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Necessary conditions for optimal control
(with unbounded controls)

We want to prove that, with unbounded controls, the
necessary optimality conditions are (H is the
Hamiltonian)

MR S a k * k
X' (0) = 3 (0, u(6), p (D), 1)
p*() = — 5 (X" (), w(6),p (D), 1) - forallc et ;]
0 ——(X (), u™(t), p*(¢), t)
along Wlth the boundary condltlons

e (e) ) - (1) 5%
FHGe () (1), 07 (1), ) + 5 () )| ot = 0
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e
Proof of NOC

* For simplicity, assume that the terminal penalty is equal to
zero, and that t; and x(tr) are fixed and given

» Consider the augmented cost function
gax(2),X(t), u(®), p(¢),t) =
g(x(6),u(®), ) + p(O'[fx (1), u(®), ) — ()]

where the {p;(t)}’s are Lagrange multipliers
* Note that we have simply added zero to the cost function!

* The augmented cotst function is then
f
Ja@ = [ 9ax(0,%0,u(0,p®),0) dt

to

6/3/21 AA 203 | Lecture 20



e
Proof of NOC

On an extremal, by applying the fundamental theorem of the CoV

By the CoV
theorem

T
(©.% @O0 @.p' @0 ox©

[ga
dp

oiafa(u)—f (a“
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e
Proof of NOC

On an extremal, by applying the fundamental theorem of the CoV

By the CoV
theorem

0 of
- a—i x"(©),u" (@), 1) + = (x* (1), u* (1), )" p" () = - % (—p* ()

A A
oiafa(u>=f ([ @

\ ( |
T
(©.% @O0 @.p' @0 ox©

lga
dp

|
= f(x"(t),u”(¢),t) —x*(¢)
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e
Proof of NOC

Considering each term in sequence,
o f(x*(t),u*(t),t) —x*(t) = 0, on an extremal

* The Lagrange multipliers are arbitrary, so we can select
them to make the coefficient of §x(t) equal to zero, that is

0 of
p(6) = — 5= (X" (0,0 (D), 8) = 5 (" (O, ' (8), )" (©)

* The remaining variation du(t), is independent, so its
coefficient must be zero; thus

= (' (0, ' (6), 1) + o= (O, (1), )'p*(t) = 0

By using the Hamiltonian formalism, one obtains the claim
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Necessary conditions for optimal control
(with bounded controls)

* So far, we have assumed that the admissible
controls and states are not constrained by any

boundaries

* However, in realistic systems, such constraints

do commonly occur
e control constraints often occur due to actuation limits

« state constraints often occur due to safety
considerations
* We will now consider the case with control
constraints, which will lead to the statement of
the Pontryagin’s minimum principle
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Why do control constraints complicate the analysis?

* By definition, the control u* causes the functional J
to have a relative minimum if

Jw) —Jj(u*) =A] =0
for all admissible controls “close” to u*

e [fweletu = u™ + du, theincrementin/ can be
expressed as

AJ(u*, 6u) = 6/ (u*, du) + higher order terms

e Thevariation du is arbitrary only if the extremal
control is strictly within the boundary for all time in
the interval [¢, tf]

* In general, however, an extremal control lieson a
boundary during at least one subinterval of the
interval [t, tf]
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Why control constraints complicate the analysis?

* As a consequence, admissible control variations du exist
whose negatives (—du) are not admissible

* This implies that a necessary condition for u*to minimize J is
§/(u*,éu) =0

for all admissible variations with ||du|| small enough
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-
Pontryagin's minimum principle

* Assuming bounded controls u € U, the necessary optimality conditions
are (H is the Hamiltonian)

x'(6) = 3 (" (0, (0, p° (), 0)

—_

| for all
p(5) = -2 (¢ (0,0 (O, p' (), 0) " el g]

H(x*(t),u*(t),p*(t),t) < HX*(t),u(t),p*(t),t), forallu(t) e U
along with the boundary conditions:

(e )tr) — (6] 0%y + [HO (o) () () ) + (), oty = 0
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-
Pontryagin's minimum principle

e u*(t) isacontrol that causes H(x*(t),u(t),p*(¢t),t)
to assume its global minimum

* Harder condition in general to analyze
* Example: consider the system having dynamics:

x1(t) = x,(t), X, () = —x,(t) + u(t);
itis desired to mintimize the functional
1
J=| ki@ +u(@©)]dt
Lo

subject to the control constraint |u(t)| < 1
with tr fixed and the final state free.
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-
Pontryagin's minimum principle

Solution:

* If the controlis unconstrained,
u*(t) = —pz(t)
* |f the controlis constrained as |u(t)| < 1, then
( —1 for 1 < p5(t)
u'(t) =4 -p2(t), -1<=py()<1
\ +1 for p;(t) < —1

