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Pontryagin’s minimum principle, special cases



Logistics

James’s OH (1-2PM today, June 3rd): HW4P1

Project OH: by appointment going forward, 
contact aa203-spr2021-staff@lists.stanford.edu

Hard deadlines (late days already included):
• HW4: Monday, June 7th by 5:00PM
• Project reports/summary videos: Saturday, 

June 5th by 11:59PM
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Necessary conditions for optimal control 
(with unbounded controls)

We want to prove that, with unbounded controls, the 
necessary optimality conditions are (𝐻 is the 
Hamiltonian)

along with the boundary conditions:
𝜕ℎ
𝜕𝐱 𝐱∗ 𝑡" , 𝑡" − 𝐩∗ 𝑡"

#
𝛿𝐱"

+ 𝐻 𝐱∗ 𝑡" , 𝐮∗ 𝑡" , 𝐩∗ 𝑡" , 𝑡" +
𝜕ℎ
𝜕𝑡 𝐱∗ 𝑡" , 𝑡" 𝛿𝑡" = 0
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�̇�∗ 𝑡 = "#
"𝐩 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

�̇�∗ 𝑡 = − "#
"𝐱 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

𝟎 = "#
"𝐮

𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

for all 𝑡 ∈ [𝑡!, 𝑡"]



Proof of NOC

• For simplicity, assume that the terminal penalty is equal to 
zero, and that 𝑡, and 𝐱(𝑡,) are fixed and given

• Consider the augmented cost function
𝑔$ 𝐱 𝑡 , �̇� 𝑡 , 𝐮 𝑡 , 𝐩 𝑡 , 𝑡 ≔

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 + 𝐩 𝑡 #[𝐟 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 − �̇�(𝑡)]

where the {𝑝-(𝑡)}’s are Lagrange multipliers
• Note that we have simply added zero to the cost function!
• The augmented cost function is then 

𝐽.(𝐮) = 1
/!

/"
𝑔. 𝐱 𝑡 , �̇� 𝑡 , 𝐮 𝑡 , 𝐩 𝑡 , 𝑡 𝑑𝑡
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Proof of NOC

!
#!

#"
"

#

𝜕𝑔$
𝜕𝐱

𝐱∗ 𝑡 , �̇�∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡 −
𝑑
𝑑𝑡
𝜕𝑔$
𝜕�̇�

𝐱∗ 𝑡 , �̇�∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡
&

𝛿𝐱 𝑡

+
𝜕𝑔$
𝜕𝐮

𝐱∗ 𝑡 , �̇�∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡
&

𝛿𝐮 𝑡 +
𝜕𝑔$
𝜕𝐩

𝐱∗ 𝑡 , �̇�∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡
&

𝛿𝐩(𝑡) 𝑑𝑡
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On an extremal, by applying the fundamental theorem of the CoV

0 = 𝛿𝐽# 𝐮 =

By the CoV
theorem 



Proof of NOC

!
#!

#"
"

#

𝜕𝑔$
𝜕𝐱

𝐱∗ 𝑡 , �̇�∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡 −
𝑑
𝑑𝑡
𝜕𝑔$
𝜕�̇�

𝐱∗ 𝑡 , �̇�∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡
&

𝛿𝐱 𝑡

+
𝜕𝑔$
𝜕𝐮

𝐱∗ 𝑡 , �̇�∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡
&

𝛿𝐮 𝑡 +
𝜕𝑔$
𝜕𝐩

𝐱∗ 𝑡 , �̇�∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡
&

𝛿𝐩(𝑡) 𝑑𝑡
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On an extremal, by applying the fundamental theorem of the CoV

= 𝐟 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 − �̇�∗ 𝑡

= −
𝑑
𝑑𝑡
(−𝐩∗(𝑡))=

𝜕𝑔
𝜕𝐱 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 +

𝜕𝐟
𝜕𝐱 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 %𝐩∗(𝑡)

0 = 𝛿𝐽# 𝐮 =

By the CoV
theorem 



Proof of NOC

Considering each term in sequence, 
• 𝐟 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 − �̇�∗ 𝑡 = 𝟎, on an extremal
• The Lagrange multipliers are arbitrary, so we can select 

them to make the coefficient of 𝛿𝐱(𝑡) equal to zero, that is

�̇�∗ 𝑡 = −
𝜕𝑔
𝜕𝐱

𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 −
𝜕𝐟
𝜕𝐱

𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 =𝐩∗(𝑡)

