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Logistics
* Grading midterm reports

* Homework 3 out now: start early!
» 2/3 term survey out today, due Sunday
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Agenda

* Reviewing the reinforcement learning problem statement
e Tabular model-based RL
e Continuous model-based RL

* Readings:
M. Ghavamzadeh, S. Mannor, J. Pineau, and A. Tamar, Bayesian Reinforcement
Learning: A Survey, Foundations and Trends in ML, 2016.
R. Sutton and A. Barto. Reinforcement Learning: An Introduction, 2018.
M. Kochenderfer. Decision Making Under Uncertainty, 2015.

T. M. Moerland, J. Broekens, C. M. Jonker. Model-based Reinforcement Learning:
A Survey, 2020

K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in
a handful of trials using probabilistic dynamics models, NeurlPS, 2018.
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Reinforcement learning assumptions and
information patterns

* Previously:

* Intro model-free RL: Q-learning, SARSA
* Multiple episodes, interleave data collection and policy improvement
* Tabular (exact)

e System Identification
* Batch, offline data collection
* Primarily linear dynamics

Agent

reward action
Ty a,

e Adaptive Control

* Intra-episode/online adaptation 5 Envi
' Sy nvironment
* Primarily linear dynamics -—

| -

5/13/21 5



How are these different?

* Short answer: different historical developments, thus different
standard assumptions

* Typically not clearly stated

e Thus difficult to:

e connect similar ideas in different fields
 know what works, and when
* know what you should use for your problem

* Currently, all are increasingly overlapping
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Core assumptions

* Linear vs. nonlinear dynamics
* Known vs. unknown cost function

* Episodic interaction vs. single episode (online) vs. batch offline data
» Related: which policy was used to collect data (Offline vs online)?

5/13/21 7



Breaking down assumptions

Dynamics Usually linear Linear or nonlinear, Discrete or Discrete or

usually control nonlinear nonlinear

affine continuous continuous
Reward knowledge? N/A Designed (thus Typically assumed Typically assumed

known) known (not always) unknown, provided

by environment

Data collection/ Dataset provided One episode Typically, repeated Typically, repeated
episodic structure episodes episodes
What do we learn? Dynamics model Usually policy Dynamics model, Policy (or Q

(MRAC) or model sometimes reward  function)

(MIAC) model, sometimes

policy

Caveat: there are exceptions to all of the above.



Unconstrained stochastic control problem

ITy,..., Tr_q

T-1
Jixo) = min E[p(xp) + ) c(XiM(xi)) ]
k=0

subjectto Xpi1=f Xk, T (Xk), Wg,0) k=0,..,N—1

0 ~p(0)
w, ~p(w)iid,k=0,...,N—1

5/13/21 9



Generalization and exploration

LTI dynamics: if dataset generated with
sufficient excitation, gives global
knowledge

* Nonlinear dynamics: extrapolation is
difficult and can be misleading
* As AC/RL moves to more complex systems,

have to consider uncertainty, exploration,
and data collection process
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Tabular model-based RL

* Discrete state/action space with stochastic transitions
* If model is known, can use value iteration/policy iteration/etc.

* Model unknown: want to build approximate model from observed
transitions
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Tabular MBRL outline

* Assume initial policy

* Loop forever:

* Take some number of actions, resulting in transition/reward data
* Improve dynamics model
* Choose actions/policy

* Approaches for action selection:

* Dynamic programming/VI/DP on approximate model
e Expensive, gives optimal policy for model

* Plan suboptimal sequence of actions via online control optimization
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Dynamic programming for action selection

* Given an updated model, can perform value iteration/DP to yield new
policy.

* Can be very expensive for large MDPs!
 Effect of local model changes (often) has minor impact on far away states.
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Local methods for action selection

 Tree search methods:

* Similar idea to MPC: continuously generate short plans to approximate
closed-loop policy.

* For example, Monte Carlo tree search (MCTS):
* Sample random action sequences
* Choose best sequence and execute first action

5/13/21 14



Combining local and global methods

* Many ways to combine local search (e.g. MCTS) with global/dynamic
programming methods

* Can use (possibly old) running value estimate as tail value in search
* Forward search gives a TD update for value
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Learning a tabular model from data

e States (X{,X5, ... , X;,)
e Actions (uq,u,, ..., u,,)
* Want to learn p(x;|x;,uy) forall i, j, k

* We will discuss both max likelihood point estimation and fully
Bayesian approaches
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Max likelihood for tabular MBRL

* Categorical likelihood: p(xi|xj,uk, 9) = 0k
* Assume data D = {(x, u,x’)}f=1
* Max likelihood:

%leaé( ZD: logp(x'|%x,u,0)

* Gives MLE Bijk = N(Xj,uk,xi)/N(xj,uk)
where N(+,-) is the empirical count
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Example: coin toss
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Max likelihood for tabular MBRL

* 0, = N(x-,uk,xi)/N(x-,uk)

* Problem: what ifN(X-,uk) =07

* For example, if we are starting with zero information, this model estimation scheme
breaks

* Simple solution:
» Store N(X;, Uy, X;); note that N(x;,uy ) = Yx; N(Xj, u, X;)
* Replace N(X;, ug, X;) with N(x-, uk,xl-) +1
* Gives 0, = (N(x;, g, x;) + 1)/(N(x;,ux) +n)

