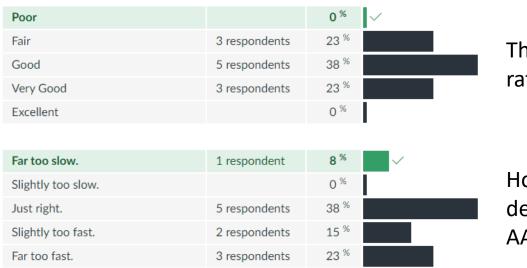
AA203 Optimal and Learning-based Control

Direct methods for optimal control, sequential convex programming (SCP)

Logistics

- HW2 out (refresh for typo fixes!), due Monday 5/3
- Project midterm report due Friday 5/7
- 1/3-quarter feedback
 - Course feedback
 - HW1 was too long
 - Too much optimization theory
 - TAs are great!
 - Actionable feedback
 - More examples
 - Publish HW .tex files
 - Theory → practice without head-bashing

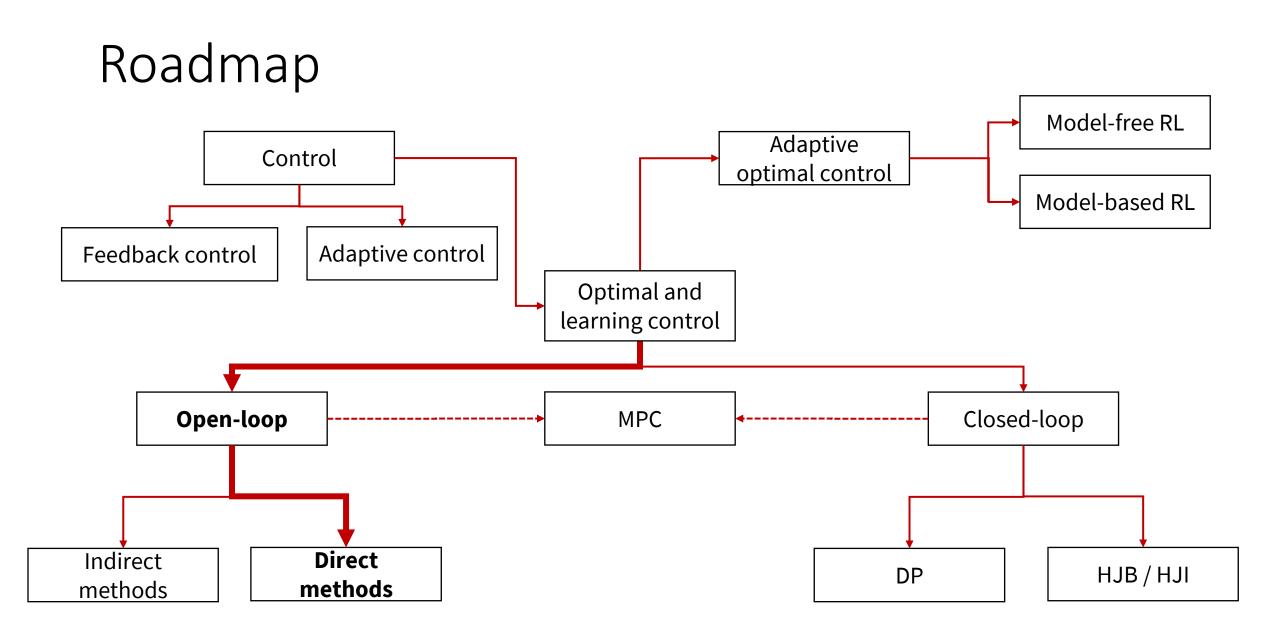


Thus far, how would you rate this course overall?

How would you describe the pace of AA203 so far?

Last time: iLQR and DDP

- Trajectory optimization with a linear feedback tracking policy as a bonus
 - Interpretation as variants of Newton's method in Nm dimensions
- Drawbacks
 - Output policy applies only locally
 - Dependent on *feasible* initial trajectory
 - (see also <u>Jur van den Berg, "Extended LQR," 2013.</u>)
 - Other than dynamics, only soft-constraints may be incorporated



Optimal control problem

$$\min \int_0^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) dt$$

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t), \ t \in [0, t_f]$$
(**OCP**)
$$\mathbf{u}(0) = \mathbf{u}$$

