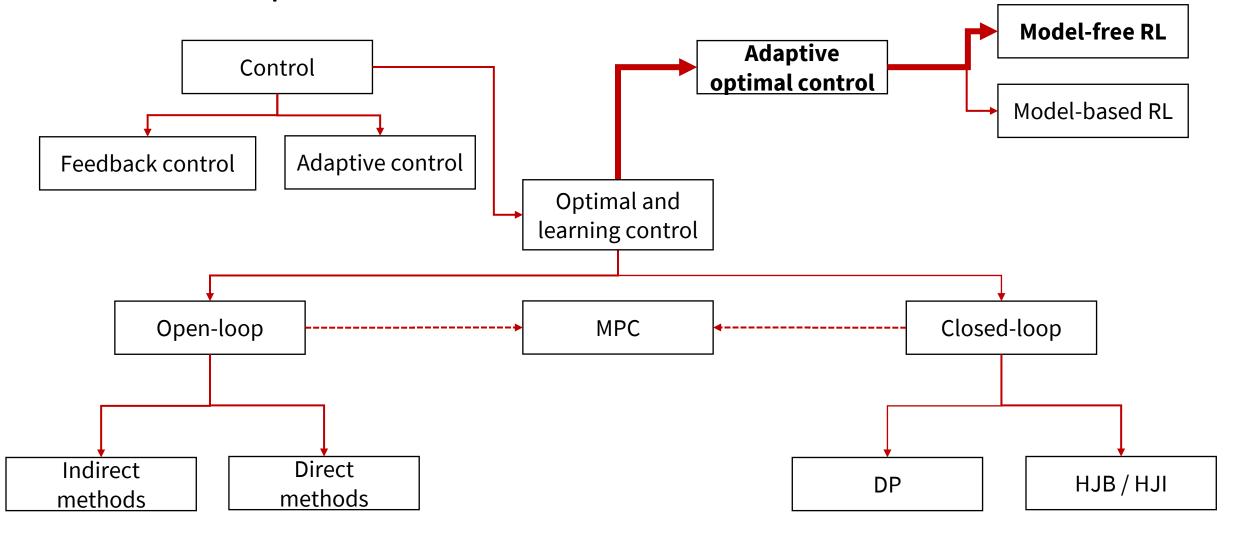
AA203 Optimal and Learning-based Control

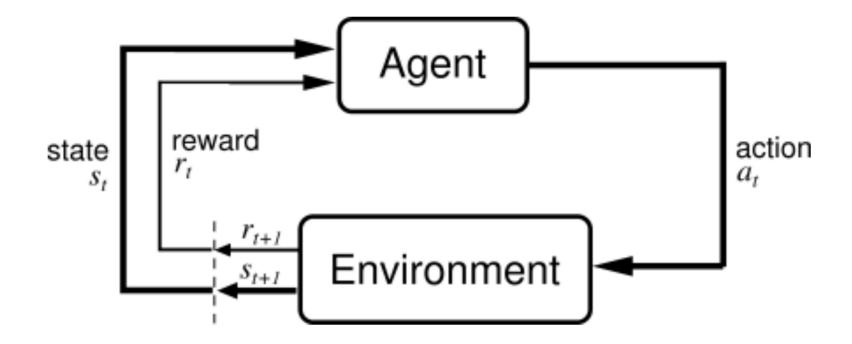
Intro to reinforcement learning; dual control; LQG

Roadmap



What is Reinforcement Learning?

Learning how to make good decisions by interaction.



Why Reinforcement Learning?

- Only need to specify a reward function. Agent learns everything else!
- Successes in
 - Helicopter acrobatics
 - Superhuman Gameplay: Backgammon, Go, Atari
 - Investment portfolio management
 - Making a humanoid robot walk

Why Reinforcement Learning?

- Only need to specify a reward function. Agent learns everything else!
- Successes in
 - Helicopter acrobatics
 - positive for following desired traj, negative for crashing
 - Superhuman Gameplay: Backgammon, Go, Atari
 - positive/negative for winning/losing the game
 - Investment portfolio management
 - positive reward for \$\$\$
 - Making a humanoid robot walk
 - positive for forward motion, negative for falling

Infinite Horizon MDPs

State: $x \in \mathcal{X}$ (often $s \in \mathcal{S}$)

Action: $u \in \mathcal{U}$ (often $a \in \mathcal{A}$)

Transition Function: $T(x_k | x_{k-1}, u_{k-1}) = p(x_k | x_{k-1}, u_{k-1})$

Reward Function: $r_t = R(x_k, u_k)$

Discount Factor: γ

MDP: $\mathcal{M} = (\mathcal{X}, \mathcal{U}, T, R, \gamma)$

Infinite Horizon MDPs

MDP:

$$\mathcal{M} = (\mathcal{X}, \mathcal{U}, T, R, \gamma)$$

Stationary policy:

$$u_k = \pi(x_k)$$

Goal: Choose policy that maximizes cumulative reward.

