
AA203
Optimal and Learning-based Control

Dynamic programming, discrete LQR

Roadmap

4/13/2021 AA 203 | Lecture 5 2

Open-loop

Indirect
methods

Direct
methods

Closed-loop

DP HJB / HJI

MPC

Adaptive
optimal control

Model-based RL

Model-free RL

Control

Optimal and
learning control

Adaptive controlFeedback control

Principle of optimality

The key concept behind the dynamic programming
approach is the principle of optimality

Suppose optimal path for a multi-stage decision-
making problem is

• first decision yields segment 𝑎 − 𝑏 with cost 𝐽𝑎𝑏
• remaining decisions yield segments 𝑏 − 𝑒 with

cost 𝐽𝑏𝑒
• optimal cost is then 𝐽𝑎𝑒

∗ = 𝐽𝑎𝑏 + 𝐽𝑏𝑒

4/13/2021 3AA 203 | Lecture 5

Principle of optimality

• Claim: If 𝑎 − 𝑏 − 𝑒 is optimal path from 𝑎 to
𝑒, then 𝑏 − 𝑒 is optimal path from 𝑏 to 𝑒

• Proof: Suppose 𝑏 − 𝑐 − 𝑒 is the optimal path
from 𝑏 to 𝑒. Then

𝐽𝑏𝑐𝑒 < 𝐽𝑏𝑒
and

𝐽𝑎𝑏 + 𝐽𝑏𝑐𝑒 < 𝐽𝑎𝑏 + 𝐽𝑏𝑒 = 𝐽𝑎𝑒
∗

4/13/2021 4

Contradiction!

AA 203 | Lecture 5

Principle of optimality

Principle of optimality (for discrete-time
systems): Let 𝜋∗: = {𝜋0

∗, 𝜋1
∗, … , 𝜋𝑁−1

∗ } be
an optimal policy. Assume state 𝐱𝑘 is
reachable. Consider the subproblem
whereby we are at 𝐱𝑘 at time 𝑘 and we
wish to minimize the cost-to-go from time
𝑘 to time 𝑁. Then the truncated policy
{𝜋𝑘

∗ , 𝜋𝑘+1
∗ , … , 𝜋𝑁−1

∗ } is optimal for the
subproblem

• tail policies optimal for tail subproblems

• notation: 𝜋𝑘
∗ 𝐱𝑘 = 𝜋∗ (𝐱𝑘 , 𝑘)

4/13/2021 AA 203 | Lecture 5 5

Applying the principle of optimality

4/13/2021 AA 203 | Lecture 5 6

Principle of optimality: if 𝑏 − 𝑐 is the
initial segment of the optimal path
from 𝑏 to 𝑓, then 𝑐 − 𝑓 is the terminal
segment of this path

Hence, the optimal trajectory is found
by comparing:

𝐶𝑏𝑐𝑓 = 𝐽𝑏𝑐 + 𝐽𝑐𝑓
∗

𝐶𝑏𝑑𝑓 = 𝐽𝑏𝑑 + 𝐽𝑑𝑓
∗

𝐶𝑏𝑒𝑓 = 𝐽𝑏𝑒 + 𝐽𝑒𝑓
∗

Applying the principle of optimality

• need only to compare the
concatenations of immediate
decisions and optimal decisions
→ significant decrease in
computation / possibilities

• in practice: carry out this
procedure backward in time

4/13/2021 AA 203 | Lecture 5 7

Example

4/13/2021 AA 203 | Lecture 5 8

Example

4/13/2021 AA 203 | Lecture 5 9

Example

4/13/2021 AA 203 | Lecture 5 10

Optimal cost: 18; Optimal path: 𝑎 → 𝑑 → 𝑒 → 𝑓 → 𝑔 → ℎ

DP Algorithm
• Model: 𝐱𝑘+1 = 𝑓 𝐱𝑘 , 𝐮𝑘 , 𝑘 , 𝐮𝑘∈ 𝑈(𝐱𝑘)