• The remaining variation 𝛿𝐮 𝑡 , is independent, so its 
coefficient must be zero; thus
𝜕𝑔
𝜕𝐮

𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 +
𝜕𝐟
𝜕𝐮

𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 =𝐩∗ 𝑡 = 𝟎

By using the Hamiltonian formalism, one obtains the claim 
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Necessary conditions for optimal control 
(with bounded controls)

• So far, we have assumed that the admissible 
controls and states are not constrained by any 
boundaries
• However, in realistic systems, such constraints 

do commonly occur
• control constraints often occur due to actuation limits
• state constraints often occur due to safety 

considerations 

• We will now consider the case with control 
constraints, which will lead to the statement of 
the Pontryagin’s minimum principle
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Why do control constraints complicate the analysis?

• By definition, the control 𝐮∗ causes the functional 𝐽
to have a relative minimum if

𝐽 𝐮 − 𝐽 𝐮∗ = Δ𝐽 ≥ 0
for all admissible controls “close” to 𝐮∗

• If we let 𝐮 = 𝐮∗ + 𝛿𝐮, the increment in 𝐽 can be 
expressed as 
Δ𝐽 𝐮∗, 𝛿𝐮 = 𝛿𝐽 𝐮∗, 𝛿𝐮 + higher order terms 

• The variation 𝛿𝐮 is arbitrary only if the extremal 
control is strictly within the boundary for all time in 
the interval [𝑡>, 𝑡,]
• In general, however, an extremal control lies on a 

boundary during at least one subinterval of the 
interval [𝑡>, 𝑡,]
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Why control constraints complicate the analysis?

• As a consequence, admissible control variations 𝛿𝐮 exist 
whose negatives (−𝛿𝐮) are not admissible  
• This implies that a necessary condition for 𝐮∗to minimize 𝐽 is 

𝛿𝐽 𝐮∗, 𝛿𝐮 ≥ 0
for all admissible variations with 𝛿𝐮 small enough
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Pontryagin’s minimum principle

• Assuming bounded controls 𝐮 ∈ 𝑈, the necessary optimality conditions 
are (𝐻 is the Hamiltonian) 

along with the boundary conditions:

𝜕ℎ
𝜕𝐱 𝐱∗ 𝑡" , 𝑡" − 𝐩∗ 𝑡"

%

𝛿𝐱" + 𝐻 𝐱∗ 𝑡" , 𝐮∗ 𝑡" , 𝐩∗ 𝑡" , 𝑡" +
𝜕ℎ
𝜕𝑡 𝐱∗ 𝑡" , 𝑡" 𝛿𝑡" = 0
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�̇�∗ 𝑡 = %&
%𝐩

𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

�̇�∗ 𝑡 = − %&
%𝐱

𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

𝐻 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡 ≤ 𝐻 𝐱∗ 𝑡 , 𝐮 𝑡 , 𝐩∗ 𝑡 , 𝑡 , for all 𝐮(𝑡) ∈ 𝑈

for all
𝑡 ∈ [𝑡!, 𝑡"]



Pontryagin’s minimum principle

• 𝐮∗ 𝑡 is a control that causes 𝐻 𝐱∗ 𝑡 , 𝐮 𝑡 , 𝐩∗ 𝑡 , 𝑡
to assume its global minimum 
• Harder condition in general to analyze
• Example: consider the system having dynamics:

�̇�A 𝑡 = 𝑥B 𝑡 , �̇�B 𝑡 = −𝑥B 𝑡 + 𝑢(𝑡);
it is desired to minimize the functional 

𝐽 = 1
/!

/" 1
2
𝑥AB 𝑡 + 𝑢B 𝑡 𝑑𝑡

subject to the control constraint 𝑢 𝑡 ≤ 1
with 𝑡, fixed and the final state free.
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Pontryagin’s minimum principle

Solution:
• If the control is unconstrained, 

𝑢∗ 𝑡 = −𝑝B∗ 𝑡
• If the control is constrained as 𝑢 𝑡 ≤ 1, then

𝑢∗ 𝑡 = D
−1

−𝑝B∗ 𝑡 ,
+1

for 1 < 𝑝B∗ 𝑡
−1 ≤ 𝑝B∗ 𝑡 ≤ 1

for 𝑝B∗ 𝑡 < −1

• To determine 𝑢∗ 𝑡 explicitly, the state and co-
state equations must still be solved
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Additional necessary conditions 

