
AA203
Optimal and Learning-based Control

Intro to reinforcement learning; dual control; LQG

Roadmap

Open-loop

Indirect
methods

Direct
methods

Closed-loop

DP HJB / HJI

MPC

Adaptive
optimal control

Model-based RL

Model-free RL
Control

Optimal and
learning control

Adaptive controlFeedback control

4/20/21 AA 203 | Lecture 7 2

What is Reinforcement Learning?

Learning how to make good decisions by interaction.

4/20/21 AA 203 | Lecture 7 3

Why Reinforcement Learning?

• Only need to specify a reward function. Agent learns everything
else!
• Successes in
• Helicopter acrobatics

• Superhuman Gameplay: Backgammon, Go, Atari

• Investment portfolio management

• Making a humanoid robot walk

4/20/21 AA 203 | Lecture 7 4

Why Reinforcement Learning?

• Only need to specify a reward function. Agent learns everything
else!
• Successes in
• Helicopter acrobatics

• positive for following desired traj, negative for crashing
• Superhuman Gameplay: Backgammon, Go, Atari

• positive/negative for winning/losing the game
• Investment portfolio management

• positive reward for $$$
• Making a humanoid robot walk

• positive for forward motion, negative for falling

4/20/21 AA 203 | Lecture 7 5

Infinite Horizon MDPs

State: 𝑥 ∈ 𝒳 (often 𝑠 ∈ 𝒮)
Action: 𝑢 ∈ 𝒰 (often 𝑎 ∈ 𝒜)
Transition Function: 𝑇 𝑥! 𝑥!"# , 𝑢!"#) = 𝑝(𝑥!|𝑥!"#, 𝑢!"#)
Reward Function: 𝑟$ = 𝑅(𝑥! , 𝑢!)
Discount Factor: 𝛾

MDP: ℳ = (𝒳,𝒰, 𝑇, 𝑅, 𝛾)

4/20/21 AA 203 | Lecture 7 6

Infinite Horizon MDPs

MDP: ℳ = (𝒳,𝒰, 𝑇, 𝑅, 𝛾)

Stationary policy: 𝑢! = 𝜋(𝑥!)

Goal: Choose policy that maximizes cumulative reward.

𝜋∗ = arg max
&

E <
!'(

𝛾$𝑅 𝑥! , 𝜋 𝑥!

4/20/21 AA 203 | Lecture 7 7

Infinite Horizon MDPs

• The optimal cost 𝑉∗(𝑥) satisfies Bellman’s equation

𝑉∗(𝑥) = max
"

𝑅 𝑥, 𝑢 + 𝛾 .
#!∈𝒳

𝑇 𝑥& 𝑥, 𝑢 𝑉∗ 𝑥&

• For any stationary policy 𝜋, the costs 𝑉'(𝑥) are the unique solution to the
equation

𝑉'(𝑥) = 𝑅 𝑥, 𝜋(𝑥) + 𝛾 .
#!∈𝒳

𝑇 𝑥& 𝑥, 𝜋(𝑥) 𝑉' 𝑥&

𝑄∗(𝑥, 𝑢)

𝑄'(𝑥, 𝜋(𝑥))

4/20/21 AA 203 | Lecture 7 8

Solving infinite-horizon MDPs

If you know the model, use DP-ideas
• Value Iteration / Policy Iteration (Covered in lecture 6)

RL: Learning from interaction
• Model-Based (related to system ID -- will see more later)
• Model-free
• Value based (today)
• Policy based

4/20/21 AA 203 | Lecture 7 9

Learning from Experience

• Without access to the model, agent needs to optimize a policy from
interaction with an MDP
• Only have access to trajectories in MDP:
• 𝜏 = (𝑥(, 𝑢(, 𝑟(, 𝑥#, … , 𝑢)"#, 𝑟)"#, 𝑥))

4/20/21 AA 203 | Lecture 7 10

Learning from Experience

How to use trajectory data?

