AA203
Optimal and Learning-based Control

Policy gradient and actor-critic

A Stanford ASEY
&%/ University :

Roadmap

Model-free RL

Control Adaptlve
optimal control
I |] Model-based RL
Feedback control Adaptive control
| Optimaland Unconstrained Constrained
learning control
Open-loop [--------------=mmmmmoom-- > MPC €= oo o mmm oo Closed-loop
Indf;’ect Dir"ect .)
methods methods DP HJB/HJI
I
+ A\ 4 + + +
AA 203 | Lecture 15 LQR iLQR DDP LQR Reachability

5/18/21 analysis

Model-free RL: deep RL and policy gradient

* Review Q-learning
* Policy gradient
* Introduce variance reduction methods for policy gradient estimation

* Brief survey of the modern model-free RL landscape

* Readings:
* R. Sutton and A. Barto. Reinforcement Learning: An Introduction, 2018.

5/18/21 AA 203 | Lecture 15 3

Review: Q-Learning

Policy evaluation for Q" via

2
mein (Tt Ty ml?X Qo (Xe41,u) — Qg (X, ut)>

with a greedy policy improvement step, m(x) = max Qg (x, u).
u

5/18/21 AA 203 | Lecture 15

Deep Q-Learning

* Many possible function approximators for Q
* Linear, nearest neighbors, aggregation

* Recent success: neural networks with loss function

2
<7"t t+y max Qor(xt41,u) — Qo(xy, ut)>

* Deep Q Network (DQN; Mnih et al. 2013)

* Experience replay

5/18/21 AA 203 | Lecture 15

-
Model-free, policy based: Policy Gradient

Instead of learning the Q function, learn the policy directly!

Define a class of policies mg where 6 are the parameters of the policy.

Can we learn the optimal 8 from interaction?

Goal: use trajectories to estimate a gradient of policy performance w.r.t
parameters 6

5/18/21 AA 203 | Lecture 15 6

Policy Gradient

A particular value of 8 induces a distribution of possible trajectories.

Objective function:
J(0) = Erponlr(T)]

1(6) = j r()p(x; 0)d

where r(7) is the total discounted cumulative reward of a trajectory.

5/18/21 AA 203 | Lecture 15 7

Policy Gradient

Gradient of objective w.r.t. parameters:

Vo] (0) = JT(T)VQP(T; 6)dt
Vop(t;0)

Trick: Vgp(t;0) = p(z; 0) p(1;0)

= p(t;0)Vglogp(t;0)
Vo) (6) = f (r(D)V logp(x; 0)p(; 0) dr

Vo] (0) = Er p(;0)[r (1) Vg log p(z; 6)]

5/18/21 AA 203 | Lecture 15 8

Policy Gradient

Vo] () = Erop(z0)[r(t)Vg log p(z; 6)]

logp(t;6) = log (1_[T (X412, up)mo (uy |xt)>

t=0

— Z log T(xt+1 | x;, ut) + log g (us|x¢)

t=0
We don’t need to know
VH 10829(1'} H) — z VB 108 77:0 (ut |xt) the transition model to

£>0 compute this gradient!

5/18/21 AA 203 | Lecture 15 9

-
Policy Gradient

If we use g to sample a trajectory, we can approximate the gradient
via N Monte Carlo samples:

VoJ(0) = Erep;0)[1(T)Vg log p(z; 6)]
1] . .
~ NZIL'V:l (T(T(l)) Yez0 Vo logmy (u;” |x§‘)))

Intuition: adjust theta to:
* Boost probability of actions taken if reward is high
* Lower probability of actions taken if reward is low

Learning by trial and error

5/18/21 AA 203 | Lecture 15 10

-
Policy Gradient Recap

Pros:
 Learns policy directly — often more stable
* Works for continuous action spaces

* Converges to local maximum of J(0)

Cons:
* Needs data from current policy to compute gradient — data inefficient

* Gradient estimates can be very noisy

5/18/21 AA 203 | Lecture 15 11

Deep policy gradient

* Parametrize policy as deep neural network

* In practice, very unstable
* Need to reduce variance of gradient estimator: baselines and actor-critic

I-NTNE
\‘é‘"f‘ 3]

¢ A‘ Y\

RS)
R
A4

Input FC Hidden 1 (16) FC Hidden 2 (16) Output

5/18/21 AA 203 | Lecture 15 12

Time dependency of policy gradient theorem

* Previous estimator for policy gradient was

Vo] (6)

NZ((T(l))z Vo log g (u()lx()))

t=0

Action u;, can not change reward ry fort’ > t:

V) (0) ~ —2 (Z Vo logmo(ulx(")) r(x?, “)))