* To determine u*(t) explicitly, the state and co-
state equations must still be solved
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Additional necessary conditions

1. Ifthefinal time is fixed and the Hamiltonian
does not depend explicitly on time, then

H(x*(0),u* (), p* (1)) = ¢ forallt € |¢ty, tf]

2. Ifthefinaltimeis free and the Hamiltonian
does not depend explicitly on time, then

H(x*(0),u* (), p* (1)) =0 forallt € [to, tf]
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Minimum time problems

* Find the control input sequence
M7 <u;(t) <M fori=1,..,m
that drives the control affine system
x =A,t) + B(x, t)u(t)

from an arbitrary state x,, to the origin,

and minimizes time
Ly
J = dt

to
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Minimum time problems

* Form the Hamiltonian
H=1+p®)T{Axt) + B(x,)u(t)}

= 1+ POTAX ) + [by(x ) by(%,6) by (x, O]u(D)}
= 1+ p(OTAX O + ) PO (%, u(t)
=1

* By the PMP, select u;(t) to minimize H, which gives
WD) = Mt if p(t)b;(x,t) <0
: M{ if p(t)Tb;(x,t) > 0

* Side note: reminiscent of HIB? p*(t) = V, J(x*(t), t) under
certain technical assumptions (see Kirk Ch. 7)

“Bang-bang” control
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Minimum time problems

* Note: we showed what to do when p(t)"b;(x,t) # 0
* Not obvious what to do if p(t)b;(x,t) =0

« If p(t)"b;(x,t) = 0 for some finite time interval,
then the coefficient of u;(t) in the Hamiltonian is
zero, so the PMP provides no information on how to
select u;(t)

* The treatment of such a singular condition requires a
more sophisticated analysis

* The analysis in the linear case is significantly easier,
see Kirk Sec. 5.4
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Minimum fuel problems

* Find the control input sequence
M7 <u;(t) <M fori=1,..,m

that drives the control affine system
X =A(xt)+ B, t)u(t)

from an arbitrary state X, to the originin
a fixed time, and m|n|m|zes

tf
J = ch i (8)] de

tOl
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Minimum fuel problems

 Form the Hamiltonian
H =Xz 6w + p(t)"{Ax, t) + B(x, u(®)}

2 ci [y (£)] + POTAG, ) + 2 p()"b;(x, ;0

=1
m

B Z[Ci lwi ()] +p®)"bi(x, )u; (O] + p) A%, t)
=1
* By the PMP, select u;(t) to minimize H, that is
izilci [uf @] + p&) b (x, u; (t)] <
izilci lu (O] + p(6) bi(x, u (8)]
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Minimum fuel problems

* Since the components of u(t) are
independent, then one can just look at

¢i |[ui ()] +p)"b;(x, )u; (t)
< ¢ lu;(®)| + p®) b;(x, u;(t)

* The resulting control law is

(M if ¢; <p()'b;(x,t)
ui(t) =4 0 if —c; <p®)Th;(xt) <
M if p()"by(x,t) < —¢;

“Bang-off-bang” control
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Minimum energy problems

* Find the control input sequence
M7 <u;(t) <M fori=1,..,m

that drives the control affine system
x =At) + B(x,t)u(t)

from an arbitrary state x, to the origin
in a fixed time, and minimizes

1 (tr
] = Eft u(t)’Ru(t)dt,

0

where R > 0 and diagonal
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Minimum energy problems

 Form the Hamiltonian
H =Zu(®)TRu(t) + p()T{Ax, 1) + B(x, )u(t)}

= %u(t)TRu(t) +p(®)TB(x, t)u(t) + p(t)TA(x, t)

* By the PMP, we need to solve
u*(t) = arg min [2 > Rigtty(6)? + P(OTy(%, )i (£)

u(t)eu
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Minimum energy problems

* As in the first example today, in the
unconstrained case, the optimal solution for
each component of u(t) would be

i;(t) = —R; ' p(©)Tb;(x, t)

* Considering the input constraints, the resulting
control law is

M; if 4;(t) <M;
u*(t) =< 4;(t) if M; <u;(t) <M}
M; if M <;(t)
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Unigueness and existence

* Note: uniqueness and existence are not in general
guaranteed!

» Example 1 (non uniqueness): find a control sequence

u(t) to transfer the system x(t) = u(t) from an arbitrary
initial state x to the origin, and such that the functional

J = fotflu(t)ldt is minimized. The final time is free, and
the admissible controls are [u(t)| < 1

* Example 2 (non existence): find a control sequence u(t)

to transfer the system x(t) = —x(t) + u(t) froman
arbitrary initial state x to the origin, and such that the

functional | = ftf)flu(t)ldt is minimized. The final timeis
free, and the admissible controls are |u(t)| < 1
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