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Intro to learning; System identification and adaptive control
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Feedback control
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Feedback control
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Reinforcement learning
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Approaches

How do we handle uncertainty?
• In many cases, when uncertainties have only a small 

effect, a feedback controller will adequately 
compensate for model error
• Small wind disturbances in a quadrotor

• We can use robust control approaches (e.g., minimax 
control strategies)
• Harrier VSTOL near hover

• We can use observed state transitions to attempt to 
identify patterns and improve our control strategy 
• F-16 under wind resistance 

4/01/21 AA 203 | Lecture 2 6



What can we learn?

Want to use measurements to improve control performance. 
Can either:
• Use measurements to directly improve controller
• Direct adaptive control
• Model-free reinforcement learning

• Use measurements to learn model, use model to improve controller
• System identification
• Indirect adaptive control
• Model-based reinforcement learning
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How does learning happen?

Three possible learning settings: 
• “Zero” episodes: the system identification approach, in which learning is 

done based on data gathered before operation 
• One episode: want to learn and re-optimize our controller online -> this is the 

standard setting for adaptive control
• Multiple episodes: interact with the environment in episodes, in which the 

system is reset at the start of each episode; learning and policy optimization 
can happen between episodes -> this is the standard setting for 
reinforcement learning
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System identification for learning-based control

• For many problems, we don’t need to learn online 
• A standard control engineering pipeline is to do experiments in 

advance to build a data-driven model of the dynamics
• Then, we can use this model for planning and control without further 

learning
• Relies on having an engineer in the loop for learning, designing 

experiments, resetting the system, etc. 
• Linear regression is one of the main system id tools
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Least squares

System model
𝑦 = 𝜽!𝒛 + 𝜖

Given data 𝑦", … , 𝑦#, 𝒛", … , 𝒛#, want to minimize mean squared error:

)
$%"

#

𝑦$ − 𝜽!𝒛$ &

Rewrite as
𝒚 − 𝑍 𝜽 &

&

Solution (full rank 𝑋): .𝜽 = 𝑍! 𝑍 '"𝑍!𝒚
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Example: first order model 

• Consider system with dynamics 
𝑥 𝑡 + 1 = 𝑎𝑥 𝑡 + 𝑏𝑢 𝑡 + 𝑣(𝑡)

• Linear regression representation 
• 𝒛𝒕 = [𝑥 𝑡 , 𝑢(𝑡)], 𝑡 = 0,… ,𝑁
• 𝜽 = 𝑎, 𝑏 "

• Practically, least squares can be written in recursive form for 
efficiency
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Discrete time from continuous time 
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Linear regression for system id

• As seen before, the solution is 
,𝜽 = 𝑍!𝑍 "#𝑍!𝐲

• Gauss-Markov theorem: ,𝜽 is the best linear unbiased estimator
(for any noise distribution that obeys assumptions)
• If noise distribution is Gaussian, ,𝜽 is the maximum likelihood 

estimator
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Persistent excitation
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Persistent excitation
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Performance questions 

The system identification approach leads to several questions:
• How much data is required to learn the model? How can we quantify 

a “good” estimate? We care about controller performance, not model 
accuracy, so do we require an accurate model?
• How should we design the inputs used for data collection? What if an 

engineer can’t intervene to prevent system failure during data 
collection?
• What if our system does not fall in the class of systems we are 

considering?
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Detour: stability analysis via Lyapunov

Mass/Spring/Damper
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Lyapunov theorem for global stability

Equilibrium point: 𝒙∗ s.t. f 𝒙∗ = 0

1. 𝑉 𝒙 > 0
2. 𝑉̇ 𝒙 < 0
3. 𝑉 𝒙 → ∞ as 𝒙 → ∞

If such a function exists, then equilibrium 𝒙∗ = 0 is globally 
asymptotically stable.
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Example: 1-d double integrator
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Adaptive control

• Broadly, adaptive control aims to perform online adaptation of the 
policy to improve performance
• This can be done via directly updating the policy or updating the 

model and re-optimizing or re-computing the controller 
• Most adaptive control work does not consider the optimal adaptive 

control problem; they focus on proving stability of the coupled 
controller and adaptive component
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Adaptive control approaches

Encompasses a large variety of techniques, including :
• Model reference adaptive control (MRAC)
• Model identification adaptive control (MIAC)
• Dual control
• Model-free 
• policy adaptation
• iterative learning control
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Model reference adaptive control (MRAC)