(=1 \t=0 =t

5/18/21 AA 203 | Lecture 15 13

R EEEEEEEEE—————S——m—m—m———
REINFORCE

Loop forever:
Generate episode x, Ug, 1y, X1, U1, 1 ... With TTg
Loop forallt =0,..,N — 1:
N
G < Xk=tTk

0 —0+aGVgylogmg(u,|x;)

5/18/21 AA 203 | Lecture 15 14

Adding baselines to policy evaluation

* Monte Carlo policy gradient estimator has extremely high variance.
* We want to search for gradient estimators that have lower variance

* Add in baseline ~
Gy =Gy — b(xt)
J(6) = Ext,ut,...[Gt]
Policy gradient theorem yields

Vo) (0) = Eyyu, [) GiVglogm(uylx,, 0)]

t=0

5/18/21 AA 203 | Lecture 15 15

A closer look at the baseline

Claim: adding baseline does not change the value of the
expected gradient

Vo) (8) = E[) (G, — b(x))Vs logm(ux, 0)]

t=0

=E[) GV logn(ulx,0)] —E[) b(x)Vslogm(u|x.,0)]

t=0 t=0
E[b(x¢)Vg log m(u,|xe, 0)] = Ey, [b(xt)Eut [Vg log m(ug|x,, 6)]]
Ey, [V log m(u|x, 6)] = Vg By, [1] = 0
Any state-dependent function, indep. of action, works.

5/18/21 AA 203 | Lecture 15 16

Example

5/18/21 AA 203 | Lecture 15 17

Performance improvement on gridworld

-10; '
8 W) :4 ot R A TR AN Y AT Ty
20/ it re
1 "‘A”'y"\ ‘
0 4
- { ll\ REINFORCE
Go -40} \"1‘ e
Total reward *
on episode ‘
averaged over 100 runs
-60 f
‘
-80}
-90}
1 200 400 600 800 1000

Episode

5/18/21 AA 203 | Lecture 15 18

Actor-critic

Particularly good baseline choice: value function
Actor-critic: use both actor (policy) and critic (value function).

Loop forever:
Generate episode xg, Uy, 19, X1, U1, Ty ... With TTg
Loop forallt =0,..,N — 1:

6w —G — Vw(xt)
wew+ a,d,V,V,(x;)

0«0+ agd,Vglogmg(uslxy)

5/18/21 AA 203 | Lecture 15 19

Policy gradient theorem with Q function

o Previous|y, have used](6) — Exo,uo,...[ZtZO r(xt'ut)]

 Note that
J(@) = By mem(lxp) [Q7 (x¢, up)]

Yields policy gradient
Vo] (0) = Eynixpn Q7 (xe, U)V log mw(ue [x;)]

Note that Q™ (x¢, uy) = Eut~ﬂ(’|xt):xt+1 [r (e, ue) + V7 (xe41)]

5/18/21 AA 203 | Lecture 15 20

-
Advantage policy gradient

* Combining the Q function policy gradient and the value baselines, we
have

VgJ(0) = E[6™V log m(u,|x)]

For 6™ = (lrt + VT (xr11) — V”(xt)). This is the TD error for policy
evaluation!

* Note that E[6™|x, u] = Q™ (x,u) — V™ (x) = A™(x, u).
* This is called the advantage.

5/18/21 AA 203 | Lecture 15 21

Advantage actor-critic

Loop forever:
Generate episode x, Ug, 1y, X1, U1, 1 ... With TTg
Loop forallt =0,..,N — 1:
Ow < 1 + Wy (1) — W (xe)
we<w+ a,,d,V,V,(x)
0«0+ agbd, Vg logmg(u|x;)

5/18/21 AA 203 | Lecture 15 22

Alternative estimators

* Many possible estimators for the advantage

* Multistep TD error:
0 «1e+Tiy1+ o+ Tegr + Vi (Xegrr1) — W ()

As T gets larger, this gets closer to Monte Carlo with value baseline.

5/18/21 AA 203 | Lecture 15 23

-
Trust region policy optimization (TRPO)
[Schulman et al., ICML 2015]

* Main idea : instead of choosing step size, use trust region

o (Uelxe)
Ay
Q9,14 (uelxt)

5.t Exmpyrg | Dkt (6,00 C 101 (- 120))| < 6

max E|

e Can show that this leads to monotonic improvement in
the ideal case.

e Simpler, more popular version: proximal policy
optimization (PPO).
e Replaces TRPO CG solve with simple adaptive KL penalty.

5/18/21 AA 203 | Lecture 15 24

-
Deterministic policy gradient (DPG)

Silver et al., ICML 2014

* Instead of using stochastic policy with value estimation baseline:
* Maintain estimate of Q function via minimizing TD error
e Optimize deterministic policy via

mHaX Ex[Q(x,mg(x))]

* Policy simply amortizes optimization of the Q function.
* Can be used off policy, relatively unstable in practice.

