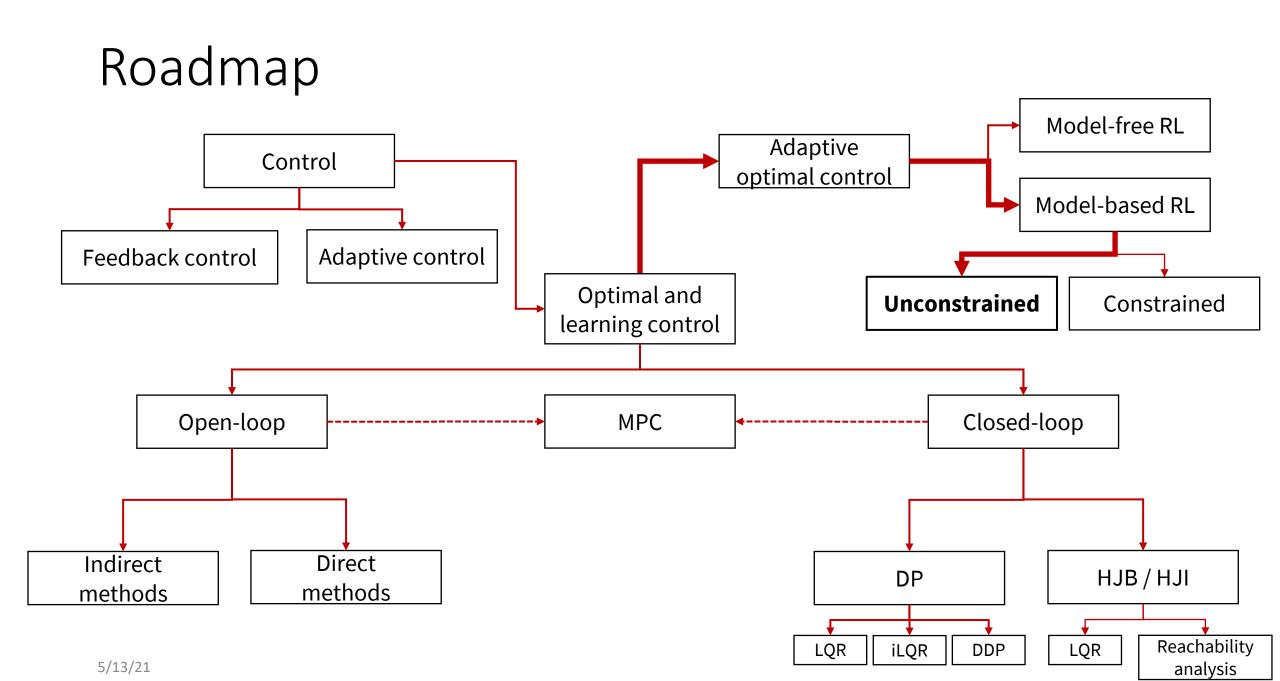
AA203 Optimal and Learning-based Control

Model-based reinforcement learning

Logistics

- Grading midterm reports
- Homework 3 out now: start early!
- 2/3 term survey out today, due Sunday

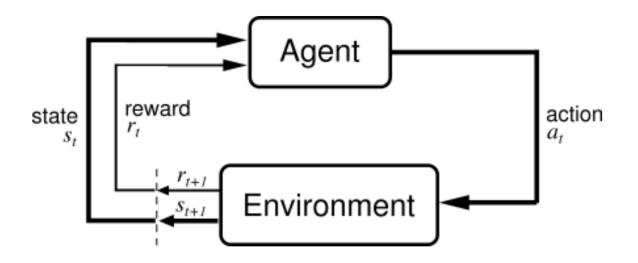


Agenda

- Reviewing the reinforcement learning problem statement
- Tabular model-based RL
- Continuous model-based RL
- Readings:
 - M. Ghavamzadeh, S. Mannor, J. Pineau, and A. Tamar, *Bayesian Reinforcement Learning: A Survey*, Foundations and Trends in ML, 2016.
 - R. Sutton and A. Barto. Reinforcement Learning: An Introduction, 2018.
 - M. Kochenderfer. *Decision Making Under Uncertainty,* 2015.
 - T. M. Moerland, J. Broekens, C. M. Jonker. *Model-based Reinforcement Learning: A Survey*, 2020
 - K. Chua, R. Calandra, R. McAllister, and S. Levine. *Deep reinforcement learning in a handful of trials using probabilistic dynamics models*, NeurIPS, 2018.