 $\mathbf{x}(0) = \mathbf{x}_0$ $\mathbf{x}(t_f) \in M_f = \{\mathbf{x} \in \mathbb{R}^n : F(\mathbf{x}) = 0\}$ $\mathbf{u}(t) \in U \subseteq \mathbb{R}^m, \ t \in [0, t_f]$

For simplicity:

- We assume the terminal cost *h* is equal to 0
- We assume $t_0 = 0$

- Direct Methods:
 - Transcribe (**OCP**) into a nonlinear, constrained optimization problem
 - 2. Solve the optimization problem via nonlinear programming
- Indirect Methods:
 - Apply necessary conditions for optimality to (**OCP**)
 - 2. Solve a two-point boundary value problem

Direct methods

Resources:

- Notes Chapter 5 and references therein, and also:
 - <u>Rao A. V., "A survey of numerical</u> <u>methods for optimal control," 2009.</u>
 - <u>Kelly, M., "An Introduction to</u> <u>Trajectory Optimization," 2017.</u>

Transcription methods

Optimization: what are the decision variables?

- 1. State and control parameterization methods
 - "Collocation"/"simultaneous"
- 2. Control parameterization methods
 - "Shooting"

Transcription into nonlinear programming (state and control parametrization method)

$$\min \int_{0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) dt$$

(OCP)
$$\frac{\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t), t \in [0, t_f]}{\mathbf{x}(0) = \mathbf{x}_0}$$

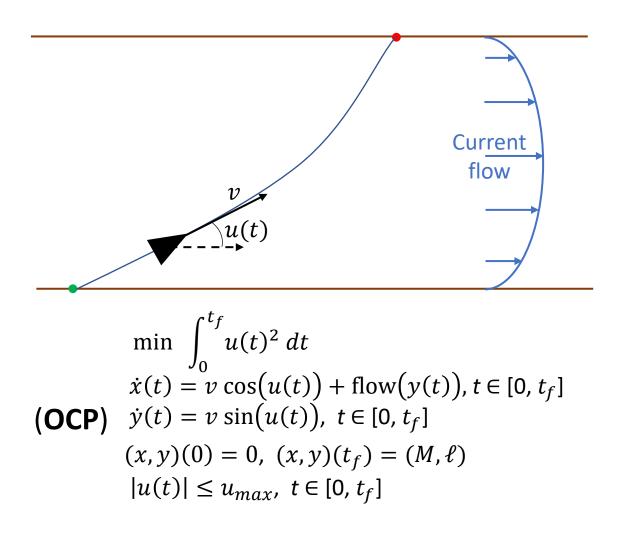
$$\frac{\mathbf{x}(t_f) \in M_f = \{\mathbf{x} \in \mathbb{R}^n : F(\mathbf{x}) = 0\}}{\mathbf{u}(t) \in U \subseteq \mathbb{R}^m, t \in [0, t_f]}$$

(NLOP) $\min_{(\mathbf{x}_i, \mathbf{u}_i)} \sum_{i=0}^{N-1} h_i g(\mathbf{x}_i, \mathbf{u}_i, t_i)$ $\mathbf{x}_{i+1} = \mathbf{x}_i + h_i \mathbf{f}(\mathbf{x}_i, \mathbf{u}_i, t_i), \quad i = 0, \dots, N-1$ $\mathbf{u}_i \in U, i = 0, \dots, N-1, \quad F(\mathbf{x}_N) = 0$

Forward Euler time discretization

- 1. Select a discretization $0 = t_0 < t_1 < \cdots < t_N = t_f$ for the interval $[0, t_f]$ and, for every $i = 0, \dots, N 1$, define $\mathbf{x}_i \sim \mathbf{x}(t)$, $\mathbf{u}_i \sim \mathbf{u}(t)$, $t \in [t_i, t_{i+1})$ and $\mathbf{x}_0 \sim \mathbf{x}(0)$
- 2. By denoting $h_i = t_{i+1} t_i$, (**OCP**) is transcribed into the following nonlinear, constrained optimization problem