• Model based approach: estimate 𝑇(𝑥’|𝑥, 𝑢), then use model to plan

• Model free:
• Value based approach: estimate optimal value (or Q) function from data
• Policy based approach: use data to determine how to improve policy
• Actor Critic approach: learn both a policy and a value/Q function

4/20/21 AA 203 | Lecture 7 11

Temporal difference learning

• Main idea: use bootstrapped Bellman equation to update value
estimates
• Bootstrapping: use learned value for next state to estimate value at

current state
• Combines Monte Carlo and dynamic programming

E 𝑄& 𝑥! , 𝑢! − 𝑟! + 𝛾𝑄&(𝑥!*#, 𝑢!*#

Temporal Difference (TD) error

4/20/21 AA 203 | Lecture 7 12

TD policy evaluation

Want to compute estimate of policy Q functions, 𝑄&
With 𝛼 ∈ 0,1
• Sample (𝑥! , 𝑢! , 𝑟! , 𝑥!*#) from MDP
• 𝑄 𝑥! , 𝑢! ← 𝑄 𝑥! , 𝑢! + 𝛼 𝑟! + 𝛾𝑄 𝑥!*#, 𝑢!*# − 𝑄 𝑥! , 𝑢!

4/20/21 AA 203 | Lecture 7 13

Generalized policy iteration

Recall generalized policy iteration:

Loop:
• Perform policy evaluation step to estimate 𝑄&
• Perform policy improvement step using 𝑄& to yield 𝜋′
• Set 𝜋 ← 𝜋+

4/20/21 AA 203 | Lecture 7 14

SARSA

Combine TD policy evaluation step with

Policy improvement:
𝜋′ 𝑥 = argmax, 𝑄&(𝑥, 𝑢)

Greedy (with respect to Q function) policy improvement at each time
step; thus will improve during online operation.

4/20/21 AA 203 | Lecture 7 15

Q-learning

Instead of estimating 𝑄&, try to estimate 𝑄∗ via

𝑄 𝑥! , 𝑢! ← 𝑄 𝑥! , 𝑢! + 𝛼 𝑟! + 𝛾max- 𝑄 𝑥!*#, 𝑢 − 𝑄 𝑥! , 𝑢!

Thus, we aim to estimate𝑄∗ from (possibly sub-optimal)
demonstration policy 𝜋. This property is known as off-policy learning.

4/20/21 AA 203 | Lecture 7 16

Exploration vs Exploitation

In contrast to standard machine learning on fixed data sets, in RL we
actively gather the data we use to learn.
• We can only learn about states we visit and actions we take
• Need to explore to ensure we get the data we need
• Efficient exploration is a fundamental challenge in RL!

Simple strategy: add noise to the policy.
𝜖-greedy exploration:
• With probability 𝜖, take a random action; otherwise take the most

promising action

4/20/21 AA 203 | Lecture 7 17

On-policy Q-learning algorithm

Initialize 𝑄(𝑥, 𝑢) for all states and actions.
Let 𝜋(𝑥) be an 𝜖-greedy policy according to 𝑄.
Loop:

Take action: 𝑢! ∼ 𝜋(𝑥!).
Observe reward and next state: (𝑟! , 𝑥!*#).
Update Q to minimize TD error:

𝑄 𝑥! , 𝑢! ← 𝑄 𝑥! , 𝑢! + 𝛼 𝑟! +max, 𝑄 𝑥!*#, 𝑢 − 𝑄 𝑥! , 𝑢!

𝑘 = 𝑘 + 1

4/20/21 AA 203 | Lecture 7 18

Fitted Q Learning

Large / Continuous Action Space?
Use parametric model for Q function: 𝑄.(𝑥, 𝑢)

Gradient descent on TD error to update 𝜃:

𝜃 ← 𝜃 + 𝛼 𝑟! + 𝛾max, 𝑄. 𝑥!*#, 𝑢 − 𝑄. 𝑥! , 𝑢! ∇.𝑄.(𝑥! , 𝑢!)

learning rate
𝒅(𝑺𝒒𝒖𝒂𝒓𝒆𝒅 𝑻𝑫 𝑬𝒓𝒓𝒐𝒓)

𝒅𝑸
𝒅𝑸
𝒅𝜽

4/20/21 AA 203 | Lecture 7 19

Q Learning Recap

Pros:
• Can learn Q function from any interaction data, not just trajectories

gathered using the current policy (“off-policy” algorithm)
• Relatively data-efficient (can reuse old interaction data)

Cons:
• Need to optimize over actions: hard to apply to continuous action spaces
• Optimal Q function can be complicated, hard to learn
• Optimal policy might be much simpler!