Reinforcement learning assumptions and information patterns

- Previously:
 - Intro model-free RL: Q-learning, SARSA
 - Multiple episodes, interleave data collection and policy improvement
 - Tabular (exact)
 - System Identification
 - Batch, offline data collection
 - Primarily linear dynamics
 - Adaptive Control
 - Intra-episode/online adaptation
 - Primarily linear dynamics



How are these different?

- Short answer: different historical developments, thus different standard assumptions
- Typically not clearly stated
- Thus difficult to:
 - connect similar ideas in different fields
 - know what works, and when
 - know what you should use for your problem
- Currently, all are increasingly overlapping

Core assumptions

- Linear vs. nonlinear dynamics
- Known vs. unknown cost function
- Episodic interaction vs. single episode (online) vs. batch offline data
 - Related: which policy was used to collect data (Offline vs online)?

Breaking down assumptions

	System Identification	Adaptive Control	Model-based RL	Model-free RL
Dynamics	Usually linear	Linear or nonlinear, usually control affine	Discrete or nonlinear continuous	Discrete or nonlinear continuous
Reward knowledge?	N/A	Designed (thus known)	Typically assumed known (not always)	Typically assumed unknown, provided by environment
Data collection/ episodic structure	Dataset provided	One episode	Typically, repeated episodes	Typically, repeated episodes
What do we learn?	Dynamics model	Usually policy (MRAC) or model (MIAC)	Dynamics model, sometimes reward model, sometimes policy	Policy (or Q function)

Caveat: there are exceptions to **all** of the above.

Unconstrained stochastic control problem

$$J_0^*(\mathbf{x}_0) = \min_{\boldsymbol{\pi}_0, \dots, \boldsymbol{\pi}_{T-1}} \mathbb{E}[p(\mathbf{x}_T) + \sum_{k=0}^{T-1} c(\mathbf{x}_k, \boldsymbol{\pi}_k(\mathbf{x}_k))]$$

subject to $\mathbf{x}_{k+1} = f(\mathbf{x}_k, \boldsymbol{\pi}_k(\mathbf{x}_k), \mathbf{w}_k, \boldsymbol{\theta}) \quad k = 0, \dots, N-1$
 $\boldsymbol{\theta} \sim p(\boldsymbol{\theta})$
 $\mathbf{w}_k \sim p(\mathbf{w}) \text{ iid, } k = 0, \dots, N-1$

Generalization and exploration

- LTI dynamics: if dataset generated with sufficient excitation, gives **global** knowledge
- Nonlinear dynamics: extrapolation is difficult and can be misleading
 - As AC/RL moves to more complex systems, have to consider uncertainty, exploration, and data collection process

Tabular model-based RL

- Discrete state/action space with stochastic transitions
- If model is known, can use value iteration/policy iteration/etc.
- Model unknown: want to build approximate model from observed transitions

Tabular MBRL outline

- Assume initial policy
- Loop forever:
 - Take some number of actions, resulting in transition/reward data
 - Improve dynamics model
 - Choose actions/policy
- Approaches for action selection:
 - Dynamic programming/VI/DP on approximate model
 - Expensive, gives optimal policy for model
 - Plan suboptimal sequence of actions via online control optimization

Dynamic programming for action selection

- Given an updated model, can perform value iteration/DP to yield new policy.
 - Can be very expensive for large MDPs!
 - Effect of local model changes (often) has minor impact on far away states.