• A model reference adaptive controller is composed of four parts:
1. A plant containing unknown parameters 
2. A reference model for compactly specifying the desired output 
3. A feedback control law containing adjustable parameters 
4. An adaptation mechanism for updating the adjustable parameters 

• The reference model provides the ideal plant response which the 
adaptation mechanism should seek in adjusting the parameters 
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Example of MRAC control 

• Consider double integrator
𝑚𝑥̈ = 𝑢

• Assume a human operator provides the positioning command 𝑟(𝑡)
to the control system
• A reasonable way of specifying the ideal response of the controlled 

mass to the external command 𝑟(𝑡) is to use the reference model 
𝑥̈% + 𝑘&𝑥̇% + 𝑘'𝑥% = 𝑘 𝑟(𝑡)

where the reference model output 𝑥% is the ideal output
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Example of MRAC control 

• If the mass is known exactly, one can achieve perfect tracking via
𝑢 = 𝑚(𝑥̈% − 2𝜆 @̇𝑥 − 𝜆( @𝑥)

where 𝜆 > 0 and @𝑥 ≔ 𝑥 − 𝑥% is the tracking error 
• This control leads to exponentially convergent tracking dynamics

@̈𝑥 + 2𝜆 @̇𝑥 + 𝜆( @𝑥 = 0
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Example of MRAC control 

• If the mass is not known exactly, we can use the 
control law

𝑢 = B𝑚(𝑥̈% − 2𝜆 @̇𝑥 − 𝜆( @𝑥)
which contains the adjustable parameter B𝑚
• This control leads to the closed-loop dynamics 

𝑚𝑠̇ + 𝜆𝑚𝑠 = D𝑚𝑣
where:
• 𝑠 is a combined tracking error measure, defined by 
𝑠 = 3̇𝑥 + 𝜆 3𝑥
• the signal quantity 𝑣 is given by 𝑣 = 𝑥̈# − 2𝜆 3̇𝑥 − 𝜆$ 3𝑥
• and the parameter estimation error is :𝑚= <𝑚 −𝑚
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Example of MRAC control 

• One way of adjusting parameter B𝑚 is to use the (nonlinear) update 
law

Ḃ𝑚 = −𝛾𝑣𝑠
where 𝛾 > 0 is called the adaptation gain 
• Stability and convergence can be analyzed via Lyapunov theory
• Consider Lyapunov function candidate 

𝑉 =
1
2
𝑚𝑠( +

1
𝛾
D𝑚(

• Its derivative is 𝑉̇ = −𝜆𝑚𝑠(

• Thus 𝑠 → 0, and hence @𝑥 → 0 and @̇𝑥 → 0
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MRAC

• An excellent reference for systematic MRAC design is: Jean-Jacques 
Slotine, Weiping Li, Applied Nonlinear Control, Chapter 8

• If the reference signal 𝑟(𝑡) is very simple, such as zero or a 
constant, it is possible for many vectors of parameters, besides the 
ideal parameter vector, to lead to tracking error convergence 

• However, if the reference signal 𝑟(𝑡) is so complex that only the 
“true” parameter vector can lead to tracking convergence, then one 
shall have parameter convergence -> persistent excitation condition
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Model identification adaptive control

• MIAC (also referred to as self-tuning) simply combines model 
estimation with a controller that uses the estimated model
• Important distinction between certainty-equivalent and cautious

approaches
• Certainty-equivalent: maintains point estimate of model and uses that 

model for policy selection/optimization. Note that unlike the LQG setting, 
certainty-equivalence is sub-optimal.
• Cautious: Maintains measure of estimator uncertainty, incorporates the 

uncertainty into the controller. This is often overly robust because it does 
not account for future info gain!
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MRAC vs. MIAC

• MRAC and MIAC arise from two different perspectives:
1. parameters in MRAC are updated so as to minimize tracking error 

between the plant output and the reference model output 
2. parameters in MIAC are updated so as to minimize the data-fitting error 

• MIAC controllers are in general more flexible, as one can couple 
various controllers with various estimators 
• However, correctness of MIAC controllers is more difficult to 

guarantee, as if the signals are not rich, the estimated parameters 
may not be close to the “true” values, and stability and convergence 
may not be ensured 
• In contrast, for MRAC, stability and convergence are usually 

guaranteed regardless of the richness of the signals  
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Next time

• Optimization
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