AA203 Optimal and Learning-based Control

Calculus of variations

Logistics

- HW3 already due/in late day territory; solutions will be posted this weekend
- HW4 is out; due Friday June 4th (late days are allowed)
- Project reports/summary videos are due Wednesday June 2nd

Indirect methods

Goal: develop alternative approach to solve general optimal control problems

- provides new insights on constrained solutions
- (sometimes) provides more direct (i.e., analytical) path to a solution

Reading:

• D. E. Kirk. *Optimal control theory: an introduction*, 2004.

Key idea

Recall OCP: find an *admissible control* **u**[∗] which causes the system

$$
\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)
$$

to follow an *admissible trajectory* **x**[∗] that minimizes the *functional*

$$
J = h(\mathbf{x}(t_f), t_f) + \int_{t_0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) dt
$$

- For a function, we set gradient to zero to find stationary points, and then investigate higher order derivatives to determine minimum / maximum
- We'll do something very similar for functionals

Calculus of variations (CoV)

- Calculus of variations: generalization of calculus that allows one to find maxima and minima of functionals (i.e., a "function of functions"), by using *variations*
- Agenda:
	- Introduce new concepts for functionals by appealing to some familiar results from the theory of functions
	- 2. Apply such concepts to derive the fundamental theorem of CoV
	- 3. Apply the CoV to optimal control

Preliminaries

• A functional *is a rule of correspondence that* assigns to each function **x** in a certain class Ω (the "domain") a unique real number

• Example:
$$
J(\mathbf{x}) = \int_{t_0}^{t_f} \mathbf{x}(t) dt
$$

 \bullet *J* is a linear functional of **x** if and only if

$$
J(\alpha_1 \mathbf{x}^{(1)} + \alpha_2 \mathbf{x}^{(2)}) = \alpha_1 J(\mathbf{x}^{(1)}) + \alpha_2 J(\mathbf{x}^{(2)})
$$

for all
$$
\mathbf{x}^{(1)}, \mathbf{x}^{(2)}
$$
, and $\alpha_1 \mathbf{x}^{(1)} + \alpha_2 \mathbf{x}^{(2)}$ in Ω

• Example: previous functional is linear

Preliminaries

To define the notion of (local) maxima and minima, we need a notion of "closeness"

- The norm of a function is a rule of correspondence that assigns to each function $\mathbf{x} \in \Omega$, defined over $t \in \mathcal{E}$ $[t_0, t_f]$, a real number. The norm of **x**, denoted by $||\mathbf{x}||$, satisfies the following properties:
	- 1. $||\mathbf{x}|| \ge 0$, and $||\mathbf{x}|| = 0$ iff $\mathbf{x}(t) = 0$ for all $t \in [t_0, t_f]$
	- 2. $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for all real numbers α
	- 3. $\|\mathbf{x}^{(1)} + \mathbf{x}^{(2)}\| \le \|\mathbf{x}^{(1)}\| + \|\mathbf{x}^{(2)}\|$
- To compare the closeness of two functions y and **z**, we let $\mathbf{x}(t) = \mathbf{y}(t) - \mathbf{z}(t)$
	- Example, considering scalar functions $x \in C^0$: $\mathbf{x} \Vert = \max$ $t_0 \leq t \leq t_f$ $\{|\mathbf{x}(t)|\}$

Extrema for functionals

• A functional *J* with domain Ω has a local minimum at $\mathbf{x}^*(t) \in \Omega$ if there exists an $\epsilon > 0$ such that

 $J(\mathbf{x}(t)) \geq J(\mathbf{x}^*(t))$

for all $\mathbf{x}(t) \in \Omega$ such that $\|\mathbf{x}(t) - \mathbf{x}^*(t)\| < \epsilon$

- Maxima are defined similarly
- To find a minimum we define something similar to the differential of a function

Increments and variations

• The increment of a functional is defined as $\Delta J(\mathbf{x}(t), \delta \mathbf{x}(t)) \coloneq J(\mathbf{x}(t) + \delta \mathbf{x}(t)) - J(\mathbf{x}(t))$

Variation of

• The increment of a functional can be written as $\Delta J(\mathbf{x}, \delta \mathbf{x}) \coloneqq \delta J(\mathbf{x}, \delta \mathbf{x}) + g(\mathbf{x}, \delta \mathbf{x}) \cdot ||\delta \mathbf{x}||$

where δ *I* is *linear* in δ **x**. If

$$
\lim_{\|\delta\mathbf{x}\|\to 0} \{g(\mathbf{x}, \delta\mathbf{x})\} = 0
$$

then *I* is said to be differentiable on **x** and δ *I* is the variation of *at*

The fundamental theorem of CoV

- Let $\mathbf{x}(t)$ be a vector function of t in the class Ω , and $J(x)$ be a differentiable functional of x. *Assume that the functions in* Ω *are not constrained by any boundaries.* If x^* is an extremal, the variation of *must vanish at* \mathbf{x}^* *, that is* $\delta J(\mathbf{x}^*, \delta \mathbf{x}) = 0$ for all admissible $\delta \mathbf{x}$ (i.e., such that $\mathbf{x} + \delta \mathbf{x} \in \Omega$)
- Proof: by contradiction (see also Kirk, Section 4.1).

