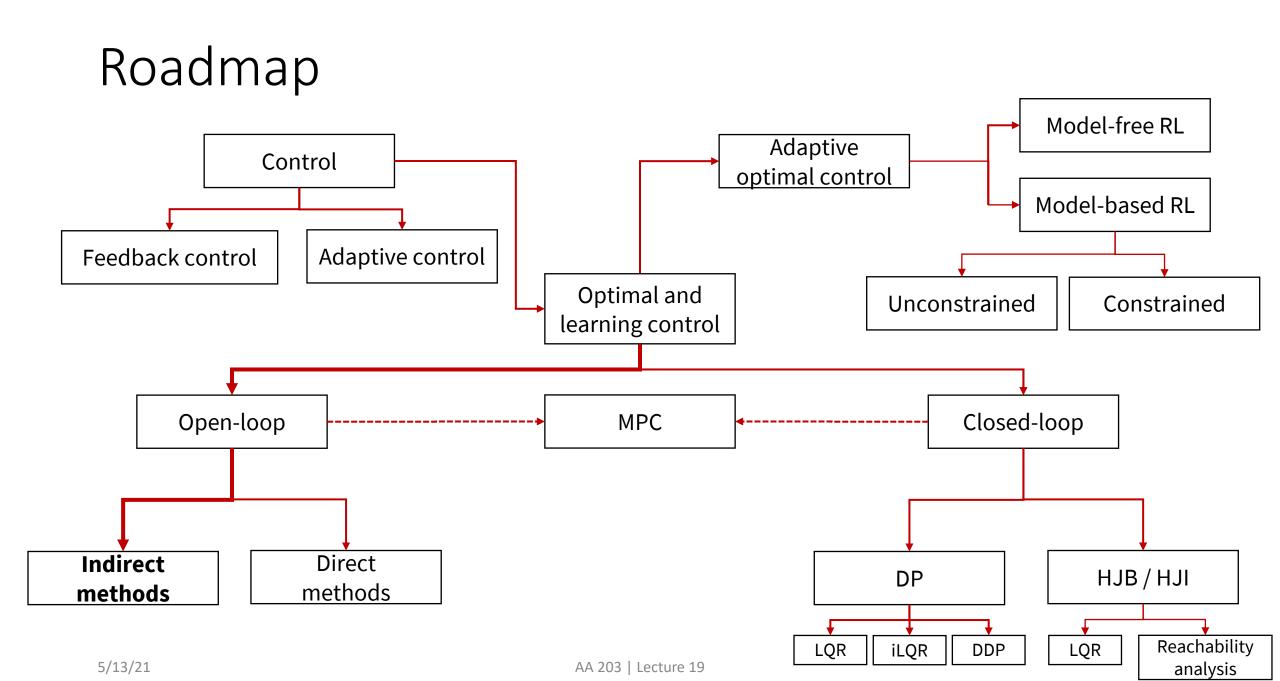
AA203 Optimal and Learning-based Control

CoV extensions, NOC for optimal control

Logistics

Updated hard deadlines (late days already included):

- HW4: Monday, June 7th by 5:00PM
- Project reports/summary videos: Saturday, June 5th by 11:59PM



Let x be a vector function, where each component x_i is in the class of functions with continuous first derivatives. It is desired to find the function x* for which the functional.

$$J(\mathbf{x}) = \int_{t_0}^{t_f} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) dt$$

has a relative extremum

- Assumptions:
 - $g \in C^2$
 - t_0 and $\mathbf{x}(0)$ are fixed
 - t_f might be fixed or free, and each component of $\mathbf{x}(t_f)$ might be fixed or free

Regardless of the boundary conditions, the Euler equations

$$g_{\mathbf{x}}(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), t) - \frac{d}{dt}g_{\dot{\mathbf{x}}}(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), t) = \mathbf{0}$$

must be satisfied

• Regardless of the boundary conditions, the Euler equations

$$g_{\mathbf{x}}(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), t) - \frac{d}{dt}g_{\dot{\mathbf{x}}}(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), t) = \mathbf{0}$$

must be satisfied

• The required boundary conditions are found from the equation

$$g_{\dot{\mathbf{x}}}(\mathbf{x}^{*}(t_{f}), \dot{\mathbf{x}}^{*}(t_{f}), t_{f})^{T} \delta \mathbf{x}_{f} + \begin{bmatrix} g(\mathbf{x}^{*}(t_{f}), \dot{\mathbf{x}}^{*}(t_{f}), t_{f}) - g_{\dot{\mathbf{x}}}(\mathbf{x}^{*}(t_{f}), \dot{\mathbf{x}}^{*}(t_{f}), t_{f}) \end{bmatrix} \delta t_{f} = 0$$

