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Logistics
* Project reports being graded now

* 2/3 term survey going out on Wednesday, due Sunday
« Homework 3 released today, due Wednesday the 26th
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Adaptive and Learning MPC

* Learning MPC as an example of learning/adaptive constrained control
* Practical considerations
* Learning quantities other than dynamics

* Reading:
* L. Hewing, K. P. Wabersich, M. Menner, M. N. Zeilinger. Learning-Based Model

Predictive Control: Toward Safe Learning in Control. Annual Review of Control,
Robotics, and Autonomous Systems, 2020.

* U. Rosolia, X. Zhang, F. Borrelli. Data-Driven Predictive Control for Autonomous
Systems. Annual Review of Control, Robotics, and Autonomous Systems, 2018.
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Learning dynamics

* Approach:
* Learn dynamics and maintain a measure of uncertainty

* Incorporate uncertainty into controller to guarantee constraint satisfaction
* Using e.g. robust MPC

* Model learning types:

* Robust/Set-membership models
» Typically easier analysis, potentially sensitive to misspecification

e Statistical models (e.g. least squares estimation)
* More difficult analysis
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Robust estimation models

* Setting: given operation data
X = |x(0),...,x(K + 1)], U= [u(0),..,u(K)]

from system

x(t +1) = f(x(8),u(t), w(t),0)
w(t) e W Vt

* Approach: maintain feasible parameter set
Te = {0:Vt=0,..,.Kawe W s.t. x(t +1) = f(x(t),u(t),w(t),0)}

Set of non-falsified parameters
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Robust estimation models

* Note that Ty, ; € Ty: once a parameter value is falsified, it is
removed from the feasible set forever.

* Frequently used consequence:

e Let U = [u(0),...,u(N)] denote a feasible open loop action sequence from
state x(0) forall @ € Tk. Then, U is feasible forall @ € Tk, withn = 0
(from the same state x(0)).
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Additive linear example

* Dynamics
x(t+1) = Ax(t) + Bu(t) + EO + w(t); w(t) e W

E known, @ unknown.
* Assume initial polytopic uncertainty T,.
* Polytopic constraints Fx < f,Gu < g.
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Additive linear example

Bujarbaruah, Zhang, Rosolia, Borrelli. Adaptive MPC for Iterative
Tasks, CDC 20109.

* Let X, denote terminal invariant associated with dynamics and Tj,.

* Then, X, also invariantfor T,;,n = 0.

* Approach: At timestep n, consider combined disturbance
d(t) = E0 + w(t), 0eET,

Use robust/tube MPC to solve.
e Can also adapt terminal invariant, will see later.
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Additive linear example
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Robust MPC

* Many similar approaches for
* Multiplicative uncertainty
x(t + 1) = Ax(t) + Bu(t) + w(t), (4, B) unknown.
* Nonlinear (but linearly parameterized) uncertainty
x(t + 1) = Ax(t) + Bu(t) + @(x(t),u(t))0

e Also exist robust non-parametric methods
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Decoupling safety and performance

A. Aswani, H. Gonzalez, S. S. Sastry, C. J. Tomlin. Provably safe and
robust learning-based model predictive control. Automatica, 2013.

* We have so far considered learning a model and using this model for
performance.

* Instead consider safety model
Z(t+1) = Az(t) + Bu(t) + w(t); w(i)eWw

where W is assumed known, and performance model
x(t +1) = Ax(t) + Bu(t) + g(x(t),u(t))

* Optimize cost for x(t) subject to polytopic constraints on z(t).
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Stochastic estimation models

System
x(t +1) = f(x(¢),u(t), w(t), 6)

with w(t) ~ p(w) iid.
Common assumption: noise appears linearly

x(t+1) = f(x(t),u(t),0) +w(t)
Approach:
 Use tools from probabilistic estimation (e.g. max likelihood, Bayesian inference, etc)
 Construct confidence intervals or credible regions to probabilistically guarantee safety
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Confidence sets

* In set-membership identification, we constructed sets that
contained the parameters with probability 1

* In this section, we will consider sets of the form T} (&) such that
p(0ET(0) | Xy, Up)=1-56

* Similarly, can no longer reason about constraints being satisfied
with probability 1, must work with chance constraints
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Chance-constrained optimal control problem

T-1

Jo(Xp) = min p(x7)+ C(Xg, Ug)
Ug,..,.UT -1 o

subjectto Xp41=A4Xp +Bu,+wg, k=0,..,N—1
w, ~p(w)iid, k=0,...,N—1
p(xX,€ XVk)>1-29,
p(u,e UVk) = 1- 6,
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Computing confidence sets

* Most common approach: take Bayesian approach, assume noises is
Gaussian

* Model: linearly parameterized or Gaussian process

* Frequentist approaches:

* Bootstrapping

* If noise model sub-Gaussian, can use concentration inequalities (effectively
yields same result as Gaussian confidence intervals)
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A robust approach to stochastic control

» Simple set-theoretic computations of robust MPC are convenient
« Common approach: divide “risk” equally over timesteps, so at each
time constraints must be satisfied with probability 1 — 6§ /T

* Then guarantee that Ty (%) satisfied constraints; better chance
constraint satisfaction typically relies on Monte Carlo methods

* Typically over-conservative in practice
* Recursive feasibility arguments difficult
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Application
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Learning the terminal constraint

* Line of work from Rosolia and Borrelli over multiple papers
(2017-2020)

 Assume we have access to terminal control invariantXf.
* Know that backward reachable set ofo is also invariant

 Therefore, given trajectory {x(0), ..., x(N + 1)} such that
x(N + 1) € X¢, know:
X U {x(0), ..., x(N)}

is control invariant.
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Learning the terminal constraint

* Algorithm: assume access to a demonstration trajectory or
stabilizing controller.

* Initialize Xy = {0}

* |terate over episodes k=1,...
* Each episode k yields data

Dy = {x¢(0), ..., X (N)}, C = {c(x£(0)), ..., c(xx(N))}
* Expand terminal constraint via
* Terminal cost p(x) is the sum of all future costs from the last time that state
was visited

* Solve MPC problem with terminal constraint X¢ and terminal cost p(x)
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Learning the terminal constraint

* Can show that for systems without disturbances, this results in
monotonic performance improvement.

* |[n practice, to make optimization problem tractable, use convex
hull of sampled set and weighted sum of tail costs.

* Blanchini & Pellegrino (2005) showed that the convex hull of the
sampled set is also control invariant for LTI systems!
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Learning the terminal cost

* Important to also learn the terminal cost.

* Simple approach: use the tail cost from the previous visit to a given
state
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What else could we learn?

* Learn terminal cost: use e.g. similar ideas to Q-learning
* Learn controller hyperparameters (e.g. planning horizon)

* Learn constraints (based on e.g. binary signals of constraint
violation)

* Learning from demonstrations (behavioral cloning, imitation
learning—not covered in this class but practically very useful)
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Next time

 Unconstrained model-based methods in the tabular and nonlinear
setting
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