOP-C)
i=0

(x, y)(ty) = (M, D), lu;| < Umax

where, recursively:
N-1

Xy =Xg+h Z (v cos(u;) + ﬂow(yi))

i.=0

l
Yi =Yo + hz: v sin(u;)
j=0

lu(t)| < Umax, t €O, tf]

Direct Shooting
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Transcription methods: extensions

* Multiple shooting

* Hybrid of simultaneous / (single) shooting
methods

* Alternative trajectory parameterizations

* Euler jnte%ration (above):giecewise linear
effective state trajectory (C°), zero-order hold
control trajectory

. H.ermite-SimB.son collocation (see Notes §5.2.1):
piecewise cubic effective state trajectory (C?), first-
order hold control trajectory

* Dynamics constraint is enforced at “collocation
points,” exact form is derived by implicitintegration

* Pseudospectral methods: global polynomial basis
functions (instead of piecewise polynomials)

* Shooting methods: higher-order integration
schemes (e.g., RK4)

* Dynamics constraint is enforced by explicit integration
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https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods#The_Runge%E2%80%93Kutta_method

Sequential Convex Programming

tr
min f g(x(t),u(t),t) dt
0

x(t) = f(x(t),u(t),t), t € [0, tf]
(OCP) x(0) = x,, x(tf) = X¢
u(t) e U € R™, t €0, tf]

The sources of nonconvexities are the dynamics and (possibly) the
cost. Idea: linearize (and convexify) them around nominal trajectories!
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Sequential Convex Programming

tr
min f g(x(t),u(t),t) dt
0

x(t) = f(x(t),u(t),t), t € [0, tf]
(OCP) x(0) = x,, x(tf) = X¢
u(t) e U € R™, t €0, tf]

The sources of nonconvexities are the dynamics and (possibly) the
cost. Idea: linearize (and convexify) them around nominal trajectories!

1. Assume that g is convex. Let (x4 (+), uo(-)) be a nominal tuple of
trajectory and control. (x,(+), uy(+)) does not need to be feasible!
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Sequential Convex Programming

tr
min f g(x(t),u(t),t) dt
0

x(t) = f(x(t),u(t),t), t € [0, tf]
(OCP) x(0) = x,, x(tf) = X¢
u(t) e U € R™, t €0, tf]
The sources of nonconvexities are the dynamics and (possibly) the
cost. Idea: linearize (and convexify) them around nominal trajectories!

1. Assume that g is convex. Let (x4 (+), uo(-)) be a nominal tuple of
trajectory and control. (x,(+), uy(+)) does not need to be feasible!

2. Linearize f around (x4 (), ug(")):
f,(x,u,t)

of of
= f(xo(t), ug(t),t) + % (xo (1), ug(t), ) (x — X (1)) + u (X0 (1), up(t), t)(u —ug(t))
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Sequential Convex Programming

tr
min f g(x(t),u(t),t) dt
0

x(t) = f;(x(t),u(t), t), t €0, tf]
(LOCP), x(0) = x,, x(tf) = X¢
u(t) e U € R™, t €0, tf]

The sources of nonconvexities are the dynamics and (possibly) the
cost. Idea: linearize (and convexify) them around nominal trajectories!

1. Assume that g is convex. Let (x((-), uo(-)) be a nominal tuple of
trajectory and control. (x4 (), uy(+)) does not need to be feasible!

2. Linearize f around (x4 (), ug(")):
f,(x,u,t)
of of
= f(xo(t),up(t), ) + % (xo(®),ug (), )(x — X (t)) + u (X0 (t),up(t), t)(u —ug(t))

3. Solve the new problem (LOCP), for (xl(-), ul(-))
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Sequential Convex Programming

t
min f L gx(®),u),0) dt
0
X(t) - fk+1(X(t), U(t), t)r t € [Or tf]
(LOCP)R+1 x(0) = X0, X(tf) = Xy
u(t) e U € R™, t €0, ty]

The sources of nonconvexities are the dynamics and (possibly) the
cost. Idea: linearize (and convexify) them around nominal trajectories!

4. Iterate this procedure until convergence is achieved: linearize f

around the solution (x; (), ux (+)) at iteration k:
fk+1(X,ll, t)

of of
= f(xx (£), ui (2), 1) + I (X (D), ue (), ) (x — x5 () + 3a (x5 (), uge (1), ) (U — i (8))
and solve the problem (LOCP);;; for (Xp41(-), upy1 ()
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Sequential Convex Programming

ty
min f G(x(0),u), ) dt
0
X(t) = fr 1 (x(6),u(t), t), t € [0, tf]
(LOCP)k+1 x(0) = X)), X(tf) = Xf
u(t) eU € R™, t €0, tf]

Discretize and Solve a Convex Problem at Each Iteration

1. Selectadiscretization 0 =ty < t; < -+ < ty = ts for the interval
[0,tr] and, foreveryi = 0, ..., N — 1, define x; .1 ~x(t), u; ~u(t),
t € (ti, ti+1] and XONX(O)

2. Bydenoting h; = t;,; — t;, (LOCP);q is transcribed into the
following convex optimization problem

N-1
miny, u;) z hig(X;,u;, t;)
i=0
Xi+1 = X + hifk+1(Xi,ui, ti)l [ = O; ;N —1

w, ev,i=0,.. N-—1, Xy = X

(DLOCP),. 1
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Sequential Convex Programming

tr
min j G(x(0),u), ) dt V-1
. _0 min(x.u.) Z hig(Xi,lli, ti)
X(t) - fk+1(X(t), U(t), t)l t e [OI tf] (DLOCP) U ¢

Xi+r1 = X + hl-fk+1(xi,ui, ti), I = 0, ,N -1

m
u(t) eU € R™, t €0, tf] weV,i=0,..,N-1, Xy = Xy

SCP Methodology: at each iteration k,

Linearize f around the Define the continuous
solution (xk(-), uk(-)) ‘ time problem (LOCP);,, ;

\ 4

Solve (DLOCP);,, via Discretize (LOCP) .4 in

convex programming for time and define the
a discretized version of — convex optimization

(Xpe41(), W1 () problem (DLOCP); .1
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Direct Methods in Practice

“As you begin to play with these algorithms on your own
problems, you might feel like you're on an emotional roller-
coaster.” - Russ Tedrake

 Betterinitial guess trajectories (“warm-starting” the
optimization, as seenin zermelo simultaneous)

* Cost function/constraint tuning (as seenin zermelo scp)
* Penalty methods; augmented Lagrangian-based solvers

4/28/2021 AA 203 | Lecture 9 24


http://underactuated.mit.edu/trajopt.html

Next time

* Dynamic programming in continuous time
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