
AA203
Optimal and Learning-based Control
Direct methods for optimal control, sequential convex programming (SCP)



Logistics

• HW2 out (refresh for typo fixes!), due Monday 5/3

• Project midterm report due Friday 5/7
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Thus far, how would you 
rate this course overall?

How would you 
describe the pace of 
AA203 so far?

• 1/3-quarter feedback
• Course feedback

• HW1 was too long
• Too much optimization 

theory
• TAs are great!

• Actionable feedback
• More examples
• Publish HW .tex files
• Theory → practice 

without head-bashing



Last time: iLQR and DDP

• Trajectory optimization with a linear 
feedback tracking policy as a bonus
• Interpretation as variants of Newton’s method in 
𝑁𝑚 dimensions

• Drawbacks
• Output policy applies only locally

• Dependent on feasible initial trajectory
• (see also Jur van den Berg, “Extended LQR,” 2013.)

• Other than dynamics, only soft-constraints may 
be incorporated
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http://arl.cs.utah.edu/pubs/ISRR2013.pdf


Roadmap
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Open-loop

Indirect 
methods

Direct 
methods

Closed-loop

DP HJB / HJI

MPC

Adaptive
optimal control

Model-based RL

Model-free RL

Control

Optimal and 
learning control

Adaptive controlFeedback control



• Direct Methods:

1. Transcribe (OCP) into a 
nonlinear, constrained 
optimization problem

2. Solve the optimization problem 
via nonlinear programming

Optimal control problem

For simplicity:
• We assume the terminal cost ℎ is 

equal to 0
• We assume 𝑡0 = 0

• Indirect Methods:

1. Apply necessary conditions 
for optimality to (OCP)

2. Solve a two-point 
boundary value problem

min න
0

𝑡𝑓

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 𝑑𝑡

ሶ𝐱(𝑡) = 𝐟 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [0, 𝑡𝑓]

𝐱 0 = 𝐱0
𝐱 𝑡𝑓 ∈ 𝑀𝑓 = {𝐱 ∈ ℝ𝑛: 𝐹 𝐱 = 0}

(OCP)

𝐮 𝑡 ∈ 𝑈 ⊆ ℝ𝑚,   𝑡 ∈ [0, 𝑡𝑓]
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Direct methods
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Resources:

• Notes Chapter 5 and references 
therein, and also:
• Rao A. V., “A survey of numerical 

methods for optimal control,” 2009.

• Kelly, M., “An Introduction to 
Trajectory Optimization,” 2017.

https://www.anilvrao.com/Publications/ConferencePublications/trajectorySurveyAAS.pdf
https://epubs.siam.org/doi/10.1137/16M1062569


Transcription methods
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Optimization: what are the 
decision variables?

1. State and control 
parameterization methods
• “Collocation”/“simultaneous”

2. Control parameterization 
methods
• “Shooting”
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Forward Euler time discretization

1. Select a discretization 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑡𝑓 for the 

interval [0, 𝑡𝑓] and, for every 𝑖 = 0,… , 𝑁 − 1, define

𝐱𝑖~𝐱 𝑡 , 𝐮𝑖 ~ 𝐮 𝑡 , 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1) and 𝐱0~𝐱 0

2. By denoting ℎ𝑖 = 𝑡𝑖+1 − 𝑡𝑖, (OCP) is transcribed into the 
following nonlinear, constrained optimization problem

min(𝐱𝑖,𝐮𝐢) ෍

𝑖=0

𝑁−1

ℎ𝑖𝑔(𝐱𝑖 , 𝐮𝑖 , 𝑡𝑖)

𝐱𝑖+1 = 𝐱𝑖 + ℎ𝑖𝐟 𝐱𝑖 , 𝐮𝑖 , 𝑡𝑖 , 𝑖 = 0,… ,𝑁 − 1
(NLOP)

𝐮𝑖 ∈ 𝑈 , 𝑖 = 0,… , 𝑁 − 1 , 𝐹 𝐱𝑁 = 0

min න
0

𝑡𝑓

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 𝑑𝑡

ሶ𝐱(𝑡) = 𝐟 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [0, 𝑡𝑓]

𝐱 0 = 𝐱0
𝐱 𝑡𝑓 ∈ 𝑀𝑓 = {𝐱 ∈ ℝ𝑛: 𝐹 𝐱 = 0}

(OCP)

𝐮 𝑡 ∈ 𝑈 ⊆ ℝ𝑚,   𝑡 ∈ [0, 𝑡𝑓]

Transcription into nonlinear programming
(state and control parametrization method) 