 \cdot Let x be a function in the class of functions with continuous first derivatives. It is desired to find the function x^* for which the functional ctf

$$
J(\mathbf{x}) = \int_{t_0}^{\infty} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) dt
$$

has a relative extremum

• Assumptions: $g \in \mathbb{C}^2$, t_0 , t_f are fixed, and \mathbf{x}_0 , \mathbf{x}_f are fixed

• Let x be any element of Ω , and determine the variation δ *[* from the increment

$$
\Delta f(\mathbf{x}, \delta \mathbf{x}) = f(\mathbf{x} + \delta \mathbf{x}) - f(\mathbf{x})
$$

=
$$
\int_{t_0}^{t_f} g(\mathbf{x} + \delta \mathbf{x}, \dot{\mathbf{x}} + \delta \dot{\mathbf{x}}, t) dt - \int_{t_0}^{t_f} g(\mathbf{x}, \dot{\mathbf{x}}, t) dt
$$

=
$$
\int_{t_0}^{t_f} g(\mathbf{x} + \delta \mathbf{x}, \dot{\mathbf{x}} + \delta \dot{\mathbf{x}}, t) - g(\mathbf{x}, \dot{\mathbf{x}}, t) dt
$$

• Note that
$$
\dot{\mathbf{x}} = d \mathbf{x}(t) / dt
$$
 and $\delta \dot{\mathbf{x}} = d \delta \mathbf{x}(t) / dt$

• Expanding the integrand in a Taylor series, one obtains

$$
\Delta J(\mathbf{x}, \delta \mathbf{x}) = \int_{t_0}^{t_f} g(\mathbf{x}, \dot{\mathbf{x}}, t) + \frac{\partial g}{\partial \mathbf{x}}(\mathbf{x}, \dot{\mathbf{x}}, t) \delta \mathbf{x} + \frac{\partial g}{\partial \dot{\mathbf{x}}}(\mathbf{x}, \dot{\mathbf{x}}, t) \delta \dot{\mathbf{x}} + o(\delta \mathbf{x}, \delta \dot{\mathbf{x}}) - g(\mathbf{x}, \dot{\mathbf{x}}, t) dt
$$

• Thus the variation is

$$
\delta J = \int_{t_0}^{t_f} g_{\mathbf{x}}(\mathbf{x}, \dot{\mathbf{x}}, t) \delta \mathbf{x} + g_{\dot{\mathbf{x}}}(\mathbf{x}, \dot{\mathbf{x}}, t) \delta \dot{\mathbf{x}} dt
$$

• Integrating by parts one obtains

$$
\delta J = \int_{t_0}^{t_f} \left[g_{\mathbf{x}}(\mathbf{x}, \dot{\mathbf{x}}, t) - \frac{d}{dt} g_{\dot{\mathbf{x}}}(\mathbf{x}, \dot{\mathbf{x}}, t) \right] \delta \mathbf{x} dt
$$

$$
+ \left[g_{\dot{\mathbf{x}}}(\mathbf{x}, \dot{\mathbf{x}}, t) \delta \mathbf{x}(t) \right]_{t_0}^{t_f}
$$

- Since $\mathbf{x}(t_0)$ and $\mathbf{x}(t_f)$ are given, $\delta \mathbf{x}(t_0) = 0$ and $\delta \mathbf{x}(t_f) = 0$
- If we now consider an extremal curve, applying the CoV theorem yields

$$
\delta J = \int_{t_0}^{t_f} \left[g_{\mathbf{x}}(\mathbf{x}^*, \dot{\mathbf{x}}^*, t) - \frac{d}{dt} g_{\dot{\mathbf{x}}}(\mathbf{x}^*, \dot{\mathbf{x}}^*, t) \right] \delta \mathbf{x} dt = 0
$$

For *all* δ **x**!

AA 203 | Lecture 18

• Fundamental lemma of CoV: If a function **h** is continuous and

$$
\int_{t_0}^{t_f} \mathbf{h}(t)^T \delta \mathbf{x}(t) dt = 0
$$

for every function δx that is continuous in the interval $[t_0,t_f],$ then **must be zero everywhere** in the interval $[t_0,t_f]$

• Applying the fundamental lemma, we find that a necessary condition for x^* to be an extremal is

$$
g_{\mathbf{x}}(\mathbf{x}^*, \dot{\mathbf{x}}^*, t) - \frac{d}{dt} g_{\dot{\mathbf{x}}}(\mathbf{x}^*, \dot{\mathbf{x}}^*, t) = \mathbf{0}
$$
 Euler-Lagrange
for all $t \in [t_0, t_f]$

• Non-linear, ordinary, time-varying, second-order differential equation with split boundary conditions (at $\mathbf{x}(t_0)$ and $\mathbf{x}(t_f)$)

Example

- Find shortest path between two given points
	- Solution: straight line!

Summary

• A necessary condition for x^* to be an extremal, in the case of *fixed* final time and *fixed* end point, is

$$
g_{x}(x^*, \dot{x}^*, t) - \frac{d}{dt} g_{\dot{x}}(x^*, \dot{x}^*, t) = 0
$$

• More generally, for functionals involving several independent functions, a necessary condition for x^* to be an extremal, in the case of *fixed* final time and *fixed* end points, is

$$
g_{\mathbf{x}}(\mathbf{x}^*, \dot{\mathbf{x}}^*, t) - \frac{d}{dt} g_{\dot{\mathbf{x}}}(\mathbf{x}^*, \dot{\mathbf{x}}^*, t) = \mathbf{0}
$$

Next time

- More general boundary conditions
- Constrained extrema
- Application to optimal control