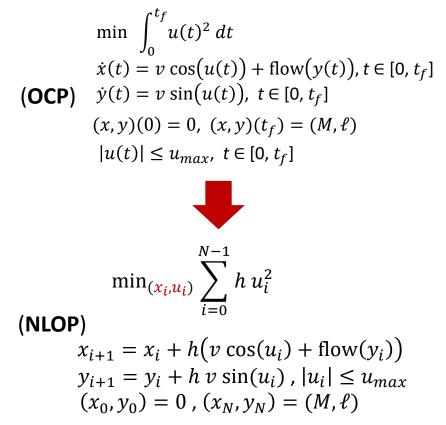
Illustrative example: Zermelo's Problem



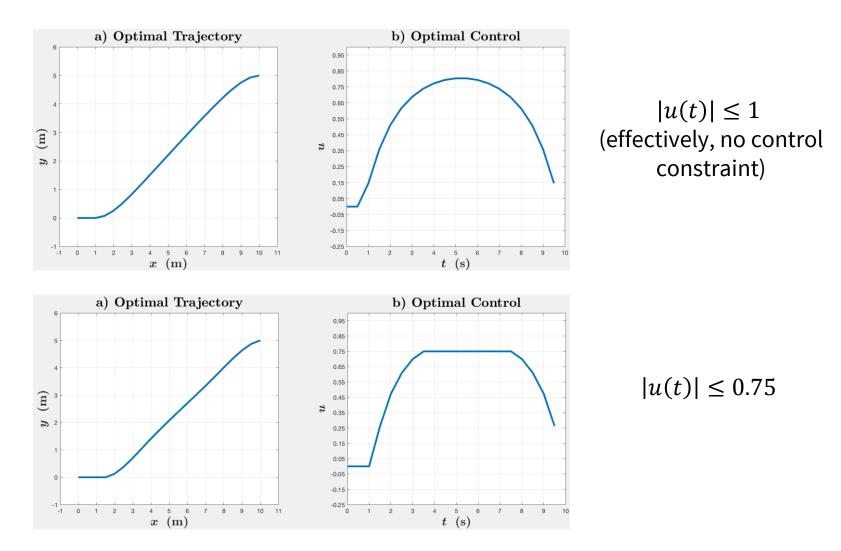
Example: Zermelo's Problem

State and control parameterization method

• Transcribe optimal control problem into a nonlinear program, and solve it via fmincon (MATLAB), scipy.optimize.minimize (python), etc.



Results



Transcription into nonlinear programming (control parametrization method)

$$\min \int_{0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) dt$$

$$(\mathbf{OCP}) \quad \begin{aligned} \dot{\mathbf{x}}(t) &= \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t), \ t \in [0, t_f] \\ \mathbf{x}(0) &= \mathbf{x}_0 \\ \mathbf{x}(t_f) \in M_f = \{\mathbf{x} \in \mathbb{R}^n : F(\mathbf{x}) = 0\} \\ \mathbf{u}(t) \in U \subseteq \mathbb{R}^m, \ t \in [0, t_f] \end{aligned}$$

(NLOP-C)

$$\begin{split} \min_{\mathbf{u}_i} \sum_{i=0} h_i g(\mathbf{x}(t_i), \mathbf{u}_i, t_i) \\ \mathbf{u}_i \in U, i = 0, \dots, N-1, \qquad F(\mathbf{x}(t_N)) = 0 \end{split}$$

where each $\mathbf{x}(t_i)$ is recursively computed via $\mathbf{x}(t_{i+1}) = \mathbf{x}(t_i) + h_i \mathbf{f}(\mathbf{x}(t_i), \mathbf{u}_i, t_i), i = 0, ..., N - 1$

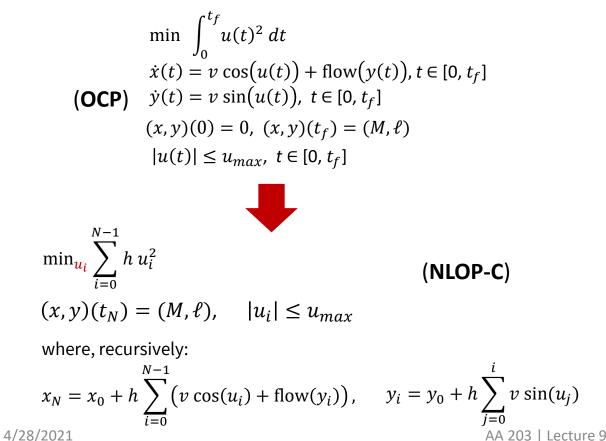
Time and control discretization

- 1. Select a discretization $0 = t_0 < t_1 < \cdots < t_N = t_f$ for the interval $[0, t_f]$ and, for every $i = 0, \dots, N 1$, define $\mathbf{u}_i \sim \mathbf{u}(t), t \in [t_i, t_{i+1})$
- 2. By denoting $h_i = t_{i+1} t_i$, (**OCP**) is transcribed into the following nonlinear, constrained optimization problem

