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Logistics

* Recitation 3 (regression models) tomorrow 10:30—11:50AM

 HW2 out, due Monday 5/3
» Abit less involved than HW1, but relevant to many projects

* Project feedback will be released tonight

* Midterm report due Friday 5/7, but nail down ASAP:
“A precise statement of the project setting you are considering in your
project.”

 1/3-quarter feedback form is open until Sunday 4/25
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LQR-style algorithms for optimal control

* Linear tracking problems
* Non-linear tracking problems

* Using LQR techniques to solve non-linear optimal control
problems
* |[terative LOR
* Differential dynamic programming

* Readings: notes sections 3.1, 3.2 and references therein
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Recapping LQR

 Minimize
1 1 N-—-1
Jo(XO) = §X%QNXN + 5 Z (XZQk:Xk: -+ uZRkuk + 2X£Hkuk)
k=0

s.t.  Xkt1 = AgXy + Bruy, ke{0,1,...,N —1}

 Solved efficiently using dynamic programming by
computing value function:

. " xe|' [Qx  Hi] [xx
Jk(xk)_%in§<[uk} [H,f Ri| |up| T

(Aka -+ Bkuk)TPN(Aka; + Bkuk)>

* Result:
WZ(Xk) = Lka
1
J;: (Xk;) = §X£P]€Xk;
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-
Recapping LQR

* Can also generalize cost (adding linear/constant terms),
and dynamics (adding affine term)

Minimize
J(X)—l XN 4 QN qnN XN_+
0791 ] |dh 2en] [ 1)
N-1 T B T
1 Xkl |Qr  ak | [Xk x| [Hy
52([1] af s 3] w2 H)
k=0 -

subject to dynamics
SRR AR
S5 Tr(xk) = (L k] [Xf]

« 1 XkT P, pr| Xk
Jk(xk)‘i[l] [pf,g ok | | 1
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Linear tracking problems

* Imagine you are given a nominal trajectory

(EOI ) 7N)r (ﬁOI ) l_lN—l)
» Assume nominal trajectory satisfies linear dynamics

 Linear tracking problem: find policy to minimize cost
N-1

1 T 1 T T
S (o= Fy) HOoy = By +5 ) [(% = %) QG — %) + (i — ) R — )
k=0

* Then define deviation variables

0xy = X, — X, and Sy, = uy, — Uy

and solve standard LQR with respect to deviation variables
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Nonlinear tracking problems

Imagine you are given a feasible nominal trajectory

(X0, -, Xn), (Uo, -, Uy—1)

* The tracking cost is still quadratic, but the dynamics are now
nonlinear

X1 = [ (X, Uy)
* Toapply LQR, we can linearize around the nominal trajectory
5%, 5,

_ of of

Tpt1 ~ f(@g, ar) + a—w(iﬁk,ﬁk)(wk — &) + 8—u(53k,ﬁk)(uk — uy)

Ak Bk
* And apply LQR to the deviation variables (with dynamics
57k+1 = Ak(ka + Bk6ﬁk)
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Nonlinear optimal control problem

* Consider now nonlinear optimal control
problem

N1
min Z c(Xp,ug)
Y k=0
subject to xx+1 = f(Xk, ur)

e Can we apply LQR-techniques to
approximately solve it?
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lterative LQR

* Imagine you are given a feasible nominal trajectory

(70' R fN)' (ﬁOJ e ﬁN—l)

 Linearize the dynamics around feasible trajectory

B (B, t0) - 0 () (@ — D) + o (@, ) (e — )

* And Taylor expand cost function around feasible trajectory

1 1
c(6xy, duy) = ck + c;",;,k oy + cg’k duy + §5u;€ cgu,k duy + 55:13% cgm,k dxy + dur cﬂm,k dxk
~—~ ~— —— —— ——
gk Tk Ry, Qr Hy
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e
lterative LQR

* By optimizing over deviation variables
(using results for LQR with cross-
quadratic cost & affine dynamics), we

obtain new solution:
{Ek + 5x;;} and {ﬁk + 6“1*{}

* We can then re-linearize and Taylor
expand around this new trajectory, and

iterate!
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lterative LQR

* Backward pass (k = N to 0):

* Compute locally linear dynamics, locally
quadratic cost around nominal trajectory

 Solve local approximation of DP recursion to
compute control law

* Compute cost-to-go

* Forward pass (k = 0 to N):
* Use control law to update nominal trajectory

* [terate until convergence
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Algorithmic details

* Need to make sure that the new state / control stay
close to the linearization point
* Add extra penalty on deviations
* Apply a line search on policy rollout

* Need to decide on termination criterion
* For example, one can stop when cost improvement is “small”

* Method can get stuck in local minima = “good”
initialization is often critical

» Cost matrices may not be positive definite
* Regularize them until they are

 Great collection of tips/tricks: Yuval Tassa’s thesis
(Section 2.2.3)
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https://homes.cs.washington.edu/~todorov/papers/TassaThesis.pdf

Differential Dynamic Programming (DDP)

* iLQR first approximates dynamics and
cost, then performs exact DP recursion

* DDP instead approximates DP
recursion directly

Optimal Control
Problem

ILQR DDP

ApprOXImate the SVStem Approximate the Value Function

Quadratic approximation of cost

: N - Quadratic approximation of cost-to-go
Linear approximation of dynamics PP 9
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Differential Dynamic Programming (DDP)

In detail, consider the change in cost to go
at timestep k under a perturbation (dxz., duy.)

Qr(0xp, 0ug) := (X + 0Xg, U + oug) + Jpr1(f(Xg + 0xk, U + 0ug))

Using a 2nd order Taylor Expansion,

Qr(9%k, Sux) ~ Qp(0,0) + VQy [5}%] +% [gml V2Qs [m]

(5uk
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Differential Dynamic Programming (DDP)

The optimal control perturbation is
du; = argming,, Q(dx, du)

Expanding the approximation, one gets

Qr(0xx, dur,) ~ Qr(0,0) + Q, ,0ms + Q,, 10U,

first order terms

| 1
+ 508 Qua k0T + 50Uy Quu kO + 0T Qo kU

A\ 4

vV
second order terms
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Differential Dynamic Programming (DDP)

Apply conditions for optimality (gradient
equal to zero):

Qu,k + qu,k5mk + Quuk(suk =0
— (5’11}2 — _Q;z},kQuak — Q;{ikquk(ka

As was the case with LQR, the optimal
control has the form

5’11,; — lk + Lk5wk

Algorithm proceeds via same
forward/backward passes asiLQR
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R EEEEEEEEE—————S——m—m—m———
ILQR vs. DDP

Quadratic approximations for the state-action
value function (Q function):

Qr = Cr + Vi1
Qx.k
Quk = Cuk + flzkvkﬂ

Qxxk = Cxxke + e Vit 1.xk + Ukt * [k
Quuk = Cuuk + forVit1Suk + Vet1 * fuuk

T
qu,k — Cux,k + fu,kvk—l—lfx,k + Vg1 - fux,k

T
Cx,k t Jx kVk+1

DDP contains second-order dynamics
derivatives compared to iLQR
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Next time

* Direct methods
» Sequential convex programming
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