AA203 Optimal and Learning-based Control

CoV extensions, NOC for optimal control

Logistics

Updated hard deadlines (late days already included):

- HW4: Monday, June 7th by 5:00PM
- Project reports/summary videos: Saturday, June 5th by 11:59PM

• Let x be a vector function, where each component x_i is in the class of functions with continuous first derivatives. It is desired to find the function [∗] for which the functional

$$
J(\mathbf{x}) = \int_{t_0}^{t_f} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) dt
$$

has a relative extremum

- Assumptions:
	- $q \in \mathbb{C}^2$
	- t_0 and $\mathbf{x}(0)$ are fixed
	- t_f might be fixed or free, and each component of $\mathbf{x}(t_f)$ might be fixed or free

• Regardless of the boundary conditions, the Euler equations

$$
g_{\mathbf{x}}(\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), t) - \frac{d}{dt} g_{\dot{\mathbf{x}}}(\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), t) = \mathbf{0}
$$

must be satisfied

• Regardless of the boundary conditions, the Euler equations

$$
g_{\mathbf{x}}(\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), t) - \frac{d}{dt} g_{\dot{\mathbf{x}}}(\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), t) = \mathbf{0}
$$

must be satisfied

• The required boundary conditions are found from the equation

$$
g_{\dot{\mathbf{x}}}(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f)^T \delta \mathbf{x}_f + \left[g(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f) - g_{\dot{\mathbf{x}}}(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f) \right] \delta t_f = 0
$$

by making the "appropriate" substitutions for δx_f and δt_f

- δx_f and δt_f capture the notion of "allowable" variations at the end point, thus $\delta t_f = 0$ if the final time is fixed, and $\delta x_i(t_f) = 0$ if the end value of state variable $x_i(t_f)$ is fixed
- For example, suppose that t_f is fixed, $x_i(t_f)$, $i = 1, ..., r$ are fixed, and $x_i(t_f)$, $j = r + 1$ 1, ..., n are free. Then the substitutions are:

$$
\delta t_f = 0
$$

$$
\delta x_i(t_f) = 0, \qquad i = 1, ..., r
$$

$$
\delta x_j(t_f)
$$
 arbitrary, $j = r + 1, ..., n$

Example

• Determine the smooth curve of smallest length connecting the point $x(0) = 1$ to the line $t = 5$

• Solution:
$$
x(t) = 1
$$

CoV extension II: constrained extrema

• Let $w \in \mathbb{R}^{n+m}$ be a vector function, where each component w_i is in the class of functions with continuous first derivatives. It is desired to find the function w^* for which the functional

$$
J(\mathbf{w}) = \int_{t_0}^{t_f} g(\mathbf{w}(t), \dot{\mathbf{w}}(t), t) dt
$$

has a relative extremum, subject to the constraints

$$
f_i(\mathbf{w}(t), \dot{\mathbf{w}}(t), t) = 0, \qquad i = 1, \dots, n
$$

- Assumptions:
	- $g \in \mathbb{C}^2$
	- t_0 and $w(0)$ are fixed

CoV extension II: constrained extrema

- Because of the n differential constraints, only m of the $n + m$ components of **w** are independent
- Constraints of this type may represent the state equation constraints in optimal control problems where **w** corresponds to the $n + m$ vector $\mathbf{w} = [\mathbf{x}, \mathbf{u}]^T$
- Similar to the case of constrained optimization, define the augmented integrand function $g_a(\mathbf{w}(t), \dot{\mathbf{w}}(t), \mathbf{p}(t), t) \coloneqq$

 $g(\mathbf{w}(t), \dot{\mathbf{w}}(t), t) + \mathbf{p}(t)^T \mathbf{f}(\mathbf{w}(t), \dot{\mathbf{w}}(t), t)$

Lagrange multipliers (now functions of time!)

AA 203 | Lecture 19

CoV extension II: constrained extrema

• A necessary condition for optimality is then

$$
\frac{\partial g_a}{\partial \mathbf{w}}(\mathbf{w}^*(t), \dot{\mathbf{w}}^*(t), \mathbf{p}^*(t), t) - \frac{d}{dt} \frac{\partial g_a}{\partial \dot{\mathbf{w}}}(\mathbf{w}^*(t), \dot{\mathbf{w}}^*(t), \mathbf{p}^*(t), t) = \mathbf{0}
$$
along with

$$
\mathbf{f}(\mathbf{w}^*(t),\dot{\mathbf{w}}^*(t),t)=\mathbf{0}
$$

- That is, to determine the necessary conditions for an extremal we simply form the augmented function q_a and write the Euler equations *as if* there were no constraints among the functions $\mathbf{w}(t)$
- Note the similarity with the case of constrained optimization!