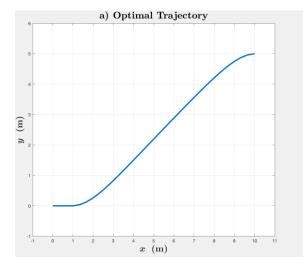
Example: Zermelo's Problem

Control parameterization method

• Transcribe optimal control problem into a nonlinear program, and solve it via fmincon (MATLAB), scipy.optimize.minimize (python), etc.

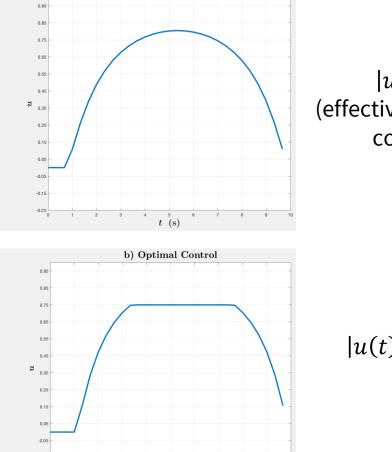


Results



a) Optimal Trajectory

x (m)



-0.15

1 2

t (s)

6

7 8

b) Optimal Control

 $|u(t)| \le 1$ (effectively, no control constraint)

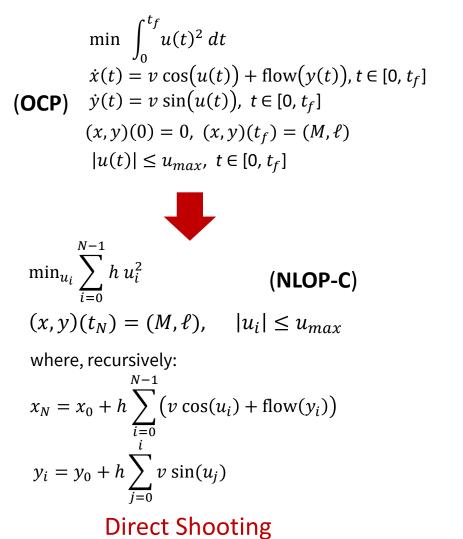
 $|u(t)| \le 0.75$

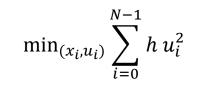
4/28/2021

y (m)

9

Example: Zermelo's Problem





(NLOP)

 $\begin{aligned} x_{i+1} &= x_i + h \big(v \cos(u_i) + \text{flow}(y_i) \big) \\ y_{i+1} &= y_i + h \, v \sin(u_i) \, , \, |u_i| \le u_{max} \\ (x_0, y_0) &= 0 \, , \, (x_N, y_N) = (M, \ell) \end{aligned}$

Direct Transcription

Transcription methods: extensions

- Multiple shooting
 - Hybrid of simultaneous / (single) shooting methods
- Alternative trajectory parameterizations
 - Euler integration (above): piecewise linear effective state trajectory (C⁰), zero-order hold control trajectory
 - Hermite-Simpson collocation (see Notes §5.2.1): piecewise cubic effective state trajectory (C¹), firstorder hold control trajectory
 - Dynamics constraint is enforced at "collocation points," exact form is derived by implicit integration
 - Pseudospectral methods: global polynomial basis functions (instead of piecewise polynomials)
 - Shooting methods: higher-order integration schemes (e.g., <u>RK4</u>)
 - Dynamics constraint is enforced by explicit integration

$$\min \int_{0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) dt$$
$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t), t \in [0, t_f]$$
$$\mathbf{x}(0) = \mathbf{x}_0, \qquad \mathbf{x}(t_f) = \mathbf{x}_f$$
$$\mathbf{u}(t) \in U \subseteq \mathbb{R}^m, t \in [0, t_f]$$

$$\min \int_{0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) dt$$

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t), t \in [0, t_f]$$

$$\mathbf{x}(0) = \mathbf{x}_0, \quad \mathbf{x}(t_f) = \mathbf{x}_f$$

$$\mathbf{u}(t) \in U \subseteq \mathbb{R}^m, t \in [0, t_f]$$

The sources of nonconvexities are the dynamics and (possibly) the cost. Idea: linearize (and convexify) them around nominal trajectories!

