
AA203
Optimal and Learning-based Control

Calculus of variations



Logistics

• HW3 already due/in late day territory; solutions will be posted 
this weekend
• HW4 is out; due Friday June 4th (late days are allowed)
• Project reports/summary videos are due Wednesday June 2nd

AA 203 | Lecture 18



Roadmap

5/13/21 3

Open-loop

Indirect 
methods

Direct 
methods

Closed-loop

DP HJB / HJI

MPC

Adaptive
optimal control

Model-based RL

Model-free RL
Control

Optimal and 
learning control

Adaptive controlFeedback control

LQR iLQR DDP
3

Reachability 
analysis

LQR

Unconstrained Constrained

AA 203 | Lecture 18



Indirect methods

Goal: develop alternative approach to 
solve general optimal control problems
• provides new insights on constrained 

solutions
• (sometimes) provides more direct 

(i.e., analytical) path to a solution

Reading:
• D. E. Kirk. Optimal control theory: an 

introduction, 2004.
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Key idea

Recall OCP: find an admissible control u∗ which causes 
the system

to follow an admissible trajectory x∗ that minimizes the 
functional

• For a function, we set gradient to zero to find 
stationary points, and then investigate higher order 
derivatives to determine minimum / maximum
• We’ll do something very similar for functionals 
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Calculus of variations (CoV)

• Calculus of variations: generalization of 
calculus that allows one to find maxima 
and minima of functionals (i.e., a “function 
of functions”), by using variations

• Agenda:
1. Introduce new concepts for functionals by 

appealing to some familiar results from the 
theory of functions 

2. Apply such concepts to derive the 
fundamental theorem of CoV

3. Apply the CoV to optimal control  
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Preliminaries

• A functional 𝐽 is a rule of correspondence that 
assigns to each function 𝐱 in a certain class Ω
(the “domain”) a unique real number
• Example: 𝐽 𝐱 = ∫!!

!" 𝐱 𝑡 𝑑𝑡

• 𝐽 is a linear functional of 𝐱 if and only if 

𝐽 𝛼!𝐱 ! + 𝛼"𝐱 " = 𝛼!𝐽 𝐱 ! + 𝛼"𝐽(𝐱 " )

for all 𝐱 ! , 𝐱 " , and 𝛼!𝐱 ! + 𝛼"𝐱 " in Ω
• Example: previous functional is linear
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Preliminaries
To define the notion of (local) maxima and minima, we 
need a notion of “closeness”

• The norm of a function is a rule of correspondence 
that assigns to each function 𝐱 ∈ Ω, defined over 𝑡 ∈
[𝑡!, 𝑡"], a real number. The norm of 𝐱, denoted by 𝐱 , 
satisfies the following properties:
1. 𝐱 ≥ 0, and 𝐱 = 0 iff 𝐱 𝑡 = 0 for all         

𝑡 ∈ [𝑡!, 𝑡"]
2. 𝛼𝐱 = |𝛼| 𝐱 for all real numbers 𝛼
3. 𝐱 # + 𝐱 $ ≤ 𝐱 # + 𝐱 $

• To compare the closeness of two functions 𝐲 and 
𝐳, we let 𝐱 𝑡 = 𝐲(𝑡) - 𝐳(𝑡)
• Example, considering scalar functions 𝐱 ∈ 𝐶# :           

𝐱 = max
%!&%&%"

{|𝐱(𝑡)|}

AA 203 | Lecture 18



Extrema for functionals

• A functional 𝐽 with domain Ω has a local 
minimum at 𝐱∗ 𝑡 ∈ Ω if there exists an 
𝜖 > 0 such that  

𝐽 𝐱 𝑡 ≥ 𝐽(𝐱∗(𝑡))
for all 𝐱 𝑡 ∈ Ω such that 

𝐱 𝑡 − 𝐱∗(𝑡) < 𝜖

• Maxima are defined similarly

• To find a minimum we define something 
similar to the differential of a function 
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Increments and variations

• The increment of a functional is defined as
Δ𝐽 𝐱 𝑡 , 𝛿𝐱 𝑡 ≔ 𝐽 𝐱 𝑡 + 𝛿𝐱 𝑡 − 𝐽(𝐱(𝑡))

• The increment of a functional can be written as 
Δ𝐽 𝐱, 𝛿𝐱 ≔ 𝛿𝐽 𝐱, 𝛿𝐱 + 𝑔 𝐱, 𝛿𝐱 ⋅ 𝛿𝐱

where 𝛿𝐽 is linear in 𝛿𝐱. If
lim
<𝐱 →>

𝑔 𝐱, 𝛿𝐱 = 0

then 𝐽 is said to be differentiable on 𝐱 and 𝛿𝐽 is 
the variation of 𝐽 at 𝐱

AA 203 | Lecture 18

Variation of 𝐱



The fundamental theorem of CoV

• Let 𝐱(𝑡) be a vector function of 𝑡 in the 
class Ω, and 𝐽 𝐱 be a differentiable 
functional of 𝐱. Assume that the functions 
in 𝛺 are not constrained by any 
boundaries. If 𝐱∗ is an extremal, the 
variation of 𝐽 must vanish at 𝐱∗, that is 
𝛿𝐽 𝐱∗, 𝛿𝐱 = 0 for all admissible 𝛿𝐱

(i.e., such that 𝐱 + 𝛿𝐱 ∈ Ω)

• Proof: by contradiction (see also Kirk, 
Section 4.1).
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Applying CoV

• Let 𝐱 be a function in the class of 
functions with continuous first 
derivatives. It is desired to find the 
function 𝐱∗ for which the functional 

𝐽 𝐱 = 8
@!