* We will see: corresponds to weak prior over transition mass function
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Bayesian inference for categorical distribution

e Beta distribution

=B=05
=5pB=1
=1,B=3 ——
=2,p=2
=2,p=5

PDF

0 0.2 0.4
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Bayesian inference of transition probabilities

* Fix Dirichlet distribution prior
e Corresponds to a probability distribution ‘ P A

over discrete probability distributions
* Write Dir(X, @) = p(Xq, ..., X, |1, ..., 0y)

* Dirichlet is conjugate with categorical
distribution:

* Dirichlet prior with parameters a4, ..., &y, - A
plus Categorical distribution gives Dirichlet a
posterior Dir(X,a + ¢)

* ¢ = (cq, ..., Cyy) is counts of data

For details on derivation of posterior, see: The Dirichlet-Multinomial and Dirichlet-Categorical models for Bayesian inference, Stephen Tu (available online).
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Bayesian posterior

* Prior parameter a corresponds to number of prior observations
* For (X4, ...,Xp) ~ Dir(a), E[x;]| = a;/ X; «;

N(xux')+ar(x,ux")
Yy Nxux")+ar(xux’)

* Choose ¢ = (1, ..., 1) gives our previous correction

* Posterior predictive is p(X'|x,u, D, a) =

* But, we have more than just the point estimate of our model. How
can we use this?
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Bayes-adaptive MDPs

* Have model parameters 0, which summarizes “counts” for Dirichlet
posterior for every state/action/next state combination.

* Bayes-adaptive MDP, with hyperstate (x, 0)
* So have transition dynamics p(x’, 0'|x,u, 0)
* Factoras p(x'|x,u,0) p(0'|x’',x,u,0)
N(xux')+ar(xux’)

Yor Nxux)+ar(xux’)
* Model parameter count increases by 1 for corresponding transition count

* p(xX'|x,u,0) =

* Problem: state space grows infinitely, so can not do dynamic
programming

Good reference on review of Bayes-adaptive RL and approximate methods: Michael Duff’s PhD thesis, 2003.
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Exploration heuristics: Thompson sampling

* Even in tabular and linear MDPs, dual control/Bayes-adaptive MDP
intractable

* So turn to heuristics to explore
* Epsilon greedy, noise addition (persistent excitation)

e Simple approach using posterior over models: Thompson sampling
 Sample MDP from posterior
e Act optimally w.r.t. this MDP for episode
* Update model posterior and loop
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Continuous MBRL

* Will now consider general non-LTI continuous models

* Many possible model choices:
* Nonlinear features in linear regression

* Time varying linear dynamics ﬁ
* Gaussian processes i

* Neural networks
 Many possible control choices: ‘ e _‘
 MPC (gradient-based vs. sampling, with/without final cost) Abbeel et al., NeurlPS 2008
* Direct methods (e.g. iLQR/DDP)
* Directly optimize policy (next week)
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Gaussian process models

* Place prior over dynamics, f ~ GP(m(-),k(-,-))

e Corresponds to infinite dimensional gaussian distribution, prior over functions

* Strengths [N ;
e Data efficient 2 0\/\ .
* Exact posterior 8 v [N f
* Predictable behavior via kernel choice , B\
- inpu, x 7 input, x ’
° Weaknesses Rasmusse?lagd_\glilliams,2006.
* High computational complexity & . .
* Assume Gaussian measurement error = 2 " v U N, N
* Can not learn expressive features K 2 N caandbiding R\l e
ol % |
4 10 20 30 40
Hewing et al., 2019. time [s]
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Neural network models

* Parameterize model using neural network

e Strengths
e Can learn complex, expressive features
e Can be paired with arbitrary loss functions

* Weaknesses
e Data inefficient
e Difficult to represent uncertainty
* Unpredictable extrapolation
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C a S e St u d y : P ETS Deep Reinforcement Learning in a Handful of Trials

using Probabilistic Dynamics Models

* Key idea:
e I e a * Kurtland Chua Roberto Calandra Rowan McAllister Sergey Levine
. Berkeley Artificial Intelligence Research
* Use ensemble (collection) of NNs to University of California, Berkeley
{kchua, roberto.calandra, rmcallister, svlevine}@berkeley.edu

approximate posterior over model

* Incorporate model uncertainty into
control

Dynamics Model Trajectory Propagation

—— Ground Truth b
—— Bootstrap 1

* Ensembling: M W
* |nitialize several networks with different (Flanning via Model Predictive Control
weights /
* Will agree where there is a lot of data, '
disagree elsewhere
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Reward
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e Use particle-based MPC controller (random action sampling)

* Either re-sample dynamics at each time, or keep fixed
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7-DOF Pusher

PE-TS«» PE-MM

-100

-200

DE-TSe DE-MM
DE-DS DE-TS1

DE-E DE-TS» DE-MM

DE-DS DE-TS1

Half-cheetah

PE-TSe PE-MM

DE-E DE-TS«» DE-MM

DE-DS DE-TS1

PE-TS» PE-MM

PE-TSe PE-MM



Why model-based?

* Advantages
* Transitions give strong signal
* Data efficiency, improved multi-task performance, generalization

* Weaknesses
* Optimizing the wrong objective

* May be very difficult/intractable for systems with high dimensional
observations/states
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Next time

* Model-free RL: policy gradient, variance reduction, actor-critic.
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