• Cost: 𝐽(𝐱0) = ℎ𝑁 𝐱𝑵 + σ𝑘=0
𝑁−1𝑔 𝐱𝑘 , 𝜋𝑘(𝐱𝑘), 𝑘

DP Algorithm: For every initial state 𝐱0, the optimal cost 𝐽∗(𝐱0) is equal
to 𝐽0

∗(𝐱0), given by the last step of the following algorithm, which proceeds
backward in time from stage 𝑁 − 1 to stage 0:

𝐽𝑁
∗ (𝐱𝑁) = ℎ𝑁(𝐱𝑁)

𝐽𝑘
∗ 𝐱𝑘 = min

𝐮𝑘∈𝑈(𝐱𝑘)
𝑔 𝐱𝑘 , 𝐮𝑘 , 𝑘 + 𝐽𝑘+1

∗ 𝑓 𝐱𝑘 , 𝐮𝑘 , 𝑘 , 𝑘 = 0,… , 𝑁 − 1

Furthermore, if 𝐮𝑘
∗ = 𝜋𝑘

∗(𝐱𝑘) minimizes the right hand side of the above
equation for each 𝐱𝑘 and 𝑘, the policy {𝜋0

∗, 𝜋1
∗, … , 𝜋𝑁−1

∗ } is optimal

4/13/2021 AA 203 | Lecture 5 11

Comments

• discretization (from differential
equations to difference equations)

• quantization (from continuous to
discrete state variables / controls)

• global minimum

• constraints, in general, simplify the
numerical procedure

• optimal control in closed-loop form

• curse of dimensionality

4/13/2021 AA 203 | Lecture 5 12

Discrete LQR

• Canonical application of dynamic programming
for control

• One case where DP can be solved analytically (in
general, DP algorithm must be performed
numerically)

Discrete LQR: select control inputs to minimize

subject to the dynamics

assuming

4/13/2021 AA 203 | Lecture 5 13

Discrete LQR

4/13/2021 AA 203 | Lecture 5 14

Many important extensions, some of
which we’ll cover later in this class

• Tracking LQR: 𝐱𝑘 , 𝐮𝑘 represent small
deviations (“errors”) from a nominal
trajectory (possibly with nonlinear
dynamics)

• Cost with linear terms, affine dynamics:
can consider today’s analysis with
augmented dynamics

Discrete LQR – brute force

4/13/2021 AA 203 | Lecture 5 15

Rewrite the minimization of

subject to dynamics

as…

Discrete LQR – brute force

4/13/2021 AA 203 | Lecture 5 16

Discrete LQR – brute force

Defining suitable notation, this is

with solution from applying NOC
(also SOC in this case, due to
problem convexity):

4/13/2021 AA 203 | Lecture 5 17

Discrete LQR – dynamic programming

First step:

Going backward:

4/13/2021 AA 203 | Lecture 5 18

Discrete LQR – dynamic programming

Unconstrained NOC:

Note also that:

4/13/2021 AA 203 | Lecture 5 19

Discrete LQR – dynamic programming

Plugging in the optimal policy:

Algebraic details aside:

• Cost-to-go (equivalently, “value function”) is a
quadratic function of the state at each step

• Optimal policy is a time-varying linear
feedback policy

4/13/2021 AA 203 | Lecture 5 20

Discrete LQR – dynamic programming

Proceeding by induction, we derive the Riccati recursion:

1.

2.

3.

4.

5.

Compute policy backwards in time, apply policy forward in time.

4/13/2021 AA 203 | Lecture 5 21

Next time

• Stochastic DP

𝑉∗(𝑥) = max
𝑢

𝑅 𝑥, 𝑢 + 𝛾 ෍

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝑢 𝑉∗ 𝑥′

4/13/2021 AA 203 | Lecture 5 22