Illustrative example: Zermelo’s Problem
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Current 
flow

𝑢(𝑡)

𝑣

min න
0

𝑡𝑓

𝑢 𝑡 2 𝑑𝑡

ሶ𝑥 𝑡 = 𝑣 cos 𝑢 𝑡 + flow 𝑦 𝑡 , t ∈ [0, 𝑡𝑓]  

(𝑥, 𝑦) 0 = 0,  (𝑥, 𝑦)(𝑡𝑓) = (𝑀, ℓ)

𝑢 𝑡 ≤ 𝑢𝑚𝑎𝑥,  t ∈ [0, 𝑡𝑓]

ሶ𝑦 𝑡 = 𝑣 sin 𝑢 𝑡 ,  t ∈ [0, 𝑡𝑓]  (OCP)



Example: Zermelo’s Problem

• Transcribe optimal control problem into a non-
linear program, and solve it via fmincon (MATLAB), 
scipy.optimize.minimize (python), etc.
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min(𝑥𝑖,𝑢𝑖) ෍

𝑖=0

𝑁−1

ℎ 𝑢𝑖
2

𝑥𝑖+1 = 𝑥𝑖 + ℎ 𝑣 cos 𝑢𝑖 + flow 𝑦𝑖
𝑦𝑖+1 = 𝑦𝑖 + ℎ 𝑣 sin(𝑢𝑖) , 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥

𝑥0, 𝑦0 = 0 , 𝑥𝑁 , 𝑦𝑁 = (𝑀, ℓ)

(NLOP)

min න
0

𝑡𝑓

𝑢 𝑡 2 𝑑𝑡

ሶ𝑥 𝑡 = 𝑣 cos 𝑢 𝑡 + flow 𝑦 𝑡 , t ∈ [0, 𝑡𝑓]  

(𝑥, 𝑦) 0 = 0,  (𝑥, 𝑦)(𝑡𝑓) = (𝑀, ℓ)

𝑢 𝑡 ≤ 𝑢𝑚𝑎𝑥,  t ∈ [0, 𝑡𝑓]

ሶ𝑦 𝑡 = 𝑣 sin 𝑢 𝑡 ,  t ∈ [0, 𝑡𝑓]  (OCP)

State and control parameterization method



Results
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𝑢 𝑡 ≤ 1
(effectively, no control 

constraint)

𝑢 𝑡 ≤ 0.75
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min න
0

𝑡𝑓

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 𝑑𝑡

ሶ𝐱(𝑡) = 𝐟 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [0, 𝑡𝑓]

𝐱 0 = 𝐱0
𝐱 𝑡𝑓 ∈ 𝑀𝑓 = {𝐱 ∈ ℝ𝑛: 𝐹 𝐱 = 0}

(OCP)

𝐮 𝑡 ∈ 𝑈 ⊆ ℝ𝑚,   𝑡 ∈ [0, 𝑡𝑓]

Transcription into nonlinear programming
(control parametrization method) 

Time and control discretization

1. Select a discretization 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑡𝑓 for the 

interval [0, 𝑡𝑓] and, for every 𝑖 = 0,… , 𝑁 − 1, define

𝐮𝑖 ~ 𝐮 𝑡 , 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1)

2. By denoting ℎ𝑖 = 𝑡𝑖+1 − 𝑡𝑖, (OCP) is transcribed into the 
following nonlinear, constrained optimization problem

min𝐮𝑖 ෍

𝑖=0

𝑁−1

ℎ𝑖𝑔(𝐱(𝑡𝑖), 𝐮𝑖 , 𝑡𝑖)

𝐱(𝑡𝑖+1) = 𝐱(𝑡𝑖) + ℎ𝑖𝐟 𝐱 𝑡𝑖 , 𝐮𝑖 , 𝑡𝑖 , 𝑖 = 0,… ,𝑁 − 1

(NLOP-C)
𝐮𝑖 ∈ 𝑈 , 𝑖 = 0,… ,𝑁 − 1 , 𝐹(𝐱(𝑡𝑁)) = 0

where each 𝐱(𝑡𝑖) is recursively computed via



Example: Zermelo’s Problem

• Transcribe optimal control problem into a non-
linear program, and solve it via fmincon (MATLAB), 
scipy.optimize.minimize (python), etc.
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min න
0

𝑡𝑓

𝑢 𝑡 2 𝑑𝑡

ሶ𝑥 𝑡 = 𝑣 cos 𝑢 𝑡 + flow 𝑦 𝑡 , t ∈ [0, 𝑡𝑓]  