4/20/21 AA 203 | Lecture 7 20

Problems with imperfect state information

• Now the controller, instead of having perfect knowledge of the
state, has access to observations 𝒛! of the form

𝒛(= ℎ(𝒙(, 𝒗(, 𝒛!= ℎ 𝒙! , 𝒖! , 𝒗!

• The random observation disturbance is characterized by a given
probability distribution

𝑃𝒗! ⋅ 𝒙! , … , 𝒙(, 𝒖!"#, … , 𝒖(, 𝒘!"#, … ,𝒘(, 𝒗!"#, … , 𝒗(

• The initial state 𝒙(is also random and characterized by given 𝑃𝒙!

4/20/21 AA 203 | Lecture 7 21

POMDP

• MDP with observation model𝐻 𝑧 𝑥, 𝑢
• Observations do not have Markov property: current observation

does not provide same amount of info as history of all observations
• Includes systems with unknown parameters: often also called

Bayes-adaptive MDP

4/20/21 AA 203 | Lecture 7 22

Reduction to fully observed case

• Define the information vector as
𝑰! = 𝒛(, … , 𝒛! , 𝒖(, … , 𝒖!"# , 𝑰(= 𝒛(

• Focus is now on admissible policies 𝜋! 𝑰! ∈ 𝑈!

• We want then to find an admissible policy that minimizes

𝐽& = 𝐸 𝒙!,𝒘",𝒗"
!3(,…,5"#

𝑔5 𝒙5 + <
!3(

5"#

𝑔! 𝒙! , 𝜋! 𝑰! , 𝒘!

4/20/21 AA 203 | Lecture 7 23

Solution strategies

1. Reformulation as a perfect state information problem (main idea:
make the information vector the state of the system)
• Main drawback: state has expanding dimension!

2. Reason in terms of sufficient statistics, i.e., quantities that ideally
are smaller than 𝑰! and yet summarize all its essential content
• Main example: conditional probability distribution 𝑃𝒙"|𝑰" (assuming
𝒗:~𝑃𝒗: ⋅ 𝒙:<=, 𝒖:<=, 𝒘:<=)
• Condition probability distribution leads to a decomposition of the optimal

controller in two parts:
𝜋: 𝑃𝒙"|𝑰"

Actuator Estimator
4/20/21 AA 203 | Lecture 7 24

Dual control

• By performing DP in this “hyperstate”, one can find a controller that
optimally probes/explores the system
• Practically, designing dual controllers is difficult, so sub-optimal

exploration heuristics are used
• Active area of research: see Wittenmark, B. “Adaptive dual control,”

(2008) for an introduction

4/20/21 AA 203 | Lecture 7 25

Special case: LQG

Discrete LQG: find admissible control policy that minimizes

𝐸 𝒙5+ 𝑄𝒙5 + <
!3(

5"#

𝒙!+ 𝑄𝒙! + 𝒖!+ 𝑅𝒖!

subject to
• the dynamics 𝒙!*# = 𝐴𝒙! + 𝐵𝒖! +𝒘!

• the measurement equation 𝒛! = 𝐶𝒙! + 𝒗!
and with 𝒙(, 𝒘! , {𝒗!}, independent and Gaussian vectors (and in
addition 𝒘! , {𝒗!} zero mean)

4/20/21 AA 203 | Lecture 7 26

LQG separation principle

4/20/21 AA 203 | Lecture 7 27

LQG separation principle

4/20/21 AA 203 | Lecture 7 28

LQG

• Have 𝑥! − 𝐸[𝑥!|𝐼!] independent of control actions 𝑢(:!"#
• In fact, solution results in:
• :𝑥: = 𝐸[𝑥:|𝐼:] computed via Kalman filter
• Optimal feedback 𝑢: = 𝐹: :𝑥:; 𝐹: same as in LQR case

• We can design state estimator and controller independently
• Certainty-equivalent LQR control on estimated state is optimal dual

controller---certainly not true in general!
• More proof details in lecture notes

4/20/21 AA 203 | Lecture 7 29

Next time

• Nonlinearity: trajectory optimization, iterative LQR and DDP

4/20/21 AA 203 | Lecture 7 30