Local methods for action selection

- Tree search methods:
 - Similar idea to MPC: continuously generate short plans to approximate closed-loop policy.
 - For example, Monte Carlo tree search (MCTS):
 - Sample random action sequences
 - Choose best sequence and execute first action

Combining local and global methods

- Many ways to combine local search (e.g. MCTS) with global/dynamic programming methods
 - Can use (possibly old) running value estimate as tail value in search
 - Forward search gives a TD update for value

Learning a tabular model from data

- States $(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$
- Actions $(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m)$
- Want to learn $p(\mathbf{x}_i | \mathbf{x}_j, \mathbf{u}_k)$ for all i, j, k
- We will discuss both max likelihood point estimation and fully Bayesian approaches

Max likelihood for tabular MBRL

- Categorical likelihood: $p(\mathbf{x}_i | \mathbf{x}_j, \mathbf{u}_k, \mathbf{\theta}) = \mathbf{\theta}_{ijk}$
- Assume data $D = \{(\mathbf{x}, \mathbf{u}, \mathbf{x}')\}_{i=1}^{d}$
- Max likelihood:

$$\max_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}\sum_{D}\log p(\mathbf{x}'|\mathbf{x},\mathbf{u},\boldsymbol{\theta})$$

• Gives MLE $\boldsymbol{\theta}_{ijk} = N(\mathbf{x}_j, \mathbf{u}_k, \mathbf{x}_i)/N(\mathbf{x}_j, \mathbf{u}_k)$ where $N(\cdot, \cdot)$ is the empirical count

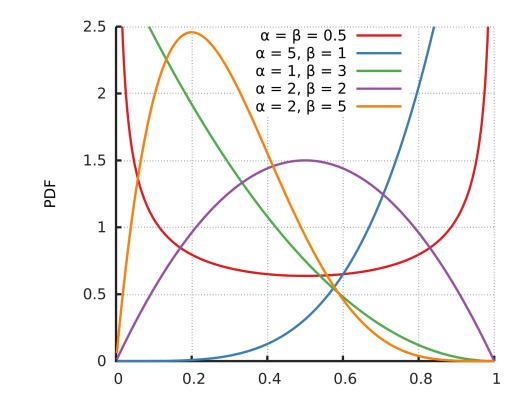
Example: coin toss

Max likelihood for tabular MBRL

- $\mathbf{\Theta}_{ijk} = N(\mathbf{x}_j, \mathbf{u}_k, \mathbf{x}_i) / N(\mathbf{x}_j, \mathbf{u}_k)$
- Problem: what if $N(\mathbf{x}_j, \mathbf{u}_k) = 0$?
 - For example, if we are starting with zero information, this model estimation scheme breaks
- Simple solution:
 - Store $N(\mathbf{x}_j, \mathbf{u}_k, \mathbf{x}_i)$; note that $N(\mathbf{x}_j, \mathbf{u}_k) = \sum_{\mathbf{x}_i} N(\mathbf{x}_j, \mathbf{u}_k, \mathbf{x}_i)$
 - Replace $N(\mathbf{x}_j, \mathbf{u}_k, \mathbf{x}_i)$ with $N(\mathbf{x}_j, \mathbf{u}_k, \mathbf{x}_i) + 1$
 - Gives $\mathbf{\Theta}_{ijk} = (N(\mathbf{x}_j, \mathbf{u}_k, \mathbf{x}_i) + 1)/(N(\mathbf{x}_j, \mathbf{u}_k) + n)$
- We will see: corresponds to weak prior over transition mass function

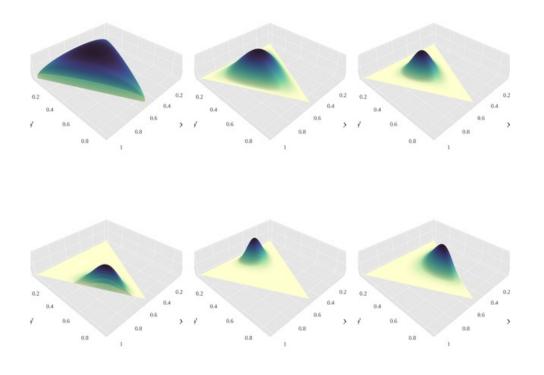
Bayesian inference for categorical distribution

• Beta distribution



Bayesian inference of transition probabilities

- Fix Dirichlet distribution prior
 - Corresponds to a probability distribution over discrete probability distributions
 - Write $Dir(X, \alpha) = p(\mathbf{x}_1, ..., \mathbf{x}_n | \alpha_1, ..., \alpha_n)$
- Dirichlet is *conjugate* with categorical distribution:
 - Dirichlet prior with parameters $\alpha_1, ..., \alpha_n$, plus Categorical distribution gives Dirichlet posterior $Dir(X, \alpha + c)$
 - $c = (c_1, \dots, c_n)$ is counts of data



For details on derivation of posterior, see: The Dirichlet-Multinomial and Dirichlet-Categorical models for Bayesian inference, Stephen Tu (available online).