The variational approach to optimal control

Roadmap:

- 1. We will first derive necessary conditions for optimal control assuming that the admissible controls are not bounded
- 2. Next, we will heuristically introduce Pontryagin's Minimum Principle as a generalization of the fundamental theorem of CoV
- 3. Finally, we will consider special cases of problems with bounded controls and state variables

• The problem is to find an *admissible control* **u**[∗] which causes the system

 $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)$

to follow an *admissible trajectory* **x**[∗] that minimizes the *functional*

$$
J(\mathbf{u}) = h(\mathbf{x}(t_f), t_f) + \int_{t_0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) dt
$$

• Assumptions: $h \in \mathbb{C}^2$, state and control regions are unbounded, t_0 and $\mathbf{x}(0)$ are fixed

• Define the Hamiltonian

 $H({\bf x}(t), {\bf u}(t), {\bf p}(t), t) \coloneqq g({\bf x}(t), {\bf u}(t), t) + {\bf p}(t)^T {\bf f}({\bf x}(t), {\bf u}(t), t)$

• The necessary conditions for optimality (proof to follow) are

$$
\dot{\mathbf{x}}^{*}(t) = \frac{\partial H}{\partial \mathbf{p}} (\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t)
$$
\n
$$
\dot{\mathbf{p}}^{*}(t) = -\frac{\partial H}{\partial \mathbf{x}} (\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t) \qquad \text{for all } t \in [t_0, t_f]
$$
\n
$$
\mathbf{0} = \frac{\partial H}{\partial \mathbf{u}} (\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t)
$$

with boundary conditions

$$
\begin{aligned}\n&\left[\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f), t_f) - \mathbf{p}^*(t_f)\right]^T \delta \mathbf{x}_f \\
&+ \left[H(\mathbf{x}^*(t_f), \mathbf{u}^*(t_f), \mathbf{p}^*(t_f), t_f) + \frac{\partial h}{\partial t}(\mathbf{x}^*(t_f), t_f)\right] \delta t_f = 0\n\end{aligned}
$$

Necessary conditions for optimal control

(with unbounded controls)

AA 203 | Lecture 19 **From Kirk, Section 5.1**

- Necessary conditions consist of a set of 2*n*, *first-order*, differential equations (state and co-state equations), and a set of *algebraic equations (control equations)*
- The solution to the state and co-state equations will contain $2n$ constants of integration
- To obtain values for the constants, we use the n equations **, and an additional set of** *n* **(or** *n* **+ 1) equations** from the boundary conditions
- Once again: *2-point boundary value problem*

Example

Find optimal control $u(t)$ to steer the system

 $\ddot{x}(t) = u(t)$ from $x(0) = 10$, $\dot{x}(0) = 0$ to the origin $x(t_f) = 0, \dot{x}(t_f) = 0$, and to minimize \bar{J} = $\mathbf{1}$ $\frac{1}{2}\alpha t_f^2 + \frac{1}{2}$ $\frac{1}{2}$ $\int_{t_0}^{t_0}$ t_f b $u^2(t)dt$, $\alpha, b > 0$ (note: the final time t_f is free)

AA 203 | Lecture 19

Example

Find optimal control $u(t)$ to steer the system

 $\ddot{x}(t) = u(t)$

from $x(0) = 10$, $\dot{x}(0) = 0$ to the origin $x(t_f) = 0, \dot{x}(t_f) = 0$, and to minimize \bar{J} = $\mathbf{1}$ $\frac{1}{2}\alpha t_f^2 + \frac{1}{2}$ $\frac{1}{2}$ $\int_{t_0}^{t_0}$ t_f b $u^2(t)dt$, $\alpha, b > 0$

