
AA203
Optimal and Learning-based Control

CoV extensions, NOC for optimal control



Logistics

Updated hard deadlines (late days 
already included):
• HW4: Monday, June 7th by 5:00PM
• Project reports/summary videos:

Saturday, June 5th by 11:59PM
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CoV extension I: generalized boundary conditions

• Let 𝐱 be a vector function, where each component 
𝑥! is in the class of functions with continuous first 
derivatives. It is desired to find the function 𝐱∗ for 
which the functional 

𝐽 𝐱 = %
#!

#"
𝑔 𝐱 𝑡 , �̇� 𝑡 , 𝑡 𝑑𝑡

has a relative extremum
• Assumptions: 

• 𝑔 ∈ 𝐶#
• 𝑡$ and 𝐱(0) are fixed
• 𝑡% might be fixed or free, and

each component of 𝐱(𝑡%)might be fixed or free
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CoV extension I: generalized boundary conditions

• Regardless of the boundary conditions, the Euler 
equations

𝑔𝐱 𝐱∗(𝑡), �̇�∗(𝑡), 𝑡 − #
#$
𝑔�̇� 𝐱∗(𝑡), �̇�∗(𝑡), 𝑡 = 𝟎

must be satisfied
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CoV extension I: generalized boundary conditions

• Regardless of the boundary conditions, the Euler equations

𝑔𝐱 𝐱∗(𝑡), �̇�∗(𝑡), 𝑡 − %
%#
𝑔�̇� 𝐱∗(𝑡), �̇�∗(𝑡), 𝑡 = 𝟎

must be satisfied
• The required boundary conditions are found from the 

equation

𝑔�̇� 𝐱∗ 𝑡' , �̇�∗ 𝑡' , 𝑡'
(𝛿𝐱' + 1

2
𝑔 𝐱∗(𝑡'), �̇�∗(𝑡'), 𝑡' −

𝑔�̇� 𝐱∗ 𝑡' , �̇�∗ 𝑡' , 𝑡'
(�̇�(𝑡') 𝛿𝑡' = 0

by making the “appropriate” substitutions for 𝛿𝐱' and 𝛿𝑡'
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CoV extension I: generalized boundary conditions

• 𝛿𝐱' and 𝛿𝑡' capture the notion of “allowable” 
variations at the end point, thus 𝛿𝑡' = 0 if the 
final time is fixed, and 𝛿𝑥! 𝑡' = 0 if the end 
value of state variable 𝑥!(𝑡') is fixed  

• For example, suppose that 𝑡' is fixed, 
𝑥! 𝑡' , 𝑖 = 1, … , 𝑟 are fixed, and 𝑥) 𝑡' , 𝑗 = 𝑟 +
1,… , 𝑛 are free. Then the substitutions are:

𝛿𝑡' = 0
𝛿𝑥! 𝑡' = 0, 𝑖 = 1,… , 𝑟

𝛿𝑥)(𝑡') arbitrary, 𝑗 = 𝑟 + 1,… , 𝑛
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CoV extension I: generalized boundary conditions
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Example

• Determine the smooth curve of 
smallest length connecting the 
point 𝑥 0 = 1 to the line 𝑡 = 5
• Solution: 𝑥 𝑡 = 1
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CoV extension II: constrained extrema

• Let 𝐰 ∈ ℝ*+, be a vector function, where each 
component 𝑤! is in the class of functions with 
continuous first derivatives. It is desired to find the 
function 𝒘∗ for which the functional 

𝐽(𝐰) = %
#!

#"
𝑔 𝐰 𝑡 , �̇� 𝑡 , 𝑡 𝑑𝑡

has a relative extremum, subject to the constraints
𝑓! 𝐰 𝑡 , �̇� 𝑡 , 𝑡 = 0, 𝑖 = 1,… , 𝑛

• Assumptions:
• 𝑔 ∈ 𝐶#
• 𝑡$ and 𝐰(0) are fixed
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CoV extension II: constrained extrema

• Because of the 𝑛 differential constraints, only 𝑚 of 
the 𝑛 +𝑚 components of 𝐰 are independent
• Constraints of this type may represent the state 

equation constraints in optimal control problems 
where 𝐰 corresponds to the 𝑛 +𝑚 vector 𝐰 = 𝐱, 𝐮 𝐓

• Similar to the case of constrained optimization, 
define the augmented integrand function
𝑔' 𝐰 𝑡 , �̇� 𝑡 , 𝐩 𝑡 , 𝑡 ≔

𝑔 𝐰 𝑡 , �̇� 𝑡 , 𝑡 + 𝐩 𝑡 (𝐟 𝐰 𝑡 , �̇� 𝑡 , 𝑡
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Lagrange multipliers (now 
functions of time!)



