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Principle of optimality

The key concept behind the dynamic programming 
approach is the principle of optimality

Suppose optimal path for a multi-stage decision-
making problem is

• first decision yields segment 𝑎 − 𝑏 with cost 𝐽𝑎𝑏
• remaining decisions yield segments 𝑏 − 𝑒 with 

cost 𝐽𝑏𝑒
• optimal cost is then 𝐽𝑎𝑒

∗ = 𝐽𝑎𝑏 + 𝐽𝑏𝑒
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Principle of optimality

• Claim: If 𝑎 − 𝑏 − 𝑒 is optimal path from 𝑎 to 
𝑒, then 𝑏 − 𝑒 is optimal path from 𝑏 to 𝑒

• Proof: Suppose 𝑏 − 𝑐 − 𝑒 is the optimal path 
from 𝑏 to 𝑒. Then

𝐽𝑏𝑐𝑒 < 𝐽𝑏𝑒
and

𝐽𝑎𝑏 + 𝐽𝑏𝑐𝑒 < 𝐽𝑎𝑏 + 𝐽𝑏𝑒 = 𝐽𝑎𝑒
∗
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Contradiction!
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Principle of optimality

Principle of optimality (for discrete-time 
systems): Let 𝜋∗: = {𝜋0

∗, 𝜋1
∗, … , 𝜋𝑁−1

∗ } be 
an optimal policy. Assume state 𝐱𝑘 is 
reachable. Consider the subproblem 
whereby we are at 𝐱𝑘 at time 𝑘 and we 
wish to minimize the cost-to-go from time 
𝑘 to time 𝑁. Then the truncated policy 
{𝜋𝑘

∗ , 𝜋𝑘+1
∗ , … , 𝜋𝑁−1

∗ } is optimal for the 
subproblem

• tail policies optimal for tail subproblems

• notation: 𝜋𝑘
∗ 𝐱𝑘 = 𝜋∗ (𝐱𝑘 , 𝑘)
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Applying the principle of optimality
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Principle of optimality: if 𝑏 − 𝑐 is the 
initial segment of the optimal path 
from 𝑏 to 𝑓, then 𝑐 − 𝑓 is the terminal 
segment of this path

Hence, the optimal trajectory is found 
by comparing:

𝐶𝑏𝑐𝑓 = 𝐽𝑏𝑐 + 𝐽𝑐𝑓
∗

𝐶𝑏𝑑𝑓 = 𝐽𝑏𝑑 + 𝐽𝑑𝑓
∗

𝐶𝑏𝑒𝑓 = 𝐽𝑏𝑒 + 𝐽𝑒𝑓
∗



Applying the principle of optimality

• need only to compare the 
concatenations of immediate 
decisions and optimal decisions 
→ significant decrease in 
computation  / possibilities 

• in practice: carry out this 
procedure backward in time
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Example
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Example
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Example
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Optimal cost: 18; Optimal path: 𝑎 → 𝑑 → 𝑒 → 𝑓 → 𝑔 → ℎ



DP Algorithm
• Model: 𝐱𝑘+1 = 𝑓 𝐱𝑘 , 𝐮𝑘 , 𝑘 , 𝐮𝑘∈ 𝑈(𝐱𝑘)

• Cost: 𝐽(𝐱0) = ℎ𝑁 𝐱𝑵 + σ𝑘=0
𝑁−1𝑔 𝐱𝑘 , 𝜋𝑘(𝐱𝑘), 𝑘

DP Algorithm: For every initial state 𝐱0, the optimal cost 𝐽∗(𝐱0) is equal 
to 𝐽0

∗(𝐱0), given by the last step of the following algorithm, which proceeds 
backward in time from stage 𝑁 − 1 to stage 0:

𝐽𝑁
∗ (𝐱𝑁) = ℎ𝑁(𝐱𝑁)

𝐽𝑘
∗ 𝐱𝑘 = min

𝐮𝑘∈𝑈(𝐱𝑘)
𝑔 𝐱𝑘 , 𝐮𝑘 , 𝑘 + 𝐽𝑘+1

∗ 𝑓 𝐱𝑘 , 𝐮𝑘 , 𝑘 , 𝑘 = 0,… , 𝑁 − 1

Furthermore, if 𝐮𝑘
∗ = 𝜋𝑘

∗(𝐱𝑘) minimizes the right hand side of the above 
equation for each 𝐱𝑘 and 𝑘, the policy {𝜋0

∗, 𝜋1
∗, … , 𝜋𝑁−1

∗ } is optimal 
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Comments

• discretization (from differential 
equations to difference equations)

• quantization (from continuous to 
discrete state variables / controls)

• global minimum

• constraints, in general, simplify the 
numerical procedure 

• optimal control in closed-loop form 

• curse of dimensionality
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Discrete LQR

• Canonical application of dynamic programming 
for control

• One case where DP can be solved analytically (in 
general, DP algorithm must be performed 
numerically)

Discrete LQR: select control inputs to minimize

subject to the dynamics

assuming
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Discrete LQR
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Many important extensions, some of 
which we’ll cover later in this class

• Tracking LQR: 𝐱𝑘 , 𝐮𝑘 represent small 
deviations (“errors”) from a nominal 
trajectory (possibly with nonlinear 
dynamics)

• Cost with linear terms, affine dynamics: 
can consider today’s analysis with 
augmented dynamics



Discrete LQR – brute force
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Rewrite the minimization of

subject to dynamics

as…



Discrete LQR – brute force
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Discrete LQR – brute force

Defining suitable notation, this is

with solution from applying NOC 
(also SOC in this case, due to 
problem convexity):
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Discrete LQR – dynamic programming

First step:

Going backward:
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Discrete LQR – dynamic programming

Unconstrained NOC:

Note also that:
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Discrete LQR – dynamic programming

Plugging in the optimal policy:

Algebraic details aside:

• Cost-to-go (equivalently, “value function”) is a 
quadratic function of the state at each step

• Optimal policy is a time-varying linear 
feedback policy
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Discrete LQR – dynamic programming

Proceeding by induction, we derive the Riccati recursion:

1.

2.

3.

4.

5.

Compute policy backwards in time, apply policy forward in time.
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Next time

• Stochastic DP

𝑉∗(𝑥) = max
𝑢

𝑅 𝑥, 𝑢 + 𝛾 ෍

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝑢 𝑉∗ 𝑥′
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