Bayesian posterior

- Prior parameter α corresponds to number of prior observations
- For $(\mathbf{x}_1, \dots, \mathbf{x}_n) \sim Dir(\alpha)$, $\mathbb{E}[\mathbf{x}_i] = \alpha_i / \sum_j \alpha_j$
 - Posterior predictive is $p(\mathbf{x}' | \mathbf{x}, \mathbf{u}, D, \alpha) = \frac{N(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \alpha'(\mathbf{x}, \mathbf{u}, \mathbf{x}')}{\sum_{\mathbf{x}'} N(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \alpha'(\mathbf{x}, \mathbf{u}, \mathbf{x}')}$
- Choose $\alpha = (1, ..., 1)$ gives our previous correction
- But, we have more than just the point estimate of our model. How can we use this?

Bayes-adaptive MDPs

- Have model parameters θ , which summarizes "counts" for Dirichlet posterior for every state/action/next state combination.
- Bayes-adaptive MDP, with hyperstate $(\mathbf{x}, \boldsymbol{\theta})$
 - So have transition dynamics $p(\mathbf{x}', \mathbf{\theta}' | \mathbf{x}, \mathbf{u}, \mathbf{\theta})$
 - Factor as $p(\mathbf{x}'|\mathbf{x}, \mathbf{u}, \boldsymbol{\theta}) p(\boldsymbol{\theta}'|\mathbf{x}', \mathbf{x}, \mathbf{u}, \boldsymbol{\theta})$

•
$$p(\mathbf{x}'|\mathbf{x}, \mathbf{u}, \boldsymbol{\theta}) = \frac{N(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \alpha'(\mathbf{x}, \mathbf{u}, \mathbf{x}')}{\sum_{x'} N(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \alpha'(\mathbf{x}, \mathbf{u}, \mathbf{x}')}$$

- Model parameter count increases by 1 for corresponding transition count
- Problem: state space grows infinitely, so can not do dynamic programming

Good reference on review of Bayes-adaptive RL and approximate methods: Michael Duff's PhD thesis, 2003.

Exploration heuristics: Thompson sampling

- Even in tabular and linear MDPs, dual control/Bayes-adaptive MDP intractable
- So turn to heuristics to explore
 - Epsilon greedy, noise addition (persistent excitation)
- Simple approach using posterior over models: Thompson sampling
 - Sample MDP from posterior
 - Act optimally w.r.t. this MDP for episode
 - Update model posterior and loop

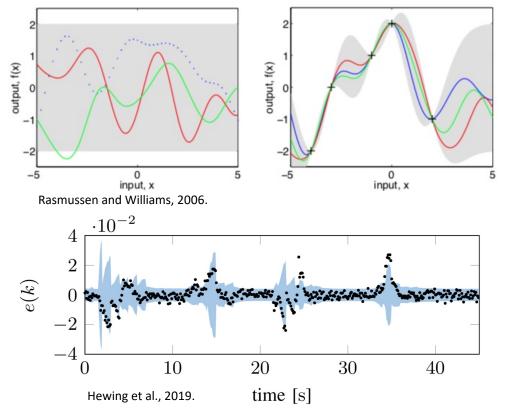
Continuous MBRL

- Will now consider general non-LTI continuous models
- Many possible model choices:
 - Nonlinear features in linear regression
 - Time varying linear dynamics
 - Gaussian processes
 - Neural networks
- Many possible control choices:
 - MPC (gradient-based vs. sampling, with/without final cost)
 - Direct methods (e.g. iLQR/DDP)
 - Directly optimize policy (next week)