by making the "appropriate" substitutions for $\delta \mathbf{x}_f$ and δt_f

- $\delta \mathbf{x}_f$ and δt_f capture the notion of "allowable" variations at the end point, thus $\delta t_f = 0$ if the final time is fixed, and $\delta x_i(t_f) = 0$ if the end value of state variable $x_i(t_f)$ is fixed
- For example, suppose that t_f is fixed, $x_i(t_f), i = 1, ..., r$ are fixed, and $x_j(t_f), j = r + 1, ..., n$ are free. Then the substitutions are:

$$\delta t_f = 0$$

$$\delta x_i(t_f) = 0, \quad i = 1, \dots, r$$

$$\delta x_j(t_f) \text{ arbitrary}, \quad j = r + 1, \dots, n$$

Problem description	Substitution	Boundary conditions	Remarks
1. $\mathbf{x}(t_f)$, t_f both specified (<i>Problem 1</i>)	$\delta \mathbf{x}_f = \delta \mathbf{x}(t_f) = 0$ $\delta t_f = 0$	$\begin{aligned} \mathbf{x}^*(t_0) &= \mathbf{x}_0 \\ \mathbf{x}^*(t_f) &= \mathbf{x}_f \end{aligned}$	2n equations to determine $2n$ constants of integration
2. $\mathbf{x}(t_f)$ free; t_f specified (<i>Problem 2</i>)	$\begin{aligned} \delta \mathbf{x}_f &= \delta \mathbf{x}(t_f) \\ \delta t_f &= 0 \end{aligned}$	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\frac{\partial g}{\partial \dot{\mathbf{x}}}(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f) = 0$	2n equations to determine $2n$ constants of integration
 t_f free; x(t_f) specified (Problem 3) 	$\delta \mathbf{x}_f = 0$	$\mathbf{x}^{*}(t_{0}) = \mathbf{x}_{0}$ $\mathbf{x}^{*}(t_{f}) = \mathbf{x}_{f}$ $g(\mathbf{x}^{*}(t_{f}), \dot{\mathbf{x}}^{*}(t_{f}), t_{f})$ $- \left[\frac{\partial g}{\partial \dot{\mathbf{x}}}(\mathbf{x}^{*}(t_{f}), \dot{\mathbf{x}}^{*}(t_{f}), t_{f})\right]^{T} \dot{\mathbf{x}}^{*}(t_{f}) = 0$	$(2n + 1)$ equations to determine $2n$ constants of integration and t_f
 4. t_f, x(t_f) free and independent (Problem 4) 		$\mathbf{x}^{*}(t_{0}) = \mathbf{x}_{0}$ $\frac{\partial g}{\partial \dot{\mathbf{x}}}(\mathbf{x}^{*}(t_{f}), \dot{\mathbf{x}}^{*}(t_{f}), t_{f}) = 0$ $g(\mathbf{x}^{*}(t_{f}), \dot{\mathbf{x}}^{*}(t_{f}), t_{f}) = 0$	$(2n + 1)$ equations to determine $2n$ constants of integration and t_f
5. t_f , $\mathbf{x}(t_f)$ free but related by $\mathbf{x}(t_f) = \mathbf{\theta}(t_f)$ (<i>Problem 4</i>)	$\delta \mathbf{x}_f = \frac{d \mathbf{\theta}}{dt} (t_f) \delta t_f \dagger$	$\mathbf{x}^{*}(t_{0}) = \mathbf{x}_{0}$ $\mathbf{x}^{*}(t_{f}) = \mathbf{\theta}(t_{f})$ $g(\mathbf{x}^{*}(t_{f}), \dot{\mathbf{x}}^{*}(t_{f}), t_{f})$ $+ \left[\frac{\partial g}{\partial \dot{\mathbf{x}}}(\mathbf{x}^{*}(t_{f}), \dot{\mathbf{x}}^{*}(t_{f}), t_{f})\right]^{T} \left[\frac{d\mathbf{\theta}}{dt}(t_{f}) - \dot{\mathbf{x}}^{*}(t_{f})\right] = 0^{\dagger}$	$(2n + 1)$ equations to determine $2n$ constants of integration and t_f

AA 203 | Lecture 19

Example

• Determine the smooth curve of smallest length connecting the point x(0) = 1 to the line t = 5

