AA203 Optimal and Learning-based Control

Pontryagin's minimum principle, special cases

Logistics

James's OH (1-2PM today, June 3rd): HW4P1

Project OH: by appointment going forward, contact aa203-spr2021-staff@lists.stanford.ed

Hard deadlines (late days already included):

- HW4: Monday, June 7th by 5:00PM
- Project reports/summary videos: Saturday, June 5th by 11:59PM

Necessary conditions for optimal control (with unbounded controls)

We want to prove that, with unbounded controls, the necessary optimality conditions are (H) is the Hamiltonian)

$$
\dot{\mathbf{x}}^*(t) = \frac{\partial H}{\partial \mathbf{p}} (\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t)
$$
\n
$$
\dot{\mathbf{p}}^*(t) = -\frac{\partial H}{\partial \mathbf{x}} (\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t) \qquad \text{for all } t \in [t_0, t_f]
$$
\n
$$
\mathbf{0} = \frac{\partial H}{\partial \mathbf{u}} (\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t)
$$

along with the boundary conditions:

$$
\begin{aligned}\n&\left[\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f), t_f) - \mathbf{p}^*(t_f)\right]^T \delta \mathbf{x}_f \\
&+ \left[H(\mathbf{x}^*(t_f), \mathbf{u}^*(t_f), \mathbf{p}^*(t_f), t_f) + \frac{\partial h}{\partial t}(\mathbf{x}^*(t_f), t_f)\right] \delta t_f = 0\n\end{aligned}
$$

- For simplicity, assume that the terminal penalty is equal to zero, and that t_f and $\mathbf{x}(t_f)$ are fixed and given
- Consider the augmented cost function $g_a(\mathbf{x}(t), \dot{\mathbf{x}}(t), \mathbf{u}(t), \mathbf{p}(t), t) \coloneqq$ $g(x(t), u(t), t) + p(t)^T [f(x(t), u(t), t) - \dot{x}(t)]$

where the $\{p_i(t)\}$'s are Lagrange multipliers

- Note that we have simply added zero to the cost function!
- The augmented cost function is then

$$
J_a(\mathbf{u}) = \int_{t_0}^{t_f} g_a(\mathbf{x}(t), \dot{\mathbf{x}}(t), \mathbf{u}(t), \mathbf{p}(t), t) dt
$$

On an extremal, by applying the fundamental theorem of the CoV

By the CoV theorem

$$
0 = \delta J_a(\mathbf{u}) = \int_{t_0}^{t_f} \left(\left[\frac{\partial g_a}{\partial \mathbf{x}} (\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t) - \frac{d}{dt} \frac{\partial g_a}{\partial \dot{\mathbf{x}}} (\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t) \right]^T \delta \mathbf{x}(t) + \left[\frac{\partial g_a}{\partial \mathbf{u}} (\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t) \right]^T \delta \mathbf{u}(t) + \left[\frac{\partial g_a}{\partial \mathbf{p}} (\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t) \right]^T \delta \mathbf{p}(t) dt
$$

On an extremal, by applying the fundamental theorem of the CoV

By the CoV theorem

$$
= \frac{\partial g}{\partial \mathbf{x}}(\mathbf{x}^*(t), \mathbf{u}^*(t), t) + \frac{\partial f}{\partial \mathbf{x}}(\mathbf{x}^*(t), \mathbf{u}^*(t), t)^T \mathbf{p}^*(t) = -\frac{d}{dt}(-\mathbf{p}^*(t))
$$

$$
0 = \delta J_a(\mathbf{u}) = \int_{t_0}^{t_f} \left(\left[\frac{\partial g_a}{\partial \mathbf{x}}(\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t) - \frac{d}{dt} \frac{\partial g_a}{\partial \dot{\mathbf{x}}}(\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t) \right]^T \delta \mathbf{x}(t) + \left[\frac{\partial g_a}{\partial \mathbf{u}}(\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t) \right]^T \delta \mathbf{p}(t) \right) dt
$$