1. Assume that g is convex. Let $(\mathbf{x}_0(\cdot), \mathbf{u}_0(\cdot))$ be a nominal tuple of trajectory and control. $(\mathbf{x}_0(\cdot), \mathbf{u}_0(\cdot))$ does not need to be feasible!

$$\min \int_{0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) dt$$

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t), t \in [0, t_f]$$

$$\mathbf{x}(0) = \mathbf{x}_0, \quad \mathbf{x}(t_f) = \mathbf{x}_f$$

$$\mathbf{u}(t) \in U \subseteq \mathbb{R}^m, t \in [0, t_f]$$

- 1. Assume that g is convex. Let $(\mathbf{x}_0(\cdot), \mathbf{u}_0(\cdot))$ be a nominal tuple of trajectory and control. $(\mathbf{x}_0(\cdot), \mathbf{u}_0(\cdot))$ does not need to be feasible!
- 2. Linearize **f** around $(\mathbf{x}_0(\cdot), \mathbf{u}_0(\cdot))$: $\mathbf{f}_1(\mathbf{x}, \mathbf{u}, t)$

$$= \mathbf{f}(\mathbf{x}_0(t), \mathbf{u}_0(t), t) + \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x}_0(t), \mathbf{u}_0(t), t)(\mathbf{x} - \mathbf{x}_0(t)) + \frac{\partial \mathbf{f}}{\partial \mathbf{u}}(\mathbf{x}_0(t), \mathbf{u}_0(t), t)(\mathbf{u} - \mathbf{u}_0(t))$$

$$(\text{LOCP})_{1} \begin{array}{l} \min \int_{0}^{t_{f}} g(\mathbf{x}(t), \mathbf{u}(t), t) \ dt \\ \dot{\mathbf{x}}(t) = \mathbf{f}_{1}(\mathbf{x}(t), \mathbf{u}(t), t), \ t \in [0, t_{f}] \\ \mathbf{x}(0) = \mathbf{x}_{0}, \quad \mathbf{x}(t_{f}) = \mathbf{x}_{f} \\ \mathbf{u}(t) \in U \subseteq \mathbb{R}^{m}, \ t \in [0, t_{f}] \end{array}$$

- 1. Assume that g is convex. Let $(\mathbf{x}_0(\cdot), \mathbf{u}_0(\cdot))$ be a nominal tuple of trajectory and control. $(\mathbf{x}_0(\cdot), \mathbf{u}_0(\cdot))$ does not need to be feasible!
- 2. Linearize **f** around $(\mathbf{x}_0(\cdot), \mathbf{u}_0(\cdot))$: $\mathbf{f}_1(\mathbf{x}, \mathbf{u}, t)$ $= \mathbf{f}(\mathbf{x}_0(t), \mathbf{u}_0(t), t) + \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x}_0(t), \mathbf{u}_0(t), t)(\mathbf{x} - \mathbf{x}_0(t)) + \frac{\partial \mathbf{f}}{\partial \mathbf{u}}(\mathbf{x}_0(t), \mathbf{u}_0(t), t)(\mathbf{u} - \mathbf{u}_0(t))$
- 3. Solve the new problem $(LOCP)_1$ for $(\mathbf{x}_1(\cdot), \mathbf{u}_1(\cdot))$

 $\min \int_{0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) dt$ $\dot{\mathbf{x}}(t) = \mathbf{f}_{k+1}(\mathbf{x}(t), \mathbf{u}(t), t), t \in [0, t_f]$ $\mathbf{x}(0) = \mathbf{x}_0, \quad \mathbf{x}(t_f) = \mathbf{x}_f$ $\mathbf{u}(t) \in U \subseteq \mathbb{R}^m, t \in [0, t_f]$

