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What is Reinforcement Learning?

Learning how to make good decisions by interaction.
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Why Reinforcement Learning?

* Only need to specify a reward function. Agent learns everything
else!

* Successes in
* Helicopter acrobatics

* Superhuman Gameplay: Backgammon, Go, Atari
* Investment portfolio management

* Making a humanoid robot walk
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Why Reinforcement Learning?

* Only need to specify a reward function. Agent learns everything
else!

* Successes in
* Helicopter acrobatics
* positive for following desired traj, negative for crashing
* Superhuman Gameplay: Backgammon, Go, Atari
* positive/negative for winning/losing the game
* Investment portfolio management
 positive reward for $5S

* Making a humanoid robot walk
* positive for forward motion, negative for falling
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Infinite Horizon MDPs

State: x€EX (oftens € §)

Action: u€eU (often a € A)

Transition Function: T(xp | X1, Up—1) = P(Xp | Xp—1, Up—1)
Reward Function: : = R(Xy,Ug)

Discount Factor: 14

MDP: M=, UT,R,y)
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e
Infinite Horizon MDPs

MDP: M =(X,UT,R,y)
Stationary policy: U, = 1m(xy)

Goal: Choose policy that maximizes cumulative reward.

m* = arg max E z YR (xp, (xy))
& k=0 :
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Infinite Horizon MDPs

* The optimal cost V*(x) satisfies Bellman’s equation

V*(x) = max R(x,u) +y z T x,w) Vi (x")

x'ex
\_ /
Y
Q" (x,u)
* For any stationary policy m, the costs I/;(x) are the unique solution to the

equation

Vo) = RGT(0) +7 ) T %, m(@) Ve(x)

x'eXx
N J

Qr (x, (X))
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Solving infinite-horizon MDPs

If you know the model, use DP-ideas
* Value Iteration / Policy Iteration (Covered in lecture 6)

RL: Learning from interaction
* Model-Based (related to system ID -- will see more later)

 Model-free

* Value based (today)
 Policy based
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Learning from Experience

» Without access to the model, agent needs to optimize a po
interaction with an MDP

Agent

* Only have access to trajectories in MDP:

icy from

reward
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Learning from Experience

How to use trajectory data?

* Model based approach: estimate T'(x’|x, u), then use model to plan

* Model free:
 Value based approach: estimate optimal value (or Q) function from data

* Policy based approach: use data to determine how to improve policy
 Actor Critic approach: learn both a policy and a value/Q function
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Temporal difference learning

* Main idea: use bootstrapped Bellman equation to update value
estimates

* Bootstrapping: use learned value for next state to estimate value at
current state
* Combines Monte Carlo and dynamic programming

E[Qn(xp, up) — (e + ¥ Qr(Xk41, Uk+1)]

\ J
Y

Temporal Difference (TD) error
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TD policy evaluation

Want to compute estimate of policy Q functions, Q
With o € (0,1)
« Sample (xy, ug, 1y, Xj+1) from MDP

* Q(xg, ug) < Qxp,uy) + a(""k +YQ (Xps1, Uk41) — Q(xkruk))
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Generalized policy iteration

Recall generalized policy iteration:

Loop:

* Perform policy evaluation step to estimate Q;

* Perform policy improvement step using Q,, to yield '
e Setm « 1’
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E————————
SARSA

Combine TD policy evaluation step with

Policy improvement:
m'(x) = argmax, Q. (x,u)

Greedy (with respect to Q function) policy improvement at each time
step; thus will improve during online operation.
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-
Q-learning

Instead of estimating Q, try to estimate Q" via

Q(xp, up) < Qxp, ug) + (Tk +y max Q(xg41,u) — Q(xk»uk))

Thus, we aim to estimate Q* from (possibly sub-optimal)
demonstration policy . This property is known as off-policy learning.
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Exploration vs Exploitation

In contrast to standard machine learning on fixed data sets, in RL we
actively gather the data we use to learn.

* We can only learn about states we visit and actions we take
* Need to explore to ensure we get the data we need
* Efficient exploration is a fundamental challenge in RL!