5/18/21 AA 203 | Lecture 15 25

Maximization bias

* Even though state-action value estimates are unbiased, may still have
biased value estimates

* Example:

5/18/21 AA 203 | Lecture 15 26

Double Q-learning

 Several possible solutions; in general, want to avoid using max of
estimates as estimate of makx.

* Double Q-learning [van Hasselt, NeurlPS 2010]: use two independent
estimates Q4, 0,
e u* = argmax,, Q(x,u)
* Use value estimate Q,(x,u")

 Alternative approach: maintain two independent critics, always use
min [Fujimoto et al, ICML 2018]

5/18/21 AA 203 | Lecture 15 27

Criticism of model-free methods

* Despite recent progress (including much not discussed here),
guestions about whether model-free methods are doing more than
random search in parameter space.

Simple random search of static linear policies is
competitive for reinforcement learning

Why did TD-Gammon Work?

Horia Mania Aurelia Guy Benjamin Recht

Jordan B. Pollack & Alan D. Blair hmania@berkeley.edu lia@berkeley.edu brecht@berkeley.edu

Computer Science Department
Brandeis University
Waltham, MA 02254

{pollack,blair} @cs.brandeis.edu

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Abstract
Abstract
. .) X Model-free reinforcement learning aims to offer off-the-shelf solutions for con-
Although TD-Gammon is one of the major successes in machine learn- trolling dynamical systems without requiring models of the system dynamics. We
ing, it has not led to similar impressive breakthroughs in temporal dif- introduce a model-free random search algorithm for training static, linear policies
ference learning for other applications or even other games. We were for continuous control problems. Common evaluation methodology shows that our
able to replicate some of the success of TD-Gammon, developing a method matches state-of-the-art sample efficiency on the benchmark MuJoCo loco-
competitive evaluation function on a 4000 parameter feed-forward neu- motion tasks. Nonetheless, more rigorous evaluation reveals that the assessment
ral network, without using back-propagation, reinforcement or temporal of performance on these benchmarks is optimistic. We evaluate the performance

of our method over hundreds of random seeds and many different hyperparameter
configurations for each benchmark task. This extensive evaluation is possible

& 5 . because of the small computational footprint of our method. Our simulations
that the surprising success of Tesauro’s program had more to do with the highlight a high variability in performance in these benchmark tasks, indicating

co-evolutionary struf:ture of the learning task and the dynamics of the that commonly used estimations of sample efficiency do not adequately evaluate
backgammon game itself. the performance of RL algorithms. Our results stress the need for new baselines,
benchmarks and evaluation methodology for RL algorithms.

5/18/21 AA 203 | Lecture 15 28

difference learning methods. Instead we apply simple hill-climbing in a
relative fitness environment. These results and further analysis suggest

5/18/21

Avg. cos sim with true grad

1.0

0.5

0.0

Are Deep Policy Gradient Algorithms
Truly Policy Gradient Algorithms?

Andrew Ilyas*!, Logan Engstrom*!, Shibani Santurkar!', Dimitris Tsipras®,
Firdaus Janoos?, Larry Rudolph!?, and Aleksander Madry?

lteration: O # Iteration: 150 # Iteration: 300 # lteration: 450
' e} ' o 1 o '
TRPO e 0 TRPO e o TRPO e o TRPO
PPO v PPO v PPO v PPO
PPO-M = PPO-M = PPO-M e PPO-M
; 5 0.5 ; E 0.5 ; 5 0.5 i
i E i z : E i
; € A= = : £ i
i o 00 i n 00 i n 00 |
1 o | o 1 o H
: o : o ! o !
i o i o ! o i
: > : > ! > !
' < o5 ' < o5 ‘ < _o5 '
102 103 104 10° 106 107 102 103 104 10° 108 107 102 103 104 105 106 107 102 103 104 10° 106 107
State-Action Pairs # State-Action Pairs # State-Action Pairs # State-Action Pairs
2,000 state-action pairs 20,000 state-action pairs 100,000 state-action pairs
(19 trajectories) (198 trajectories) (1068 trajectories)

3.0
25

05 Lo L 3&62\ 05 L0 L3 fon
00 05 “gep direc 00 05 12 drec

5 3.0
; 20 25 20 25

1.
1.0 5 +
00 05 5{epd“em°n

AA 203 | Lecture 15 29

Why model-free?

* Advantages
* Very few assumptions

* Many state of the art methods reach better performance than model-based
methods

* Weaknesses
* Extremely high sample complexity

5/18/21 AA 203 | Lecture 15 30

Next time

* Combining policy optimization with model learning

5/18/21 AA 203 | Lecture 15 31