1. If the final time is fixed and the Hamiltonian 
does not depend explicitly on time, then 

𝐻 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 = 𝑐 for all 𝑡 ∈ 𝑡>, 𝑡,

2. If the final time is free and the Hamiltonian 
does not depend explicitly on time, then 

𝐻 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 = 0 for all 𝑡 ∈ [𝑡>, 𝑡,]
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Minimum time problems 

• Find the control input sequence 
𝑀9
: ≤ 𝑢9 𝑡 ≤ 𝑀9

; for 𝑖 = 1,… ,𝑚
that drives the control affine system 

�̇� = 𝐴 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡
from an arbitrary state 𝐱< to the origin, 
and minimizes time

𝐽 = 2
=!

="
𝑑𝑡
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Minimum time problems 
• Form the Hamiltonian

𝐻 = 1 + 𝐩 𝑡 ={𝐴 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡 }

• By the PMP, select 𝑢-(𝑡) to minimize 𝐻, which gives

𝑢-∗ 𝑡 = L𝑀-
C

𝑀-
D
if 𝐩 𝑡 =𝐛- 𝐱, 𝑡 < 0
if 𝐩 𝑡 =𝐛- 𝐱, 𝑡 > 0

• Side note: reminiscent of HJB? 𝐩∗ t = ∇𝐱 𝐽 𝐱∗ t , t under 
certain technical assumptions (see Kirk Ch. 7)
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= 1 + 𝐩 𝑡 ={𝐴 𝐱, 𝑡 + [𝐛A 𝐱, 𝑡 𝐛B 𝐱, 𝑡 ⋯𝐛E 𝐱, 𝑡 ]𝐮 𝑡 }

= 1 + 𝐩 𝑡 =𝐴 𝐱, 𝑡 +T
-FA

E

𝐩 𝑡 =𝐛- 𝐱, 𝑡 𝑢-(𝑡)

“Bang-bang” control



Minimum time problems 

• Note: we showed what to do when 𝐩 𝑡 2𝐛3 𝐱, 𝑡 ≠ 0
• Not obvious what to do if  𝐩 𝑡 2𝐛3 𝐱, 𝑡 = 0
• If 𝐩 𝑡 2𝐛3 𝐱, 𝑡 = 0 for some finite time interval, 

then the coefficient of 𝑢3(𝑡) in the Hamiltonian is 
zero, so the PMP provides no information on how to 
select 𝑢3(𝑡)
• The treatment of such a singular condition requires a 

more sophisticated analysis
• The analysis in the linear case is significantly easier, 

see Kirk Sec. 5.4

6/3/21 AA 203 | Lecture 20



Minimum fuel problems 

• Find the control input sequence 
𝑀9
: ≤ 𝑢9 𝑡 ≤ 𝑀9

; for 𝑖 = 1,… ,𝑚
that drives the control affine system 

�̇� = 𝐴 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡
from an arbitrary state 𝐱< to the origin in 
a fixed time, and minimizes 

𝐽 = 2
=!

="
4
9>?

@

𝑐9 |𝑢9(𝑡)| 𝑑𝑡
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Minimum fuel problems 
• Form the Hamiltonian

𝐻 = ∑3456 𝑐3 |𝑢3(𝑡)| + 𝐩 𝑡 2{𝐴 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡 }

• By the PMP, select 𝑢9(𝑡) to minimize 𝐻, that is
∑-FAE [𝑐- |𝑢-∗(𝑡)| + 𝐩 𝑡 =𝐛- 𝐱, 𝑡 𝑢-∗(𝑡)] ≤
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=T
-FA

E

𝑐- |𝑢-(𝑡)| + 𝐩 𝑡 =𝐴 𝐱, 𝑡 +T
-FA

E

𝐩 𝑡 =𝐛- 𝐱, 𝑡 𝑢-(𝑡)

=T
-FA

E

[𝑐- |𝑢-(𝑡)| + 𝐩 𝑡 =𝐛- 𝐱, 𝑡 𝑢-(𝑡)] + 𝐩 𝑡 =𝐴 𝐱, 𝑡

∑-FAE [𝑐- |𝑢-(𝑡)| + 𝐩 𝑡 =𝐛- 𝐱, 𝑡 𝑢-(𝑡)]