• Solution:
$$x(t) = 1$$

CoV extension II: constrained extrema

• Let $\mathbf{w} \in \mathbb{R}^{n+m}$ be a vector function, where each component w_i is in the class of functions with continuous first derivatives. It is desired to find the function \mathbf{w}^* for which the functional

$$J(\mathbf{w}) = \int_{t_0}^{t_f} g(\mathbf{w}(t), \dot{\mathbf{w}}(t), t) dt$$

has a relative extremum, subject to the constraints

$$f_i(\mathbf{w}(t), \dot{\mathbf{w}}(t), t) = 0, \quad i = 1, ..., n$$

- Assumptions:
 - $g \in C^2$
 - t_0 and $\mathbf{w}(0)$ are fixed

CoV extension II: constrained extrema

- Because of the n differential constraints, only m of the n + m components of w are independent
- Constraints of this type may represent the state equation constraints in optimal control problems where **w** corresponds to the n + m vector $\mathbf{w} = [\mathbf{x}, \mathbf{u}]^{T}$
- Similar to the case of constrained optimization, define the augmented integrand function $g_a(\mathbf{w}(t), \dot{\mathbf{w}}(t), \mathbf{p}(t), t) \coloneqq$

 $g(\mathbf{w}(t), \dot{\mathbf{w}}(t), t) + \mathbf{p}(t)^T \mathbf{f}(\mathbf{w}(t), \dot{\mathbf{w}}(t), t)$

Lagrange multipliers (now functions of time!)

AA 203 | Lecture 19

CoV extension II: constrained extrema

• A necessary condition for optimality is then

а

$$\frac{\partial g_a}{\partial \mathbf{w}}(\mathbf{w}^*(t), \dot{\mathbf{w}}^*(t), \mathbf{p}^*(t), t) - \frac{d}{dt} \frac{\partial g_a}{\partial \dot{\mathbf{w}}}(\mathbf{w}^*(t), \dot{\mathbf{w}}^*(t), \mathbf{p}^*(t), t) = \mathbf{0}$$

long with

$$\mathbf{f}(\mathbf{w}^*(t), \dot{\mathbf{w}}^*(t), t) = \mathbf{0}$$

- That is, to determine the necessary conditions for an extremal we simply form the augmented function g_a and write the Euler equations as if there were no constraints among the functions w(t)
- Note the similarity with the case of constrained optimization!

The variational approach to optimal control

Roadmap:

- 1. We will first derive necessary conditions for optimal control assuming that the admissible controls are not bounded
- 2. Next, we will heuristically introduce Pontryagin's Minimum Principle as a generalization of the fundamental theorem of CoV
- 3. Finally, we will consider special cases of problems with bounded controls and state variables

 The problem is to find an *admissible control* u^{*} which causes the system

 $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)$

to follow an *admissible trajectory* **x**^{*} that minimizes the *functional*

$$J(\mathbf{u}) = h(\mathbf{x}(t_f), t_f) + \int_{t_0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) dt$$

• Assumptions: $h \in C^2$, state and control regions are unbounded, t_0 and $\mathbf{x}(0)$ are fixed

• Define the Hamiltonian

 $H(\mathbf{x}(t), \mathbf{u}(t), \mathbf{p}(t), t) \coloneqq g(\mathbf{x}(t), \mathbf{u}(t), t) + \mathbf{p}(t)^T \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)$

• The necessary conditions for optimality (proof to follow) are

$$\dot{\mathbf{x}}^{*}(t) = \frac{\partial H}{\partial \mathbf{p}} \left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t \right)$$

$$\dot{\mathbf{p}}^{*}(t) = -\frac{\partial H}{\partial \mathbf{x}} \left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t \right) \qquad \text{for all } t \in [t_{0}, t_{f}]$$

$$\mathbf{0} = \frac{\partial H}{\partial \mathbf{u}} \left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t \right)$$

with boundary conditions

$$\begin{bmatrix} \frac{\partial h}{\partial \mathbf{x}} (\mathbf{x}^*(t_f), t_f) - \mathbf{p}^*(t_f) \end{bmatrix}^T \delta \mathbf{x}_f \\ + \begin{bmatrix} H(\mathbf{x}^*(t_f), \mathbf{u}^*(t_f), \mathbf{p}^*(t_f), t_f) + \frac{\partial h}{\partial t} (\mathbf{x}^*(t_f), t_f) \end{bmatrix} \delta t_f = 0$$

Necessary conditions for optimal control

(with unbounded controls)