$$
= f(\mathbf{x}^*(t), \mathbf{u}^*(t), t) - \dot{\mathbf{x}}^*(t)
$$

Considering each term in sequence,

- $f(x^*(t), u^*(t), t) \dot{x}^*(t) = 0$, on an extremal
- The Lagrange multipliers are arbitrary, so we can select them to make the coefficient of $\delta {\bf x}(t)$ equal to zero, that is $\dot{\mathbf{p}}^*(t) = -\frac{\partial g}{\partial t}$ ∂ **x** $\mathbf{x}^*(t)$, $\mathbf{u}^*(t)$, $t) - \frac{\partial \mathbf{f}}{\partial t}$ ∂ **x** ${\bf x}^{*}(t), {\bf u}^{*}(t), t)^{T} {\bf p}^{*}(t)$
- The remaining variation $\delta u(t)$, is independent, so its coefficient must be zero; thus ∂g ∂ u ${\bf x}^{*}(t)$, ${\bf u}^{*}(t)$, $t)$ + $\partial \mathbf{f}$ $\partial \mathbf{u}$ $\mathbf{x}^*(t)$, $\mathbf{u}^*(t)$, t $)^T \mathbf{p}^*(t) = \mathbf{0}$

By using the Hamiltonian formalism, one obtains the claim

Necessary conditions for optimal control (with bounded controls)

- So far, we have assumed that the admissible controls and states are not constrained by any boundaries
- However, in realistic systems, such constraints do commonly occur
	- control constraints often occur due to actuation limits
	- state constraints often occur due to safety considerations
- We will now consider the case with control constraints, which will lead to the statement of the Pontryagin's minimum principle

Why do control constraints complicate the analysis?

• By definition, the control \mathbf{u}^* causes the functional *J* to have a relative minimum if

 $J(\mathbf{u}) - J(\mathbf{u}^*) = \Delta J \geq 0$

for all admissible controls "close" to \mathbf{u}^*

• If we let $\mathbf{u} = \mathbf{u}^* + \delta \mathbf{u}$, the increment in *J* can be expressed as

 $\Delta J(\mathbf{u}^*, \delta \mathbf{u}) = \delta J(\mathbf{u}^*, \delta \mathbf{u}) + \text{higher order terms}$

- The variation δ **u** is arbitrary *only if* the extremal control is strictly within the boundary for all time in the interval $[t_0,t_f]$
- In general, however, an extremal control lies on a boundary during at least one subinterval of the interval $[t_0,t_f]$

Why control constraints complicate the analysis?

- As a consequence, admissible control variations δ **u** exist whose negatives $(-\delta \mathbf{u})$ are not admissible
- This implies that a necessary condition *for* **u***to minimize *J* is $\delta J(\mathbf{u}^*, \delta \mathbf{u}) \geq 0$

for all admissible variations with $\|\delta\mathbf{u}\|$ small enough

Pontryagin's minimum principle

• Assuming bounded controls $\mathbf{u} \in U$, the necessary optimality conditions are $(H$ is the Hamiltonian)

$$
\dot{\mathbf{x}}^{*}(t) = \frac{\partial H}{\partial \mathbf{p}}(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t)
$$
\n
$$
\dot{\mathbf{p}}^{*}(t) = -\frac{\partial H}{\partial \mathbf{x}}(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t)
$$
\nfor all\n
$$
H(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t) \leq H(\mathbf{x}^{*}(t), \mathbf{u}(t), \mathbf{p}^{*}(t), t), \text{ for all } \mathbf{u}(t) \in U
$$
\n
$$
\text{along with the boundary conditions:}
$$

$$
\left[\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f), t_f) - \mathbf{p}^*(t_f)\right]^T \delta \mathbf{x}_f + \left[H(\mathbf{x}^*(t_f), \mathbf{u}^*(t_f), \mathbf{p}^*(t_f), t_f) + \frac{\partial h}{\partial t}(\mathbf{x}^*(t_f), t_f)\right] \delta t_f = 0
$$

Pontryagin's minimum principle

- $\mathbf{u}^*(t)$ is a control that causes $H(\mathbf{x}^*(t), \mathbf{u}(t), \mathbf{p}^*(t), t)$ to assume its *global* minimum
- Harder condition in general to analyze
- Example: consider the system having dynamics:

$$
\dot{x}_1(t) = x_2(t),
$$
 $\dot{x}_2(t) = -x_2(t) + u(t);$

it is desired to minimize the functional

$$
J = \int_{t_0}^{t_f} \frac{1}{2} [x_1^2(t) + u^2(t)] dt
$$

subject to the control constraint $|u(t)| \leq 1$ with t_f fixed and the final state free.