(𝑥, 𝑦) 0 = 0,  (𝑥, 𝑦)(𝑡𝑓) = (𝑀, ℓ)

𝑢 𝑡 ≤ 𝑢𝑚𝑎𝑥,  t ∈ [0, 𝑡𝑓]

ሶ𝑦 𝑡 = 𝑣 sin 𝑢 𝑡 ,  t ∈ [0, 𝑡𝑓]  (OCP)

Control parameterization method

min𝑢𝑖 ෍

𝑖=0

𝑁−1

ℎ 𝑢𝑖
2

𝑥, 𝑦 (𝑡𝑁) = (𝑀, ℓ),      𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥

(NLOP-C)

𝑥𝑁 = 𝑥0 + ℎ෍

𝑖=0

𝑁−1

𝑣 cos 𝑢𝑖 + flow 𝑦𝑖 ,

where, recursively:

𝑦𝑖 = 𝑦0 + ℎ෍

𝑗=0

𝑖

𝑣 sin(𝑢𝑗)



Results
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𝑢 𝑡 ≤ 1
(effectively, no control 

constraint)

𝑢 𝑡 ≤ 0.75



Example: Zermelo’s Problem
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min(𝑥𝑖,𝑢𝑖) ෍

𝑖=0

𝑁−1

ℎ 𝑢𝑖
2

𝑥𝑖+1 = 𝑥𝑖 + ℎ 𝑣 cos 𝑢𝑖 + flow 𝑦𝑖
𝑦𝑖+1 = 𝑦𝑖 + ℎ 𝑣 sin(𝑢𝑖) , 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥

𝑥0, 𝑦0 = 0 , 𝑥𝑁 , 𝑦𝑁 = (𝑀, ℓ)

(NLOP)

min න
0

𝑡𝑓

𝑢 𝑡 2 𝑑𝑡

ሶ𝑥 𝑡 = 𝑣 cos 𝑢 𝑡 + flow 𝑦 𝑡 , t ∈ [0, 𝑡𝑓]  

(𝑥, 𝑦) 0 = 0,  (𝑥, 𝑦)(𝑡𝑓) = (𝑀, ℓ)

𝑢 𝑡 ≤ 𝑢𝑚𝑎𝑥,  t ∈ [0, 𝑡𝑓]

ሶ𝑦 𝑡 = 𝑣 sin 𝑢 𝑡 ,  t ∈ [0, 𝑡𝑓]  (OCP)

min𝑢𝑖 ෍

𝑖=0

𝑁−1

ℎ 𝑢𝑖
2

𝑥, 𝑦 (𝑡𝑁) = (𝑀, ℓ),      𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥

(NLOP-C)

𝑥𝑁 = 𝑥0 + ℎ෍

𝑖=0

𝑁−1

𝑣 cos 𝑢𝑖 + flow 𝑦𝑖

where, recursively:

𝑦𝑖 = 𝑦0 + ℎ෍

𝑗=0

𝑖

𝑣 sin(𝑢𝑗)

Direct Transcription

Direct Shooting



Transcription methods: extensions
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• Multiple shooting
• Hybrid of simultaneous / (single) shooting 

methods

• Alternative trajectory parameterizations
• Euler integration (above): piecewise linear 

effective state trajectory (C0), zero-order hold 
control trajectory

• Hermite-Simpson collocation (see Notes §5.2.1): 
piecewise cubic effective state trajectory (C1), first-
order hold control trajectory

• Dynamics constraint is enforced at “collocation 
points,” exact form is derived by implicit integration

• Pseudospectral methods: global polynomial basis 
functions (instead of piecewise polynomials)

• Shooting methods: higher-order integration 
schemes (e.g., RK4)

• Dynamics constraint is enforced by explicit integration

https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods#The_Runge%E2%80%93Kutta_method


Sequential Convex Programming
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min න
0

𝑡𝑓

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 𝑑𝑡

ሶ𝐱(𝑡) = 𝐟 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [0, 𝑡𝑓]

𝐱 0 = 𝐱0,         𝐱 𝑡𝑓 = 𝐱𝑓
(OCP)

𝐮 𝑡 ∈ 𝑈 ⊆ ℝ𝑚,   𝑡 ∈ [0, 𝑡𝑓]

The sources of nonconvexities are the dynamics and (possibly) the 
cost. Idea: linearize (and convexify) them around nominal trajectories!