CoV extension II: constrained extrema

• A necessary condition for optimality is then 
!"!
!𝐰

𝐰∗(𝑡), �̇�∗(𝑡), 𝐩∗(𝑡), 𝑡 − %
%&
!"!
!�̇�

𝐰∗(𝑡), �̇�∗(𝑡), 𝐩∗(𝑡), 𝑡 = 𝟎

along with 
𝐟 𝐰∗ 𝑡 , �̇�∗ 𝑡 , 𝑡 = 𝟎

• That is, to determine the necessary conditions for an extremal we 
simply form the augmented function 𝑔( and write the Euler 
equations as if there were no constraints among the functions 𝐰 𝑡
• Note the similarity with the case of constrained optimization!
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The variational approach to optimal control

Roadmap:
1. We will first derive necessary conditions for 

optimal control assuming that the admissible 
controls are not bounded 

2. Next, we will heuristically introduce Pontryagin’s
Minimum Principle as a generalization of the 
fundamental theorem of CoV

3. Finally, we will consider special cases of 
problems with bounded controls and state 
variables
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Necessary conditions for optimal control 
(with unbounded controls)

• The problem is to find an admissible control u∗
which causes the system

�̇� 𝑡 = 𝐟(𝐱 𝑡 , 𝐮 𝑡 , 𝑡)
to follow an admissible trajectory x∗ that minimizes
the functional

𝐽 𝐮 = ℎ 𝐱 𝑡) , 𝑡) + ∫$!
$" 𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 𝑑𝑡

• Assumptions: ℎ ∈ 𝐶*, state and control regions 
are unbounded, 𝑡+ and 𝐱(0) are fixed
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Necessary conditions for optimal control 
(with unbounded controls)

• Define the Hamiltonian

𝐻 𝐱 𝑡 , 𝐮 𝑡 , 𝐩 𝑡 , 𝑡 ≔ 𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 + 𝐩 𝑡 )𝐟(𝐱 𝑡 , 𝐮 𝑡 , 𝑡)

• The necessary conditions for optimality (proof to follow) are
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�̇�∗ 𝑡 = !*
!𝐩 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

�̇�∗ 𝑡 = − !*
!𝐱 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

𝟎 = !*
!𝐮 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

for all 𝑡 ∈ [𝑡!, 𝑡"]



Necessary conditions for optimal control 
(with unbounded controls)

with boundary conditions

𝜕ℎ
𝜕𝐱

𝐱∗ 𝑡3 , 𝑡3 − 𝐩∗ 𝑡3
)
𝛿𝐱3

+ 𝐻 𝐱∗ 𝑡3 , 𝐮∗ 𝑡3 , 𝐩∗ 𝑡3 , 𝑡3 +
𝜕ℎ
𝜕𝑡

𝐱∗ 𝑡3 , 𝑡3 𝛿𝑡3 = 0
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Necessary conditions for optimal control 
(with unbounded controls)
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Necessary conditions for optimal control 
(with unbounded controls)

• Necessary conditions consist of a set of 2𝑛, first-order, 
differential equations (state and co-state equations), and a 
set of 𝑚 algebraic equations (control equations) 
• The solution to the state and co-state equations will contain 
2𝑛 constants of integration 
• To obtain values for the constants, we use the 𝑛 equations 
𝐱 𝑡4 = 𝐱4, and an additional set of 𝑛 (or 𝑛 + 1) equations 
from the boundary conditions
• Once again: 2-point boundary value problem
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Example

Find optimal control 𝑢(𝑡) to steer the system 

�̈� 𝑡 = 𝑢 𝑡
from 𝑥 0 = 10, �̇� 0 = 0 to the origin 
𝑥 𝑡3 = 0, �̇� 𝑡3 = 0, and to minimize 

𝐽 = 5
6𝛼𝑡3

6 + 5
6∫&"

&# 𝑏 𝑢6 𝑡 𝑑𝑡 , 𝛼, 𝑏 > 0

(note: the final time 𝑡3 is free)
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Example

Find optimal control 𝑢(𝑡) to steer the system 

�̈� 𝑡 = 𝑢 𝑡
from 𝑥 0 = 10, �̇� 0 = 0 to the origin 
𝑥 𝑡3 = 0, �̇� 𝑡3 = 0, and to minimize 

𝐽 = 5
6𝛼𝑡3

6 + 5
6∫&"