4. Iterate this procedure until convergence is achieved: linearize **f**
around the solution
$$(\mathbf{x}_k(\cdot), \mathbf{u}_k(\cdot))$$
 at iteration k :
 $\mathbf{f}_{k+1}(\mathbf{x}, \mathbf{u}, t)$
 $= \mathbf{f}(\mathbf{x}_k(t), \mathbf{u}_k(t), t) + \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x}_k(t), \mathbf{u}_k(t), t)(\mathbf{x} - \mathbf{x}_k(t)) + \frac{\partial \mathbf{f}}{\partial \mathbf{u}}(\mathbf{x}_k(t), \mathbf{u}_k(t), t)(\mathbf{u} - \mathbf{u}_k(t)))$
and solve the problem $(\mathbf{LOCP})_{k+1}$ for $(\mathbf{x}_{k+1}(\cdot), \mathbf{u}_{k+1}(\cdot))$

$$(\text{LOCP})_{k+1} \quad \min \int_{0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) \, dt$$
$$\dot{\mathbf{x}}(t) = \mathbf{f}_{k+1}(\mathbf{x}(t), \mathbf{u}(t), t), \, t \in [0, t_f]$$
$$\mathbf{x}(0) = \mathbf{x}_0, \quad \mathbf{x}(t_f) = \mathbf{x}_f$$
$$\mathbf{u}(t) \in U \subseteq \mathbb{R}^m, \, t \in [0, t_f]$$

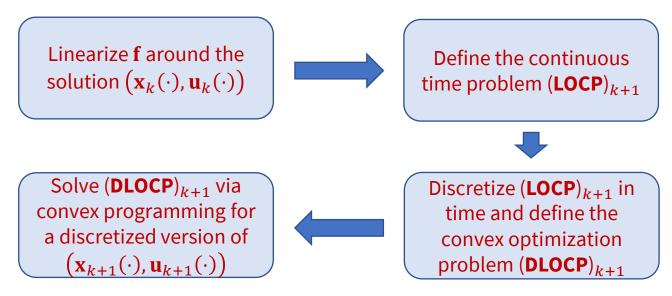
Discretize and Solve a Convex Problem at Each Iteration

- 1. Select a discretization $0 = t_0 < t_1 < \cdots < t_N = t_f$ for the interval $[0, t_f]$ and, for every $i = 0, \dots, N 1$, define $\mathbf{x}_{i+1} \sim \mathbf{x}(t)$, $\mathbf{u}_i \sim \mathbf{u}(t)$, $t \in (t_i, t_{i+1}]$ and $\mathbf{x}_0 \sim \mathbf{x}(0)$
- 2. By denoting $h_i = t_{i+1} t_i$, (**LOCP**)_{*k*+1} is transcribed into the following convex optimization problem

$$(\text{DLOCP})_{k+1} \qquad \min_{(\mathbf{x}_i, \mathbf{u}_i)} \sum_{i=0}^{N-1} h_i g(\mathbf{x}_i, \mathbf{u}_i, t_i) \\ \mathbf{x}_{i+1} = \mathbf{x}_i + h_i \mathbf{f}_{k+1}(\mathbf{x}_i, \mathbf{u}_i, t_i), i = 0, \dots, N-1 \\ \mathbf{u}_i \in U, i = 0, \dots, N-1, \qquad \mathbf{x}_N = \mathbf{x}_f$$

$$\min \int_{0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) dt$$
$$\dot{\mathbf{x}}(t) = \mathbf{f}_{k+1}(\mathbf{x}(t), \mathbf{u}(t), t), \ t \in [0, t_f]$$
$$\mathbf{x}(0) = \mathbf{x}_0, \qquad \mathbf{x}(t_f) = \mathbf{x}_f$$
$$\mathbf{u}(t) \in U \subseteq \mathbb{R}^m, \ t \in [0, t_f]$$

SCP Methodology: at each iteration k,



$$(\text{DLOCP})_{k+1} \qquad \min_{(\mathbf{x}_{i},\mathbf{u}_{i})} \sum_{i=0}^{N-1} h_{i}g(\mathbf{x}_{i},\mathbf{u}_{i},t_{i}) \\ \mathbf{x}_{i+1} = \mathbf{x}_{i} + h_{i}\mathbf{f}_{k+1}(\mathbf{x}_{i},\mathbf{u}_{i},t_{i}), i = 0, \dots, N-1 \\ \mathbf{u}_{i} \in U, i = 0, \dots, N-1, \qquad \mathbf{x}_{N} = \mathbf{x}_{f}$$

Direct Methods in Practice

"As you begin to play with these algorithms on your own problems, you might feel like you're on an emotional rollercoaster." – <u>Russ Tedrake</u>

- Better initial guess trajectories ("warm-starting" the optimization, as seen in zermelo simultaneous)
- Cost function/constraint tuning (as seen in zermelo_scp)
 - Penalty methods; augmented Lagrangian-based solvers

Next time

• Dynamic programming in continuous time