$$\pi^* = \arg\max_{\pi} \mathbb{E}\left[\sum_{k\geq 0} \gamma^t R(x_k, \pi(x_k))\right]$$

Infinite Horizon MDPs

• The optimal cost $V^*(x)$ satisfies Bellman's equation

$$V^*(x) = \max_{u} \left(R(x, u) + \gamma \sum_{x' \in \mathcal{X}} T(x'|x, u) V^*(x') \right)$$

$$Q^*(x, u)$$

• For any stationary policy π , the costs $V_{\pi}(x)$ are the unique solution to the equation

$$V_{\pi}(x) = R(x, \pi(x)) + \gamma \sum_{x' \in \mathcal{X}} T(x'|x, \pi(x)) V_{\pi}(x')$$

$$Q_{\pi}(x, \pi(x))$$

Solving infinite-horizon MDPs

If you know the model, use DP-ideas

Value Iteration / Policy Iteration (Covered in lecture 6)

RL: Learning from interaction

- Model-Based (related to system ID -- will see more later)
- Model-free
 - Value based (today)
 - Policy based

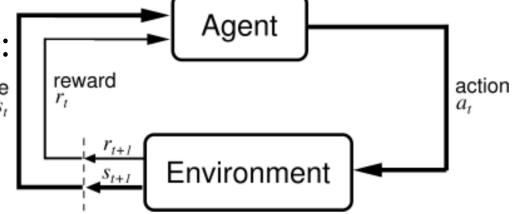
Learning from Experience

• Without access to the model, agent needs to optimize a policy from

interaction with an MDP

Only have access to trajectories in MDP:

• $\tau = (x_0, u_0, r_0, x_1, \dots, u_{H-1}, r_{H-1}, x_H)^{\text{state}}_{s_t}$



Learning from Experience

How to use trajectory data?

• Model based approach: estimate T(x'|x,u), then use model to plan

- Model free:
 - Value based approach: estimate optimal value (or Q) function from data
 - Policy based approach: use data to determine how to improve policy
 - Actor Critic approach: learn both a policy and a value/Q function

Temporal difference learning

- Main idea: use bootstrapped Bellman equation to update value estimates
- Bootstrapping: use learned value for next state to estimate value at current state
 - Combines Monte Carlo and dynamic programming

$$E[Q_{\pi}(x_k, u_k) - (r_k + \gamma Q_{\pi}(x_{k+1}, u_{k+1})]$$

Temporal Difference (TD) error

TD policy evaluation

Want to compute estimate of policy Q functions, Q_{π} With $\alpha \in (0,1)$

- Sample (x_k, u_k, r_k, x_{k+1}) from MDP
- $Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha (r_k + \gamma Q(x_{k+1}, u_{k+1}) Q(x_k, u_k))$

Generalized policy iteration

Recall *generalized* policy iteration:

Loop:

- Perform *policy evaluation* step to estimate Q_{π}
- Perform *policy improvement* step using Q_{π} to yield π'
- Set $\pi \leftarrow \pi'$

SARSA

Combine TD policy evaluation step with

Policy improvement:

$$\pi'(x) = \operatorname{argmax}_{u} Q_{\pi}(x, u)$$

Greedy (with respect to Q function) policy improvement at each time step; thus will improve during online operation.

Q-learning

Instead of estimating Q_{π} , try to estimate Q^* via

$$Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha \left(r_k + \gamma \max_{\mathbf{u}} Q(x_{k+1}, u) - Q(x_k, u_k) \right)$$

Thus, we aim to estimate Q^* from (possibly sub-optimal) demonstration policy π . This property is known as *off-policy* learning.

Exploration vs Exploitation

In contrast to standard machine learning on fixed data sets, in RL we actively gather the data we use to learn.

- We can only learn about states we visit and actions we take
- Need to explore to ensure we get the data we need
- Efficient exploration is a fundamental challenge in RL!

Simple strategy: add noise to the policy.

 ϵ -greedy exploration:

• With probability ϵ , take a random action; otherwise take the most promising action

On-policy Q-learning algorithm

Initialize Q(x, u) for all states and actions.

Let $\pi(x)$ be an ϵ -greedy policy according to Q.

Loop:

Take action: $u_k \sim \pi(x_k)$.

Observe reward and next state: (r_k, x_{k+1}) .

Update Q to minimize TD error:

$$Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha \left(r_k + \max_u Q(x_{k+1}, u) - Q(x_k, u_k) \right)$$

$$k = k + 1$$

Fitted Q Learning

Large / Continuous Action Space?