@"
𝑔 𝐱 𝑡 , �̇� 𝑡 , 𝑡 𝑑𝑡

has a relative extremum
• Assumptions: 𝑔 ∈ 𝐶A, 𝑡>, 𝑡B are fixed, 

and 𝐱>, 𝐱B are fixed  
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Applying CoV

• Let 𝐱 be any element of Ω, and determine the 
variation 𝛿𝐽 from the increment 
Δ𝐽 𝐱, 𝛿𝐱 = 𝐽 𝐱 + 𝛿𝐱 − 𝐽 𝐱

= 8
@!

@"
𝑔 𝐱 + 𝛿𝐱, �̇� + 𝛿�̇�, 𝑡 𝑑𝑡 − 8

@!

@"
𝑔 𝐱, �̇�, 𝑡 𝑑𝑡

= 8
@!

@"
𝑔 𝐱 + 𝛿𝐱, �̇� + 𝛿�̇�, 𝑡 − 𝑔 𝐱, �̇�, 𝑡 𝑑𝑡

• Note that �̇� = 𝑑 𝐱(𝑡)/𝑑𝑡 and 𝛿�̇� = 𝑑 𝛿𝐱(𝑡)/𝑑𝑡

AA 203 | Lecture 18



Applying CoV

• Expanding the integrand in a Taylor series, one obtains
Δ𝐽 𝐱, 𝛿𝐱 = ∫!!

!" 𝑔 𝐱, �̇�, 𝑡 + "#
"𝐱

𝐱, �̇�, 𝑡 𝛿𝐱 + "#
"�̇�

𝐱, �̇�, 𝑡 𝛿�̇� + 𝑜 𝛿𝐱, 𝛿�̇� − 𝑔 𝐱, �̇�, 𝑡 𝑑𝑡

• Thus the variation is

𝛿𝐽 = ∫@!
@" 𝑔𝐱 𝐱, �̇�, 𝑡 𝛿𝐱 + 𝑔�̇� 𝐱, �̇�, 𝑡 𝛿�̇� 𝑑𝑡
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Applying CoV

• Integrating by parts one obtains

𝛿𝐽 = $
&!

&"
𝑔𝐱 𝐱, �̇�, 𝑡 −

𝑑
𝑑𝑡
𝑔�̇� 𝐱, �̇�, 𝑡 𝛿𝐱 𝑑𝑡

+ 𝑔�̇� 𝐱, �̇�, 𝑡 𝛿𝐱(𝑡) &!
&"

• Since 𝐱(𝑡$) and 𝐱 𝑡% are given, 𝛿𝐱 𝑡$ = 0 and 
𝛿𝐱 𝑡% = 0
• If we now consider an extremal curve, applying the 

CoV theorem yields
𝛿𝐽 = ∫&&

&' 𝑔𝐱 𝐱∗, �̇�∗, 𝑡 − (
(&
𝑔�̇� 𝐱∗, �̇�∗, 𝑡 𝛿𝐱 𝑑𝑡 = 0
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Applying CoV

• Fundamental lemma of CoV: If a function 
𝐡 is continuous and

8
&&

&'
𝐡 𝑡 *𝛿𝐱 𝑡 𝑑𝑡 = 0
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for every function 𝛿𝐱 that is 
continuous in the interval [𝑡>, 𝑡B], 
then 𝐡 must be zero everywhere 
in the interval [𝑡>, 𝑡B]



Applying CoV

• Applying the fundamental lemma, we find that a 
necessary condition for 𝐱∗ to be an extremal is 

𝑔𝐱 𝐱∗, �̇�∗, 𝑡 −
𝑑
𝑑𝑡
𝑔�̇� 𝐱∗, �̇�∗, 𝑡 = 𝟎

for all 𝑡 ∈ [𝑡>, 𝑡B]

• Non-linear, ordinary, time-varying, second-order 
differential equation with split boundary 
conditions (at 𝐱(𝑡>) and 𝐱(𝑡B))
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Euler-Lagrange 
equation



Example

• Find shortest path between two given points
• Solution: straight line!
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Summary

• A necessary condition for 𝑥∗ to be an extremal, in the case of fixed
final time and fixed end point, is 

𝑔D 𝑥∗, �̇�∗, 𝑡 − E
E@
𝑔Ḋ 𝑥∗, �̇�∗, 𝑡 = 0

• More generally, for functionals involving several independent 
functions, a necessary condition for 𝐱∗ to be an extremal, in the case 
of fixed final time and fixed end points, is 

𝑔𝐱 𝐱∗, �̇�∗, 𝑡 − E
E@
𝑔�̇� 𝐱∗, �̇�∗, 𝑡 = 𝟎
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Next time

• More general boundary conditions 
• Constrained extrema 
• Application to optimal control 
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