Sequential Convex Programming
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min න
0

𝑡𝑓

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 𝑑𝑡

ሶ𝐱(𝑡) = 𝐟 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [0, 𝑡𝑓]

𝐱 0 = 𝐱0,         𝐱 𝑡𝑓 = 𝐱𝑓
(OCP)

𝐮 𝑡 ∈ 𝑈 ⊆ ℝ𝑚,   𝑡 ∈ [0, 𝑡𝑓]

1. Assume that 𝑔 is convex. Let 𝐱0 ⋅ , 𝐮0 ⋅ be a nominal tuple of 

trajectory and control. 𝐱0 ⋅ , 𝐮0 ⋅ does not need to be feasible!

The sources of nonconvexities are the dynamics and (possibly) the 
cost. Idea: linearize (and convexify) them around nominal trajectories!



1. Assume that 𝑔 is convex. Let 𝐱0 ⋅ , 𝐮0 ⋅ be a nominal tuple of 

trajectory and control. 𝐱0 ⋅ , 𝐮0 ⋅ does not need to be feasible!

2. Linearize 𝐟 around 𝐱0 ⋅ , 𝐮0 ⋅ :
𝐟1 𝐱, 𝐮, 𝑡

= 𝐟 𝐱0 𝑡 , 𝐮0 𝑡 , 𝑡 +
𝜕𝐟

𝜕𝐱
𝐱0 𝑡 , 𝐮0 𝑡 , 𝑡 (𝐱 − 𝐱0(𝑡)) +

𝜕𝐟

𝜕𝐮
𝐱0 𝑡 , 𝐮0 𝑡 , 𝑡 (𝐮 − 𝐮0(𝑡))

Sequential Convex Programming
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min න
0

𝑡𝑓

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 𝑑𝑡

ሶ𝐱(𝑡) = 𝐟 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [0, 𝑡𝑓]

𝐱 0 = 𝐱0,         𝐱 𝑡𝑓 = 𝐱𝑓
(OCP)

𝐮 𝑡 ∈ 𝑈 ⊆ ℝ𝑚,   𝑡 ∈ [0, 𝑡𝑓]

The sources of nonconvexities are the dynamics and (possibly) the 
cost. Idea: linearize (and convexify) them around nominal trajectories!



Sequential Convex Programming
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min න
0

𝑡𝑓

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 𝑑𝑡

ሶ𝐱(𝑡) = 𝐟1 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [0, 𝑡𝑓]

𝐱 0 = 𝐱0,         𝐱 𝑡𝑓 = 𝐱𝑓
(LOCP)1

𝐮 𝑡 ∈ 𝑈 ⊆ ℝ𝑚,   𝑡 ∈ [0, 𝑡𝑓]

The sources of nonconvexities are the dynamics and (possibly) the 
cost. Idea: linearize (and convexify) them around nominal trajectories!

1. Assume that 𝑔 is convex. Let 𝐱0 ⋅ , 𝐮0 ⋅ be a nominal tuple of 

trajectory and control. 𝐱0 ⋅ , 𝐮0 ⋅ does not need to be feasible!

2. Linearize 𝐟 around 𝐱0 ⋅ , 𝐮0 ⋅ :
𝐟1 𝐱, 𝐮, 𝑡

= 𝐟 𝐱0 𝑡 , 𝐮0 𝑡 , 𝑡 +
𝜕𝐟

𝜕𝐱
𝐱0 𝑡 , 𝐮0 𝑡 , 𝑡 (𝐱 − 𝐱0(𝑡)) +

𝜕𝐟

𝜕𝐮
𝐱0 𝑡 , 𝐮0 𝑡 , 𝑡 (𝐮 − 𝐮0(𝑡))

3. Solve the new problem (LOCP)1 for 𝐱1 ⋅ , 𝐮1 ⋅



Sequential Convex Programming
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The sources of nonconvexities are the dynamics and (possibly) the 
cost. Idea: linearize (and convexify) them around nominal trajectories!

4. Iterate this procedure until convergence is achieved: linearize 𝐟

around the solution 𝐱𝑘 ⋅ , 𝐮𝑘 ⋅ at iteration 𝑘:
𝐟𝑘+1 𝐱, 𝐮, 𝑡

= 𝐟 𝐱𝑘 𝑡 , 𝐮𝑘 𝑡 , 𝑡 +
𝜕𝐟

𝜕𝐱
𝐱𝑘 𝑡 , 𝐮𝑘 𝑡 , 𝑡 (𝐱 − 𝐱𝑘(𝑡)) +

𝜕𝐟

𝜕𝐮
𝐱𝑘 𝑡 , 𝐮𝑘 𝑡 , 𝑡 (𝐮 − 𝐮𝑘(𝑡))

and solve the problem (LOCP)𝑘+1 for 𝐱𝑘+1 ⋅ , 𝐮𝑘+1 ⋅

min න
0

𝑡𝑓

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 𝑑𝑡

ሶ𝐱(𝑡) = 𝐟𝑘+1 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [0, 𝑡𝑓]