Problem	Description	Substitution in Eq. (5.1-18)	Boundary-condition equations	Remarks
t _f fixed	1. $\mathbf{x}(t_f) = \mathbf{x}_f$ specified final state	$\delta \mathbf{x}_f = \delta \mathbf{x}(t_f) = 0$ $\delta t_f = 0$	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\mathbf{x}^*(t_f) = \mathbf{x}_f$	2n equations to determine 2n constants of integration
	2. $\mathbf{x}(t_f)$ free	$\delta \mathbf{x}_f = \delta \mathbf{x}(t_f)$ $\delta t_f = 0$	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f)) - \mathbf{p}^*(t_f) = 0$	2n equations to determine 2n constants of integration
	3. $\mathbf{x}(t_f)$ on the surface $\mathbf{m}(\mathbf{x}(t)) = 0$	$\delta \mathbf{x}_f = \delta \mathbf{x}(t_f)$ $\delta t_f = 0$	$\mathbf{x}^{*}(t_{0}) = \mathbf{x}_{0}$ $\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^{*}(t_{f})) - \mathbf{p}^{*}(t_{f}) = \sum_{i=1}^{k} d_{i} \left[\frac{\partial m_{i}}{\partial \mathbf{x}}(\mathbf{x}^{*}(t_{f})) \right]$ $\mathbf{m}(\mathbf{x}^{*}(t_{f})) = 0$	$(2n + k)$ equations to determine the $2n$ constants of integration and the variables d_1, \ldots, d_k
t _f free	4. $\mathbf{x}(t_f) = \mathbf{x}_f$ specified final state	$\delta \mathbf{x}_f = 0$	$\mathbf{x}^{*}(t_{0}) = \mathbf{x}_{0}$ $\mathbf{x}^{*}(t_{f}) = \mathbf{x}_{f}$ $\mathscr{H}(\mathbf{x}^{*}(t_{f}), \mathbf{u}^{*}(t_{f}), \mathbf{p}^{*}(t_{f}), t_{f}) + \frac{\partial h}{\partial t}(\mathbf{x}^{*}(t_{f}), t_{f}) = 0$	$(2n + 1)$ equations to determine the $2n$ constants of integration and t_f
	5. $\mathbf{x}(t_f)$ free		$\mathbf{x}^{*}(t_{0}) = \mathbf{x}_{0}$ $\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^{*}(t_{f}), t_{f}) - \mathbf{p}^{*}(t_{f}) = 0$ $\mathcal{H}(\mathbf{x}^{*}(t_{f}), \mathbf{u}^{*}(t_{f}), \mathbf{p}^{*}(t_{f}), t_{f}) + \frac{\partial h}{\partial t}(\mathbf{x}^{*}(t_{f}), t_{f}) = 0$	$(2n + 1)$ equations to determine the $2n$ constants of integration and t_f

AA 203 | Lecture 19

From Kirk, Section 5.1

- Necessary conditions consist of a set of 2n, *first-order*, differential equations (state and co-state equations), and a set of m algebraic equations (control equations)
- The solution to the state and co-state equations will contain 2n constants of integration
- To obtain values for the constants, we use the n equations x(t₀) = x₀, and an additional set of n (or n + 1) equations from the boundary conditions
- Once again: 2-point boundary value problem

Example

Find optimal control u(t) to steer the system

 $\ddot{x}(t) = u(t)$ from x(0) = 10, $\dot{x}(0) = 0$ to the origin $x(t_f) = 0$, $\dot{x}(t_f) = 0$, and to minimize $J = \frac{1}{2}\alpha t_f^2 + \frac{1}{2}\int_{t_0}^{t_f} b \ u^2(t)dt, \quad \alpha, b > 0$

(note: the final time t_f is free)

Example

Find optimal control u(t) to steer the system

 $\ddot{x}(t) = u(t)$

from x(0) = 10, $\dot{x}(0) = 0$ to the origin $x(t_f) = 0$, $\dot{x}(t_f) = 0$, and to minimize $J = \frac{1}{2}\alpha t_f^2 + \frac{1}{2}\int_{t_0}^{t_f} b \, u^2(t) dt$, $\alpha, b > 0$

• Solution: optimal time is

$$t_f = \left(\frac{1800b}{\alpha}\right)^{1/5}$$

We want to prove that, with unbounded controls, the necessary optimality conditions are (*H* is the Hamiltonian)

$$\dot{\mathbf{x}}^{*}(t) = \frac{\partial H}{\partial \mathbf{p}} \left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t \right)$$
$$\dot{\mathbf{p}}^{*}(t) = -\frac{\partial H}{\partial \mathbf{x}} \left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t \right) \qquad \text{for all } t \in [t_{0}, t_{f}]$$
$$\mathbf{0} = \frac{\partial H}{\partial \mathbf{u}} \left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t \right)$$

along with the boundary conditions:

$$\begin{bmatrix} \frac{\partial h}{\partial \mathbf{x}} (\mathbf{x}^*(t_f), t_f) - \mathbf{p}^*(t_f) \end{bmatrix}^T \delta \mathbf{x}_f + \begin{bmatrix} H(\mathbf{x}^*(t_f), \mathbf{u}^*(t_f), \mathbf{p}^*(t_f), t_f) + \frac{\partial h}{\partial t} (\mathbf{x}^*(t_f), t_f) \end{bmatrix} \delta t_f = 0$$

