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Principle of optimality

The key concept behind the dynamic programming
approach is the principle of optimality

Suppose optimal path for a multi-stage decision-
making problem is

a e

* first decision yields segment a — b with cost ],

* remaining decisions yield segments b — e with
cost Jp,

* optimal costisthenJ,. = J, + Jpe
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-
Principle of optimality

e Claim:Ifa — b — e is optimal path from a to
e,then b — e is optimal pathfrom b toe

* Proof: Suppose b — ¢ — e is the optimal path
from b toe. Then

]bce < ]be
and

Jab + Joce <Jap t Jre = ]:Le

Contradiction!
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Principle of optimality

Principle of optimality (for discrete-time
systems): Let n*: = {m,, Ty, ..., Ty_1} bE
an optimal policy. Assume state x;, is
reachable. Consider the subproblem
whereby we are at x;, at time k and we
wish to minimize the cost-to-go from time
k to time N. Then the truncated policy
{my,, Tr4q, ..., Ty_1} is Optimal for the
subproblem

* tail policies optimal for tail subproblems
 notation: Ty (X;) =" (Xi, k)
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Applying the principle of optimality

J:,,

Principle of optimality: if b — c is the
initial segment of the optimal path

from b to f,then c — f is the terminal bﬁ
segment of this path

Hence, the optimal trajectory is found
by comparing:

Cbcf = Jpc + ]:f

Coar = Jpa t+ Jar

Cbef = Jpe t+ ]Zf
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Applying the principle of optimality

* need only to compare the
concatenations of immediate
decisions and optimal decisions
— significant decrease in
computation / possibilities

* in practice: carry out this
procedure backward in time
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Example

Final
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Example s
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Example 1 \

Optimal cost: 18; Optimal path.a - d - e—> f = g—> h
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DP Algorithm

* Model: Xy 41 = f(Xg, ug, k),  u€ U(Xg)
» Cost: J(Xo) = hy(xn) + XRZo 9Kk, T (Xg), k)

DP Algorithm: For every initial state x;, the optimal cost J*(x,) is equal
to J5(Xg), given by the last step of the following algorithm, which proceeds
backward in time from stage N — 1 to stage 0:

Jn(Xn) = hy(Xy)

JeXy) = Tefblgl g(Xg, ug, k) +]k+1(f(xk; U, k)) k=0,..,.N—1

Furthermore, if u;, = m; (X)) minimizes the right hand side of the above
equation for each x;, and k, the policy {ry, 7y, ..., Ty_1} is optimal
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Comments

* discretization (from differential
equations to difference equations)

* quantization (from continuous to
discrete state variables / controls)

* global minimum

* constraints, in general, simplify the
numerical procedure

 optimal control in closed-loop form
* curse of dimensionality
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Discrete LQR

* Canonical application of dynamic programming
for control

* One case where DP can be solved analytically (in
general, DP algorithm must be performed
numerically)

Discrete LQR: select control inputs to minimize
N-—1
1

1
Jo(x0) = §X%QNXN Ty Z (xk Quxy + uj, Rpuy 4 2x;, Sguy,)
k=0

subject to the dynamics
Xk_|_1:Ak;Xk—|—Bkuk, ]{E{O,l,...,N—l}
assuming

Qn=0QF =0, Ry—R >0, [Q‘“ Sk

% 520 w
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Discrete LQR

Many important extensions, some of
which we’ll cover later in this class

* Tracking LQR: Xy, u, represent small
deviations (“errors”) from a nominal
trajectory (possibly with nonlinear
dynamics)

* Cost with linear terms, affine dynamics:
can consider today’s analysis with
augmented dynamics

X Ak CL Xk B 7 ~
Yik+1 = [ k1+1] = [O 1] [1] + [0] u, = Ay + Buy
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Discrete LQR — brute force

Rewrite the minimization of

1 N—-1

1
Jo(x0) = §X%QNXN ) Z (x1 Qrxy + uj, Rpuy 4 2x, Spuy,)
k=0

subject to dynamics

Xk_|_1:Aka—|—Bkuk., kG{O,l,...,N—l}

as...
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Discrete LQR — brute force

_ - T - - -
X0 Qo So X0
Up Sg R() Ug
X1 Q1 Si X1
uq S? R1 u
min —
Xk ,Ug
XN-1 Qn-1 Sn-1 XN—1
uny_1 St Rn-1 un_1
| Xy | L On] | XN |
[ X0 ] —XO_
Ug 0
_—I ] X1 0
Ay By -1 u; 0
s.t. Al Bl —1 X2 + 0 =0
i An-1 By —1 | |XNn—1 0
un-—1 0
L. XN = —0_
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Discrete LQR — brute force

Defining suitable notation, this is
1

min -zl Wz
Z

st. Cz+d=0

with solution from applying NOC
(also SOC in this case, due to
problem convexity):

RN
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Discrete LQR — dynamic programming

First step:

) 1 1
JN(XN) — ix%QNazN = §$%PN$N

Going backward:

R 1 ([xna]l [Qnvor Svoa] [xnd] T
Jy_1(Xn-1) = min S T + XN PNXN
uv_1 2 \ |[un—1| |[Sy_; Rn-1] |unv-—1]
1 Txn 17T 1 Txw_i]
. XN—1 Qn-1 Sn-1]| |XN-1
= min — T +
uv-1 2 \ [un-1] |[Sy_1 Bn-1] [un-1)

(An_1xXN—1 + By_iun_1)" Py (AN_1Xn_1 + BNluNl))
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Discrete LQR — dynamic programming

Unconstrained NOC:

Vun_1JIN-1(XN_1) = Ry_1un_1 + Sy_1XNn_1+
By PN(AN_1Xn_1+ By_1un_1) =0
— uy_; = —(Rn_1+ By_PnBy-1) " (By_1PvAn—1 + Sy_1)Xn 1
= FN_1ZN—1

Note also that:

VQ JN—l(XN—l) = Ry_1+ Bjj\}_leBN—l >~

UN -1
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Discrete LQR — dynamic programming

Plugging in the optimal policy:
IN_1(xn_1) = %X%_l (@n-1+ AN_1PNAn_1—

(AN_1PNBn-1+ Sn-1)(Rn-1+ By_1PnBn_1)""(BN_1PNAn—1+ S§_1)) Xn-1

1 T
= §XN_1PN—1XN—1

Algebraic details aside:

* Cost-to-go (equivalently, “value function”) is a
quadratic function of the state at each step

* Optimal policy is a time-varying linear
feedback policy
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Discrete LQR — dynamic programming

Proceeding by induction, we derive the Riccati recursion:
1. Pn =QnN
2. Iy = —(Ry, + Bj, Pr11By,) " (Bj, Pry1 A + S;)
3. P, =Q + AL Py Ap—
(A% Prt1Bi + Sk)(Ry, + By, Prt1 By) ™! (B, Proy1 Ak + Sy )
4, m(xk) = Fpx;
. 1

Compute policy backwards in time, apply policy forward in time.
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Next time

e Stochastic DP

V*(x) = max R(x,u) +vy 2 T x,u) V*(x")

x'ex
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