Pontryagin's minimum principle

Solution:

- If the control is unconstrained, $u^*(t) = -p_2^*(t)$
- If the control is constrained as $|u(t)| \leq 1$, then

$$
u^*(t) = \begin{cases}\n-1 & \text{for } 1 < p_2^*(t) \\
-p_2^*(t), & -1 \le p_2^*(t) \le 1 \\
+1 & \text{for } p_2^*(t) < -1\n\end{cases}
$$

• To determine $u^*(t)$ explicitly, the state and costate equations must still be solved

Additional necessary conditions

- 1. If the final time is fixed and the Hamiltonian does not depend explicitly on time, then $H(\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t)) = c$ for all $t \in [t_0, t_f]$
- 2. If the final time is free and the Hamiltonian does not depend explicitly on time, then $H({\bf x}^*(t), {\bf u}^*(t), {\bf p}^*(t)) = 0$ for all $t \in [t_0, t_f]$

Minimum time problems

• Find the control input sequence

 $M_i^- \le u_i(t) \le M_i^+$ for $i = 1, ..., m$

that drives the control affine system

 $\dot{\mathbf{x}} = A(\mathbf{x}, t) + B(\mathbf{x}, t) \mathbf{u}(t)$

from an arbitrary state x_0 to the origin, and minimizes time

$$
J = \int_{t_0}^{t_f} dt
$$

Minimum time problems

• Form the Hamiltonian

$$
H = 1 + \mathbf{p}(t)^{T} \{ A(\mathbf{x}, t) + B(\mathbf{x}, t) \mathbf{u}(t) \}
$$

= 1 + \mathbf{p}(t)^{T} \{ A(\mathbf{x}, t) + [\mathbf{b}_1(\mathbf{x}, t) \mathbf{b}_2(\mathbf{x}, t) \cdots \mathbf{b}_m(\mathbf{x}, t)] \mathbf{u}(t) \}
= 1 + \mathbf{p}(t)^{T} A(\mathbf{x}, t) + \sum_{i=1}^{m} \mathbf{p}(t)^{T} \mathbf{b}_i(\mathbf{x}, t) u_i(t)

- By the PMP, select $u_i(t)$ to minimize H, which gives $u_i^*(t) = \Big\}$ M_i^+ $\overline{M}_i^$ if $\mathbf{p}(t)^T \mathbf{b}_i(\mathbf{x}, t) < 0$ if $\mathbf{p}(t)^T \mathbf{b}_i(\mathbf{x}, t) > 0$ "Bang-bang" control
- Side note: reminiscent of HJB? $\mathbf{p}^*(t) = \nabla_{\mathbf{x}} f(\mathbf{x}^*(t), t)$ under certain technical assumptions (see Kirk Ch. 7)

Minimum time problems

- Note: we showed what to do when $\mathbf{p}(t)^T \mathbf{b}_i(\mathbf{x}, t) \neq 0$
- Not obvious what to do if ${\bf p}(t)^T{\bf b}_i({\bf x},t)=0$
- If ${\bf p}(t)^T{\bf b}_i({\bf x},t)=0$ for some finite time interval, then the coefficient of $u_i(t)$ in the Hamiltonian is zero, so the PMP provides no information on how to select $u_i(t)$
- The treatment of such a *singular condition* requires a more sophisticated analysis
- The analysis in the linear case is significantly easier, see Kirk Sec. 5.4

Minimum fuel problems

• Find the control input sequence

 $M_i^- \le u_i(t) \le M_i^+$ for $i = 1, ..., m$

that drives the control affine system

 $\dot{\mathbf{x}} = A(\mathbf{x}, t) + B(\mathbf{x}, t) \mathbf{u}(t)$

from an arbitrary state x_0 to the origin in a fixed time, and minimizes

$$
J = \int_{t_0}^{t_f} \sum_{i=1}^{m} c_i |u_i(t)| dt
$$

Minimum fuel problems

• Form the Hamiltonian

$$
H = \sum_{i=1}^{m} c_i |u_i(t)| + \mathbf{p}(t)^T \{ A(\mathbf{x}, t) + B(\mathbf{x}, t) \mathbf{u}(t) \}
$$

=
$$
\sum_{i=1}^{m} c_i |u_i(t)| + \mathbf{p}(t)^T A(\mathbf{x}, t) + \sum_{i=1}^{m} \mathbf{p}(t)^T \mathbf{b}_i(\mathbf{x}, t) u_i(t)
$$

=
$$
\sum_{i=1}^{m} [c_i |u_i(t)| + \mathbf{p}(t)^T \mathbf{b}_i(\mathbf{x}, t) u_i(t)] + \mathbf{p}(t)^T A(\mathbf{x}, t)
$$