- For simplicity, assume that the terminal penalty is equal to zero, and that t_f and $\mathbf{x}(t_f)$ are fixed and given
- Consider the augmented cost function $g_a(\mathbf{x}(t), \dot{\mathbf{x}}(t), \mathbf{u}(t), \mathbf{p}(t), t) \coloneqq$ $g(\mathbf{x}(t), \mathbf{u}(t), t) + \mathbf{p}(t)^T [\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t) - \dot{\mathbf{x}}(t)]$ where the $\{p_i(t)\}$'s are Lagrange multipliers
- Note that we have simply added zero to the cost function!
- The augmented cost function is then

$$J_a(\mathbf{u}) = \int_{t_0}^{t_f} g_a(\mathbf{x}(t), \dot{\mathbf{x}}(t), \mathbf{u}(t), \mathbf{p}(t), t) dt$$

On an extremal, by applying the fundamental theorem of the CoV

By the CoV theorem

$$\begin{split} \stackrel{\downarrow}{\mathbf{0}} = \delta J_{a}(\mathbf{u}) &= \int_{t_{0}}^{t_{f}} \left(\left[\frac{\partial g_{a}}{\partial \mathbf{x}}(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t) - \frac{d}{dt} \frac{\partial g_{a}}{\partial \dot{\mathbf{x}}}(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t) \right]^{T} \delta \mathbf{x}(t) \\ &+ \left[\frac{\partial g_{a}}{\partial \mathbf{u}}(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t) \right]^{T} \delta \mathbf{u}(t) + \left[\frac{\partial g_{a}}{\partial \mathbf{p}}(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t) \right]^{T} \delta \mathbf{p}(t) \right) dt \end{split}$$

On an extremal, by applying the fundamental theorem of the CoV

By the CoV theorem

$$= \frac{\partial g}{\partial \mathbf{x}}(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), t) + \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), t)^{T}\mathbf{p}^{*}(t) = -\frac{d}{dt}(-\mathbf{p}^{*}(t))$$

$$= -\frac{d}{dt}(-\mathbf{p}^{*}(t))$$

$$= -\frac{d}{dt}(-\mathbf{p}^{*}(t))$$

$$= \delta J_{a}(\mathbf{u}) = \int_{t_{0}}^{t_{f}} \left(\left[\frac{\partial g_{a}}{\partial \mathbf{x}}(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t) - \frac{d}{dt} \frac{\partial g_{a}}{\partial \dot{\mathbf{x}}}(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t) \right]^{T} \delta \mathbf{x}(t)$$

$$+ \left[\frac{\partial g_{a}}{\partial \mathbf{u}}(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t) \right]^{T} \delta \mathbf{u}(t) + \left[\frac{\partial g_{a}}{\partial \mathbf{p}}(\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t) \right]^{T} \delta \mathbf{p}(t) \right] dt$$

$$= \mathbf{f}(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), t) - \dot{\mathbf{x}}^{*}(t)$$

Considering each term in sequence,

- $f(x^{*}(t), u^{*}(t), t) \dot{x}^{*}(t) = 0$, on an extremal
- The Lagrange multipliers are arbitrary, so we can select them to make the coefficient of $\delta \mathbf{x}(t)$ equal to zero, that is $\dot{\mathbf{p}}^*(t) = -\frac{\partial g}{\partial \mathbf{x}}(\mathbf{x}^*(t), \mathbf{u}^*(t), t) - \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x}^*(t), \mathbf{u}^*(t), t)^T \mathbf{p}^*(t)$
- The remaining variation $\delta \mathbf{u}(t)$, is independent, so its coefficient must be zero; thus $\frac{\partial g}{\partial \mathbf{u}}(\mathbf{x}^*(t), \mathbf{u}^*(t), t) + \frac{\partial \mathbf{f}}{\partial \mathbf{u}}(\mathbf{x}^*(t), \mathbf{u}^*(t), t)^T \mathbf{p}^*(t) = \mathbf{0}$

By using the Hamiltonian formalism, one obtains the claim

Next time

- Pontryagin's minimum principle
- Special cases