Abbeel et al., NeurIPS 2008

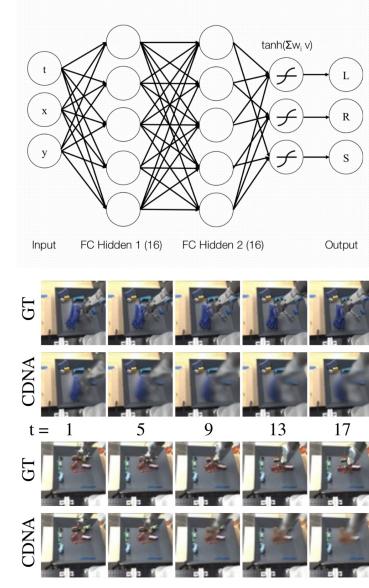
Gaussian process models

- Place prior over dynamics, $f \sim GP(m(\cdot), \mathbf{k}(\cdot, \cdot))$
 - Corresponds to infinite dimensional gaussian distribution, prior over functions
- Strengths
 - Data efficient
 - Exact posterior
 - Predictable behavior via kernel choice
- Weaknesses
 - High computational complexity
 - Assume Gaussian measurement error
 - Can not learn expressive features



Neural network models

- Parameterize model using neural network
- Strengths
 - Can learn complex, expressive features
 - Can be paired with arbitrary loss functions
- Weaknesses
 - Data inefficient
 - Difficult to represent uncertainty
 - Unpredictable extrapolation



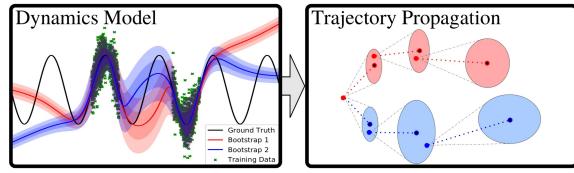
Finn et al., 2017.

Case study: PETS

- Key idea:
 - Use *ensemble* (collection) of NNs to approximate posterior over model
 - Incorporate model uncertainty into control

Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models

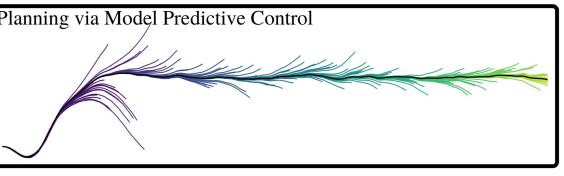
Kurtland ChuaRoberto CalandraRowan McAllisterSergey LevineBerkeley Artificial Intelligence Research
University of California, Berkeley
{kchua, roberto.calandra, rmcallister, svlevine}@berkeley.eduSergey Levine



• Ensembling:

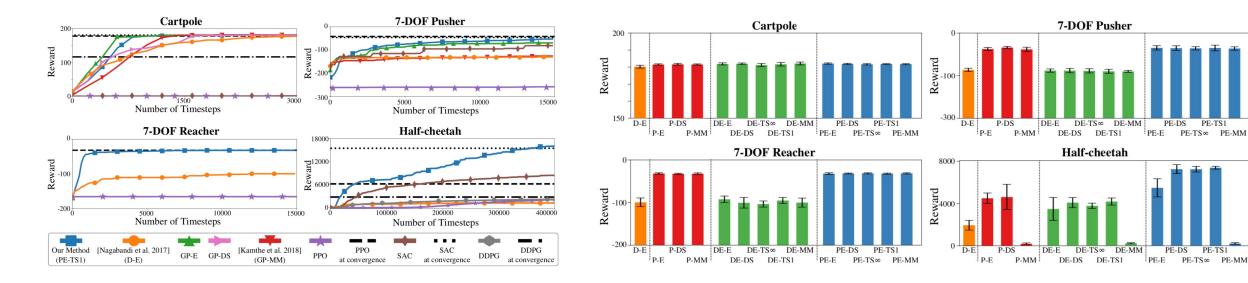
Initialize several networks with different Planning via Model Predictive Control weights

• Will agree where there is a lot of data, disagree elsewhere



PETS findings

- Consider both probabilistic network (outputs mean + variance) and deterministic
- Use particle-based MPC controller (random action sampling)
- Either re-sample dynamics at each time, or keep fixed



Why model-based?

- Advantages
 - Transitions give strong signal
 - Data efficiency, improved multi-task performance, generalization
- Weaknesses
 - Optimizing the wrong objective
 - May be very difficult/intractable for systems with high dimensional observations/states

Next time

• Model-free RL: policy gradient, variance reduction, actor-critic.