Minimum fuel problems 

• Since the components of 𝐮 𝑡 are 
independent, then one can just look at 

𝑐- |𝑢-∗(𝑡)| + 𝐩 𝑡 =𝐛- 𝐱, 𝑡 𝑢-∗ 𝑡
≤ 𝑐- |𝑢-(𝑡)| + 𝐩 𝑡 =𝐛- 𝐱, 𝑡 𝑢-(𝑡)

• The resulting control law is

𝑢-∗ 𝑡 = W
𝑀-
D

0
𝑀-
C

if 𝑐- < 𝐩 𝑡 =𝐛- 𝐱, 𝑡
if − 𝑐- < 𝐩 𝑡 =𝐛- 𝐱, 𝑡 < 𝑐-
if 𝐩 𝑡 =𝐛- 𝐱, 𝑡 < −𝑐-
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“Bang-off-bang” control



Minimum energy problems 

• Find the control input sequence 
𝑀9
: ≤ 𝑢9 𝑡 ≤ 𝑀9

; for 𝑖 = 1,… ,𝑚
that drives the control affine system 

�̇� = 𝐴 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡
from an arbitrary state 𝐱< to the origin 
in a fixed time, and minimizes 

𝐽 =
1
2
2
=!

="
𝐮 𝑡 A𝑅𝐮 𝑡 𝑑𝑡 ,

where 𝑅 > 0 and diagonal
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Minimum energy problems 
• Form the Hamiltonian

𝐻 = 5
7
𝐮 𝑡 2𝑅𝐮(𝑡) + 𝐩 𝑡 2{𝐴 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡 }

• By the PMP, we need to solve

𝐮∗ 𝑡 = arg min
𝐮 / ∈G

T
-FA

E
1
2
𝑅--𝑢- 𝑡 B + 𝐩 𝑡 =𝐛- 𝐱, 𝑡 𝑢-(𝑡)
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= 5
7
𝐮 𝑡 2𝑅𝐮 𝑡 + 𝐩 𝑡 2𝐵 𝐱, 𝑡 𝐮 𝑡 + 𝐩 𝑡 2𝐴 𝐱, 𝑡



Minimum energy problems 

• As in the first example today, in the 
unconstrained case, the optimal solution for 
each component of 𝐮(𝑡)would be

>𝑢9 𝑡 = −𝑅99:? 𝐩 𝑡 A𝐛9 𝐱, 𝑡
• Considering the input constraints, the resulting 

control law is

𝑢∗ 𝑡 = B
𝑀9
:

>𝑢9 𝑡
𝑀9
;

if >𝑢9 𝑡 < 𝑀9
:

if 𝑀9
: < >𝑢9 𝑡 <

if 𝑀9
; < >𝑢9 𝑡

𝑀9
;

6/3/21 AA 203 | Lecture 20



Uniqueness and existence
• Note: uniqueness and existence are not in general 

guaranteed!

• Example 1 (non uniqueness): find a control sequence 
𝑢(𝑡) to transfer the system �̇� 𝑡 = 𝑢(𝑡) from an arbitrary 
initial state 𝑥) to the origin, and such that the functional 
𝐽 = ∫)

*! 𝑢 𝑡 𝑑𝑡 is minimized. The final time is free, and 
the admissible controls are 𝑢 𝑡 ≤ 1

• Example 2 (non existence): find a control sequence 𝑢(𝑡)
to transfer the system �̇� 𝑡 = −𝑥 𝑡 + 𝑢(𝑡) from an 
arbitrary initial state 𝑥) to the origin, and such that the 
functional 𝐽 = ∫*"

*! 𝑢 𝑡 𝑑𝑡 is minimized. The final time is 
free, and the admissible controls are 𝑢 𝑡 ≤ 1

6/3/21 AA 203 | Lecture 20



Course wrap up

26

Open-loop

Indirect 
methods

Direct 
methods

Closed-loop

DP HJB / HJI

MPC

Adaptive
optimal control

Model-based RL

Model-free RL
Control

Optimal and 
learning control

Adaptive controlFeedback control

LQR iLQR DDP
26

Reachability 
analysis

LQR

Unconstrained Constrained

AA 203 | Lecture 20

Thank you for 
attending!