𝐱 0 = 𝐱0,         𝐱 𝑡𝑓 = 𝐱𝑓
(LOCP)𝑘+1

𝐮 𝑡 ∈ 𝑈 ⊆ ℝ𝑚,   𝑡 ∈ [0, 𝑡𝑓]



Sequential Convex Programming
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min න
0

𝑡𝑓

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 𝑑𝑡

ሶ𝐱(𝑡) = 𝐟𝑘+1 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [0, 𝑡𝑓]

𝐱 0 = 𝐱0,         𝐱 𝑡𝑓 = 𝐱𝑓
(LOCP)𝑘+1

𝐮 𝑡 ∈ 𝑈 ⊆ ℝ𝑚,   𝑡 ∈ [0, 𝑡𝑓]

Discretize and Solve a Convex Problem at Each Iteration

1. Select a discretization 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑡𝑓 for the interval 

[0, 𝑡𝑓] and, for every 𝑖 = 0,… , 𝑁 − 1, define 𝐱𝑖+1~𝐱 𝑡 , 𝐮𝑖 ~ 𝐮 𝑡 ,

𝑡 ∈ (𝑡𝑖 , 𝑡𝑖+1] and 𝐱0~𝐱 0

2. By denoting ℎ𝑖 = 𝑡𝑖+1 − 𝑡𝑖, (LOCP)𝑘+1 is transcribed into the 
following convex optimization problem

min(𝐱𝑖,𝐮𝑖) ෍

𝑖=0

𝑁−1

ℎ𝑖𝑔(𝐱𝑖 , 𝐮𝑖 , 𝑡𝑖)

𝐱𝑖+1 = 𝐱𝑖 + ℎ𝑖𝐟𝑘+1 𝐱𝑖 , 𝐮𝑖 , 𝑡𝑖 , 𝑖 = 0,… ,𝑁 − 1

𝐮𝑖 ∈ 𝑈 , 𝑖 = 0,… ,𝑁 − 1, 𝐱𝑁 = 𝐱𝑓

(DLOCP)𝑘+1



Sequential Convex Programming
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min න
0

𝑡𝑓

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 𝑑𝑡

ሶ𝐱(𝑡) = 𝐟𝑘+1 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [0, 𝑡𝑓]

𝐱 0 = 𝐱0,         𝐱 𝑡𝑓 = 𝐱𝑓
(LOCP)𝑘+1

𝐮 𝑡 ∈ 𝑈 ⊆ ℝ𝑚,   𝑡 ∈ [0, 𝑡𝑓]

Linearize 𝐟 around the 

solution 𝐱𝑘 ⋅ , 𝐮𝑘 ⋅
Define the continuous 

time problem (LOCP)𝑘+1

Discretize (LOCP)𝑘+1 in 
time and define the 
convex optimization 
problem (DLOCP)𝑘+1

SCP Methodology: at each iteration 𝑘,

Solve (DLOCP)𝑘+1 via 
convex programming for 
a discretized version of 

𝐱𝑘+1 ⋅ , 𝐮𝑘+1 ⋅

min(𝐱𝑖,𝐮𝑖) ෍

𝑖=0

𝑁−1

ℎ𝑖𝑔(𝐱𝑖 , 𝐮𝑖 , 𝑡𝑖)

𝐱𝑖+1 = 𝐱𝑖 + ℎ𝑖𝐟𝑘+1 𝐱𝑖 , 𝐮𝑖 , 𝑡𝑖 , 𝑖 = 0,… ,𝑁 − 1

𝐮𝑖 ∈ 𝑈 , 𝑖 = 0,… ,𝑁 − 1, 𝐱𝑁 = 𝐱𝑓

(DLOCP)𝑘+1



Direct Methods in Practice

“As you begin to play with these algorithms on your own 
problems, you might feel like you're on an emotional roller-
coaster.” – Russ Tedrake

• Better initial guess trajectories (“warm-starting” the 
optimization, as seen in zermelo_simultaneous)

• Cost function/constraint tuning (as seen in zermelo_scp)
• Penalty methods; augmented Lagrangian-based solvers
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http://underactuated.mit.edu/trajopt.html


Next time

• Dynamic programming in continuous time
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