Use parametric model for Q function: $Q_{\theta}(x, u)$

Gradient descent on TD error to update θ :

$$\theta \leftarrow \theta + \alpha \left(r_k + \gamma \max_{u} Q_{\theta}(x_{k+1}, u) - Q_{\theta}(x_k, u_k) \right) \nabla_{\theta} Q_{\theta}(x_k, u_k)$$

learning rate

$$\frac{d(Squared\ TD\ Error)}{dQ}$$

 $\frac{dQ}{d\theta}$

Q Learning Recap

Pros:

- Can learn Q function from any interaction data, not just trajectories gathered using the current policy ("off-policy" algorithm)
- Relatively data-efficient (can reuse old interaction data)

Cons:

- Need to optimize over actions: hard to apply to continuous action spaces
- Optimal Q function can be complicated, hard to learn
- Optimal policy might be much simpler!

Problems with imperfect state information

• Now the controller, instead of having perfect knowledge of the state, has access to observations \mathbf{z}_k of the form

$$\mathbf{z}_0 = h_0(\mathbf{x}_0, \mathbf{v}_0), \qquad \mathbf{z}_k = h(\mathbf{x}_k, \mathbf{u}_k, \mathbf{v}_k)$$

 The random observation disturbance is characterized by a given probability distribution

$$P_{v_k}(\cdot | x_k, ..., x_0, u_{k-1}, ..., u_0, w_{k-1}, ..., w_0, v_{k-1}, ..., v_0)$$

• The initial state x_0 is also random and characterized by given P_{x_0}

POMDP

- MDP with observation model H(z|x,u)
- Observations do not have Markov property: current observation does not provide same amount of info as history of all observations
- Includes systems with unknown parameters: often also called Bayes-adaptive MDP

Reduction to fully observed case

Define the information vector as

$$I_k = (z_0, ..., z_k, u_0, ..., u_{k-1}), I_0 = z_0$$

- Focus is now on admissible policies $\pi_k(I_k) \in U_k$

• We want then to find an admissible policy that minimizes
$$J_{\pi} = E_{\substack{x_0, w_k, v_k \\ k=0, \dots, N-1}} \left[g_N(\mathbf{x}_N) + \sum_{k=0}^{N-1} g_k(\mathbf{x}_k, \pi_k(\mathbf{I}_k), \mathbf{w}_k) \right]$$

Solution strategies

- 1. Reformulation as a perfect state information problem (main idea: make the information vector the state of the system)
 - Main drawback: state has expanding dimension!
- 2. Reason in terms of sufficient statistics, i.e., quantities that ideally are smaller than I_k and yet summarize all its essential content
 - Main example: conditional probability distribution $P_{x_k|I_k}$ (assuming $v_k \sim P_{v_k}(\cdot | x_{k-1}, u_{k-1}, w_{k-1})$)
 - Condition probability distribution leads to a decomposition of the optimal controller in two parts:



Dual control

- By performing DP in this "hyperstate", one can find a controller that optimally probes/explores the system
- Practically, designing dual controllers is difficult, so sub-optimal exploration heuristics are used
- Active area of research: see Wittenmark, B. "Adaptive dual control," (2008) for an introduction

Special case: LQG

Discrete LQG: find admissible control policy that minimizes

$$E\left[\boldsymbol{x}_{N}^{\prime}Q\boldsymbol{x}_{N}+\sum_{k=0}^{N-1}(\boldsymbol{x}_{k}^{\prime}Q\boldsymbol{x}_{k}+\boldsymbol{u}_{k}^{\prime}R\boldsymbol{u}_{k})\right]$$

subject to

- the dynamics $\boldsymbol{x}_{k+1} = A\boldsymbol{x}_k + B\boldsymbol{u}_k + \boldsymbol{w}_k$
- the measurement equation $\boldsymbol{z}_k = C\boldsymbol{x}_k + \boldsymbol{v}_k$

and with x_0 , $\{w_k\}$, $\{v_k\}$, independent and Gaussian vectors (and in addition $\{w_k\}$, $\{v_k\}$ zero mean)

LQG separation principle

LQG separation principle

LQG

- Have $x_k E[x_k|I_k]$ independent of control actions $u_{0:k-1}$
- In fact, solution results in:
 - $\hat{x}_k = E[x_k|I_k]$ computed via Kalman filter
 - Optimal feedback $u_k = F_k \hat{x}_k$; F_k same as in LQR case
- We can design state estimator and controller independently
- Certainty-equivalent LQR control on estimated state is optimal dual controller---certainly not true in general!
- More proof details in lecture notes

Next time

Nonlinearity: trajectory optimization, iterative LQR and DDP