• Solution: optimal time is

$$
t_f = \left(\frac{1800b}{\alpha}\right)^{1/5}
$$

We want to prove that, with unbounded controls, the necessary optimality conditions are (H) is the Hamiltonian)

$$
\dot{\mathbf{x}}^*(t) = \frac{\partial H}{\partial \mathbf{p}} (\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t)
$$
\n
$$
\dot{\mathbf{p}}^*(t) = -\frac{\partial H}{\partial \mathbf{x}} (\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t) \qquad \text{for all } t \in [t_0, t_f]
$$
\n
$$
\mathbf{0} = \frac{\partial H}{\partial \mathbf{u}} (\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t)
$$

along with the boundary conditions:

$$
\begin{aligned}\n&\left[\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f), t_f) - \mathbf{p}^*(t_f)\right]^T \delta \mathbf{x}_f \\
&+ \left[H(\mathbf{x}^*(t_f), \mathbf{u}^*(t_f), \mathbf{p}^*(t_f), t_f) + \frac{\partial h}{\partial t}(\mathbf{x}^*(t_f), t_f)\right] \delta t_f = 0\n\end{aligned}
$$

- For simplicity, assume that the terminal penalty is equal to zero, and that t_f and $\mathbf{x}(t_f)$ are fixed and given
- Consider the augmented cost function $g_a(\mathbf{x}(t), \dot{\mathbf{x}}(t), \mathbf{u}(t), \mathbf{p}(t), t) \coloneqq$ $g(x(t), u(t), t) + p(t)^T [f(x(t), u(t), t) - \dot{x}(t)]$ where the $\{p_i(t)\}$'s are Lagrange multipliers
- Note that we have simply added zero to the cost function!
- The augmented cost function is then

$$
J_a(\mathbf{u}) = \int_{t_0}^{t_f} g_a(\mathbf{x}(t), \dot{\mathbf{x}}(t), \mathbf{u}(t), \mathbf{p}(t), t) dt
$$

On an extremal, by applying the fundamental theorem of the CoV

By the CoV theorem

$$
0 = \delta J_a(\mathbf{u}) = \int_{t_0}^{t_f} \left(\left[\frac{\partial g_a}{\partial \mathbf{x}} (\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t) - \frac{d}{dt} \frac{\partial g_a}{\partial \dot{\mathbf{x}}} (\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t) \right]^T \delta \mathbf{x}(t) + \left[\frac{\partial g_a}{\partial \mathbf{u}} (\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t) \right]^T \delta \mathbf{u}(t) + \left[\frac{\partial g_a}{\partial \mathbf{p}} (\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t) \right]^T \delta \mathbf{p}(t) dt
$$

On an extremal, by applying the fundamental theorem of the CoV

By the CoV theorem

$$
= \frac{\partial g}{\partial x}(\mathbf{x}^*(t), \mathbf{u}^*(t), t) + \frac{\partial f}{\partial x}(\mathbf{x}^*(t), \mathbf{u}^*(t), t)^T \mathbf{p}^*(t) = -\frac{d}{dt}(-\mathbf{p}^*(t))
$$

$$
0 = \delta J_a(\mathbf{u}) = \int_{t_0}^{t_f} \left(\left[\frac{\partial g_a}{\partial x}(\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t) - \frac{d}{dt} \frac{\partial g_a}{\partial \dot{\mathbf{x}}}(\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t) \right]^T \delta \mathbf{x}(t) + \left[\frac{\partial g_a}{\partial \mathbf{u}}(\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t) \right]^T \delta \mathbf{p}(t) \right) dt
$$

$$
= f(\mathbf{x}^*(t), \mathbf{u}^*(t), t) - \dot{\mathbf{x}}^*(t)
$$

Considering each term in sequence,

- $f(x^*(t), u^*(t), t) \dot{x}^*(t) = 0$, on an extremal
- The Lagrange multipliers are arbitrary, so we can select them to make the coefficient of $\delta {\bf x}(t)$ equal to zero, that is $\dot{\mathbf{p}}^*(t) = -\frac{\partial g}{\partial t}$ ∂ **x** $\mathbf{x}^*(t)$, $\mathbf{u}^*(t)$, $t) - \frac{\partial \mathbf{f}}{\partial t}$ ∂ **x** ${\bf x}^{*}(t), {\bf u}^{*}(t), t)^{T} {\bf p}^{*}(t)$
- The remaining variation $\delta u(t)$, is independent, so its coefficient must be zero; thus ∂g ∂ u ${\bf x}^{*}(t)$, ${\bf u}^{*}(t)$, $t)$ + $\partial \mathbf{f}$ $\partial \mathbf{u}$ $\mathbf{x}^*(t)$, $\mathbf{u}^*(t)$, t $)^T \mathbf{p}^*(t) = \mathbf{0}$

By using the Hamiltonian formalism, one obtains the claim

Next time

- Pontryagin's minimum principle
- Special cases