&# 𝑏 𝑢6 𝑡 𝑑𝑡 , 𝛼, 𝑏 > 0

• Solution: optimal time is 

𝑡3 =
1800𝑏
𝛼

5/8
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Necessary conditions for optimal control 
(with unbounded controls)

We want to prove that, with unbounded controls, the 
necessary optimality conditions are (𝐻 is the 
Hamiltonian)

along with the boundary conditions:
𝜕ℎ
𝜕𝐱 𝐱∗ 𝑡" , 𝑡" − 𝐩∗ 𝑡"

#
𝛿𝐱"

+ 𝐻 𝐱∗ 𝑡" , 𝐮∗ 𝑡" , 𝐩∗ 𝑡" , 𝑡" +
𝜕ℎ
𝜕𝑡 𝐱∗ 𝑡" , 𝑡" 𝛿𝑡" = 0

6/1/21 AA 203 | Lecture 19

�̇�∗ 𝑡 = !*
!𝐩 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

�̇�∗ 𝑡 = − !*
!𝐱 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

𝟎 = !*
!𝐮

𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

for all 𝑡 ∈ [𝑡!, 𝑡"]



Proof of NOC

• For simplicity, assume that the terminal penalty is equal to 
zero, and that 𝑡3 and 𝐱(𝑡3) are fixed and given

• Consider the augmented cost function
𝑔$ 𝐱 𝑡 , �̇� 𝑡 , 𝐮 𝑡 , 𝐩 𝑡 , 𝑡 ≔

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 + 𝐩 𝑡 #[𝐟 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 − �̇�(𝑡)]

where the {𝑝9(𝑡)}’s are Lagrange multipliers
• Note that we have simply added zero to the cost function!
• The augmented cost function is then 

𝐽((𝐮) = G
&"

&#
𝑔( 𝐱 𝑡 , �̇� 𝑡 , 𝐮 𝑡 , 𝐩 𝑡 , 𝑡 𝑑𝑡
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Proof of NOC

-
$!

$"
.

/

𝜕𝑔%
𝜕𝐱

𝐱∗ 𝑡 , �̇�∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡 −
𝑑
𝑑𝑡
𝜕𝑔%
𝜕�̇�

𝐱∗ 𝑡 , �̇�∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡
'

𝛿𝐱 𝑡

+
𝜕𝑔%
𝜕𝐮

𝐱∗ 𝑡 , �̇�∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡
'

𝛿𝐮 𝑡 +
𝜕𝑔%
𝜕𝐩

𝐱∗ 𝑡 , �̇�∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡
'

𝛿𝐩(𝑡) 𝑑𝑡
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On an extremal, by applying the fundamental theorem of the CoV

0 = 𝛿𝐽# 𝐮 =

By the CoV
theorem 



Proof of NOC

-
$!

$"
.

/

𝜕𝑔%
𝜕𝐱

𝐱∗ 𝑡 , �̇�∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡 −
𝑑
𝑑𝑡
𝜕𝑔%
𝜕�̇�

𝐱∗ 𝑡 , �̇�∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡
'

𝛿𝐱 𝑡

+
𝜕𝑔%
𝜕𝐮

𝐱∗ 𝑡 , �̇�∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡
'

𝛿𝐮 𝑡 +
𝜕𝑔%
𝜕𝐩

𝐱∗ 𝑡 , �̇�∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡
'

𝛿𝐩(𝑡) 𝑑𝑡
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On an extremal, by applying the fundamental theorem of the CoV

= 𝐟 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 − �̇�∗ 𝑡

= −
𝑑
𝑑𝑡
(−𝐩∗(𝑡))=

𝜕𝑔
𝜕𝐱 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 +

𝜕𝐟
𝜕𝐱 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 %𝐩∗(𝑡)

0 = 𝛿𝐽# 𝐮 =

By the CoV
theorem 



Proof of NOC

Considering each term in sequence, 
• 𝐟 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 − �̇�∗ 𝑡 = 𝟎, on an extremal
• The Lagrange multipliers are arbitrary, so we can select 

them to make the coefficient of 𝛿𝐱(𝑡) equal to zero, that is

�̇�∗ 𝑡 = −
𝜕𝑔
𝜕𝐱

𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 −
𝜕𝐟
𝜕𝐱

𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 )𝐩∗(𝑡)

• The remaining variation 𝛿𝐮 𝑡 , is independent, so its 
coefficient must be zero; thus
𝜕𝑔
𝜕𝐮

𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 +
𝜕𝐟
𝜕𝐮

𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 )𝐩∗ 𝑡 = 𝟎

By using the Hamiltonian formalism, one obtains the claim 
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Next time

• Pontryagin’s minimum principle 
• Special cases
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