• By the PMP, select $u_i(t)$ to minimize H, that is $\sum_{i=1}^{m} [c_i | u_i^*(t) | + \mathbf{p}(t)^T \mathbf{b}_i(\mathbf{x}, t) u_i^*(t)] \le$ $\sum_{i=1}^{m} [c_i | u_i(t) | + \mathbf{p}(t)^T \mathbf{b}_i(\mathbf{x}, t) u_i(t)]$

Minimum fuel problems

- Since the components of $\mathbf{u}(t)$ are independent, then one can just look at $c_i |u_i^*(t)| + \mathbf{p}(t)^T \mathbf{b}_i(\mathbf{x}, t) u_i^*(t)$ $\leq c_i |u_i(t)| + \mathbf{p}(t)^T \mathbf{b}_i(\mathbf{x}, t) u_i(t)$
- The resulting control law is

$$
u_i^*(t) = \begin{cases} M_i^- & \text{if } c_i < \mathbf{p}(t)^T \mathbf{b}_i(\mathbf{x}, t) \\ 0 & \text{if } -c_i < \mathbf{p}(t)^T \mathbf{b}_i(\mathbf{x}, t) < c_i \\ M_i^+ & \text{if } \mathbf{p}(t)^T \mathbf{b}_i(\mathbf{x}, t) < -c_i \end{cases}
$$

"Bang-off-bang" control

Minimum energy problems

• Find the control input sequence

$$
M_i^- \le u_i(t) \le M_i^+ \text{ for } i = 1, \dots, m
$$

that drives the control affine system

 $\dot{\mathbf{x}} = A(\mathbf{x}, t) + B(\mathbf{x}, t) \mathbf{u}(t)$

from an arbitrary state x_0 to the origin in a fixed time, and minimizes

$$
J = \frac{1}{2} \int_{t_0}^{t_f} \mathbf{u}(t)^T R \mathbf{u}(t) dt,
$$

where $R > 0$ and diagonal

Minimum energy problems

• Form the Hamiltonian

$$
H = \frac{1}{2} \mathbf{u}(t)^T R \mathbf{u}(t) + \mathbf{p}(t)^T \{A(\mathbf{x}, t) + B(\mathbf{x}, t) \mathbf{u}(t)\}
$$

= $\frac{1}{2} \mathbf{u}(t)^T R \mathbf{u}(t) + \mathbf{p}(t)^T B(\mathbf{x}, t) \mathbf{u}(t) + \mathbf{p}(t)^T A(\mathbf{x}, t)$

• By the PMP, we need to solve
\n
$$
\mathbf{u}^*(t) = \arg\min_{\mathbf{u}(t)\in U} \left[\sum_{i=1}^m \frac{1}{2} R_{ii} u_i(t)^2 + \mathbf{p}(t)^T \mathbf{b}_i(\mathbf{x}, t) u_i(t) \right]
$$

Minimum energy problems

• As in the first example today, in the unconstrained case, the optimal solution for each component of $\mathbf{u}(t)$ would be

 $\hat{u}_i(t) = -R_{ii}^{-1} \mathbf{p}(t)^T \mathbf{b}_i(\mathbf{x}, t)$

• Considering the input constraints, the resulting control law is

$$
u^*(t) = \begin{cases} M_i^- & \text{if } \hat{u}_i(t) < M_i^- \\ \hat{u}_i(t) & \text{if } M_i^- < \hat{u}_i(t) < M_i^+ \\ M_i^+ & \text{if } M_i^+ < \hat{u}_i(t) \end{cases}
$$

Uniqueness and existence

- Note: uniqueness and existence are not in general guaranteed!
- Example 1 (non uniqueness): find a control sequence $u(t)$ to transfer the system $\dot{x}(t) = u(t)$ from an arbitrary initial state x_0 to the origin, and such that the functional $J = \int_0^{t_f} |u(t)| dt$ is minimized. The final time is free, and the admissible controls are $|u(t)| \leq 1$
- Example 2 (non existence): find a control sequence $u(t)$ to transfer the system $\dot{x}(t) = -x(t) + u(t)$ from an arbitrary initial state x_0 to the origin, and such that the functional $J = \int_{t_0}^{t}$ ${}^{t}f[u(t)]dt$ is minimized. The final time is free, and the admissible controls are $|u(t)| \leq 1$

Course wrap up