Simple strategy: add noise to the policy.

e-greedy exploration:

» With probability €, take a random action; otherwise take the most
promising action
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-
On-policy Q-learning algorithm

nitialize Q (x, u) for all states and actions.

_et m(x) be an e-greedy policy according to Q.
_oop:

Take action: u;, ~ m(xy).

Observe reward and next state: (1, Xx4+1)-
Update Q to minimize TD error:

QCxp,u) « Qlxg,up) + @ (Tk + ml?x Q(xg+1,u) — Q(xk:uk))
k =k+1
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-
Fitted Q Learning

Large / Continuous Action Space?
Use parametric model for Q function: Qg (x, u)

Gradient descent on TD error to update 6:

0<0+a (Tk +y max Qo (Xp+1,u) — Qg (xk»uk)> Vo Qo (Xg, U)

| . . d(Squared TD Error) dQ
earning rate 0 10
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-
Q Learning Recap

Pros:

* Can learn Q function from any interaction data, not just trajectories
gathered using the current policy (“off-policy” algorithm)

* Relatively data-efficient (can reuse old interaction data)

Cons:

* Need to optimize over actions: hard to apply to continuous action spaces
* Optimal Q function can be complicated, hard to learn

* Optimal policy might be much simpler!
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Problems with imperfect state information

* Now the controller, instead of having perfect knowledge of the
state, has access to observations z;, of the form
zy = ho(xg, o), z;. = h(xy, wy, vy)

* The random observation disturbance is characterized by a given
probability distribution

Py G Xy ooy X, Wi, e, U, Wi—q, o, W, Vg1, oe, Ug)

* The initial state x,, is also random and characterized by given P,
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R EEEEEEEEE—————S——m—m—m———
POMDP

 MDP with observation model H(z|x, u)

* Observations do not have Markov property: current observation
does not provide same amount of info as history of all observations

* Includes systems with unknown parameters: often also called
Bayes-adaptive MDP
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Reduction to fully observed case

* Define the information vector as
I, = (zy,...,Z,uy, ..., u_1), Iy= 2z,

 Focus is now on admissible policies m;, (I;,) € U,
* We want then to find an admissible Bollcy that minimizes

I = E xomme | gu () + 2 o1t (10, i)
=O,...,N—1
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Solution strategies

1. Reformulation as a perfect state information problem (main idea:
make the information vector the state of the system)

* Main drawback: state has expanding dimension!

2. Reason in terms of sufficient statistics, i.e., quantities that ideally
are smaller than I, and yet summarize all its essential content
* Main example: conditional probability distribution Py, |;, (assuming
V~Pyp, C X1, W1, Wi—1 )
« Condition probability distribution leads to a decomposition of the optimal
controller in two parts:

T[k(ka“k)

/ ~

Actuator Estimator
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Dual control

* By performing DP in this “hyperstate”, one can find a controller that
optimally probes/explores the system

* Practically, designing dual controllers is difficult, so sub-optimal
exploration heuristics are used

* Active area of research: see Wittenmark, B. “Adaptive dual control,”
(2008) for an introduction

4/20/21 AA 203 | Lecture 7 25



Special case: LQG

Discrete LQG: find admissible S:Voqtrol policy that minimizes

E|xy0xy + (x,Qx) + u,Ruy)
k=0

subject to
* the dynamics x5, .1 = Ax;, + Bu, + wy

* the measurement equation z;, = Cx;, + vy,

and with x,, {w;}, {v,}, independent and Gaussian vectors (and in
addition {w, }, {v,} zero mean)
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LQG separation principle
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LQG separation principle
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E————————
LQG

* Have x;, — E[x; |l ] independent of control actions uy.;,_4

* |n fact, solution results in:

* X = E[x;|I;] computed via Kalman filter
* Optimal feedback u; = FiXy; F;, same as in LQR case

* We can design state estimator and controller independently

 Certainty-equivalent LQR control on estimated state is optimal dual
controller---certainly not true in general!

* More proof details in lecture notes
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Next time

* Nonlinearity: trajectory optimization, iterative LQR and DDP
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