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Optimal and Learning-based Control

Adaptive and learning MPC



Logistics

• Project reports being graded now
• 2/3 term survey going out on Wednesday, due Sunday
• Homework 3 released today, due Wednesday the 26th
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Roadmap
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Adaptive and Learning MPC

• Learning MPC as an example of learning/adaptive constrained control 
• Practical considerations 
• Learning quantities other than dynamics

• Reading:
• L. Hewing, K. P. Wabersich, M. Menner, M. N. Zeilinger. Learning-Based Model 

Predictive Control: Toward Safe Learning in Control. Annual Review of Control, 
Robotics, and Autonomous Systems, 2020.

• U. Rosolia, X. Zhang, F. Borrelli. Data-Driven Predictive Control for Autonomous 
Systems. Annual Review of Control, Robotics, and Autonomous Systems, 2018. 
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Learning dynamics

• Approach: 
• Learn dynamics and maintain a measure of uncertainty
• Incorporate uncertainty into controller to guarantee constraint satisfaction

• Using e.g. robust MPC

• Model learning types: 
• Robust/Set-membership models 

• Typically easier analysis, potentially sensitive to misspecification 
• Statistical models (e.g. least squares estimation)

• More difficult analysis
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Robust estimation models

• Setting: given operation data 
𝑋 = 𝐱 0 ,… , 𝐱 𝐾 + 1 , 𝑈 = [𝐮 0 ,… , 𝐮(𝐾)]

from system
𝐱 𝑡 + 1 = 𝑓(𝐱 𝑡 , 𝐮 𝑡 ,𝐰 𝑡 , 𝛉)

𝐰 𝑡 ∈ 𝑊 ∀𝑡

• Approach: maintain feasible parameter set 
T! = {𝛉: ∀𝑡 = 0,… , 𝐾 ∃𝐰 ∈ 𝑊 s. t. 𝐱 𝑡 + 1 = 𝑓(𝐱 𝑡 , 𝐮 𝑡 ,𝐰 𝑡 , 𝛉)}

Set of non-falsified parameters
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Robust estimation models

• Note that 𝑇!"# ⊆ 𝑇! : once a parameter value is falsified, it is 
removed from the feasible set forever. 
• Frequently used consequence:
• Let 𝑈 = 𝐮 0 ,… , 𝐮 𝑁 denote a feasible open loop action sequence from 

state 𝐱 0 for all 𝛉 ∈ 𝑇!. Then, 𝑈 is feasible for all 𝛉 ∈ 𝑇!"# with 𝑛 ≥ 0
(from the same state 𝐱 0 ). 
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Additive linear example 

• Dynamics 
𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝐮 𝑡 + E𝛉 +𝐰 𝑡 ; 𝐰 𝑡 ∈ 𝑊

E known, 𝛉 unknown. 
• Assume initial polytopic uncertainty 𝑇$.
• Polytopic constraints 𝐹𝐱 ≤ 𝐟, 𝐺𝐮 ≤ 𝐠.
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Additive linear example 

Bujarbaruah, Zhang, Rosolia, Borrelli. Adaptive MPC for Iterative 
Tasks, CDC 2019. 
• Let 𝑋$ denote terminal invariant associated with dynamics and 𝑇$.
• Then, 𝑋$ also invariant for 𝑇% , n ≥ 0.
• Approach: At timestep n, consider combined disturbance 

𝐝 𝑡 = 𝐸𝛉 +𝐰 𝑡 , 𝛉 ∈ 𝑇%
Use robust/tube MPC to solve.
• Can also adapt terminal invariant, will see later. 
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Additive linear example 

5/11/21 AA 203 | Lecture 13 10



Robust MPC

• Many similar approaches for 
• Multiplicative uncertainty

𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝐮 𝑡 + 𝐰(𝑡), (𝐴, 𝐵) unknown.
• Nonlinear (but linearly parameterized) uncertainty 

𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝐮 𝑡 + Φ 𝐱 𝑡 , 𝐮 𝑡 𝛉

• Also exist robust non-parametric methods 
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Decoupling safety and performance

A. Aswani, H. Gonzalez, S. S. Sastry, C. J. Tomlin. Provably safe and 
robust learning-based model predictive control. Automatica, 2013.
• We have so far considered learning a model and using this model for 

performance.
• Instead consider safety model

𝐳 𝑡 + 1 = 𝐴𝐳 𝑡 + 𝐵𝐮 𝑡 + 𝐰 𝑡 ; 𝐰 𝑡 ∈ 𝑊
where 𝑊 is assumed known, and performance model

𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝐮 𝑡 + 𝑔(𝐱(𝑡), 𝐮(𝑡))
• Optimize cost for 𝐱 𝑡 subject to polytopic constraints on 𝐳 𝑡 .
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Stochastic estimation models

System

𝐱 𝑡 + 1 = 𝑓(𝐱 𝑡 , 𝐮 𝑡 ,𝐰 𝑡 , 𝛉)

with 𝐰 𝑡 ∼ 𝑝 𝐰 iid. 
Common assumption: noise appears linearly

𝐱 𝑡 + 1 = 𝑓 𝐱 𝑡 , 𝐮 𝑡 , 𝛉 + 𝐰 𝑡
Approach: 
• Use tools from probabilistic estimation (e.g. max likelihood, Bayesian inference, etc)
• Construct confidence intervals or credible regions to probabilistically guarantee safety
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Confidence sets

• In set-membership identification, we constructed sets that 
contained the parameters with probability 1
• In this section, we will consider sets of the form 𝑇& 𝛿 such that 

𝑝 𝛉 ∈ 𝑇& 𝛿 𝑋& , 𝑈& ≥ 1 − 𝛿
• Similarly, can no longer reason about constraints being satisfied 

with probability 1, must work with chance constraints
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Chance-constrained optimal control problem
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𝐽$∗ 𝐱$ = min
𝐮!,…,𝐮"#$

𝑝 𝐱) +H
*+$

),-

𝑐(𝐱*, 𝐮*)

subject to 𝐱*"-= 𝐴𝐱* + 𝐵𝐮* +𝐰*, 𝑘 = 0,… ,𝑁 − 1
𝐰* ∼ 𝑝(𝐰) iid,	𝑘 = 0,… ,𝑁 − 1
𝑝 𝐱*∈ 𝑋 ∀𝑘 ≥ 1 − 𝛿.
𝑝 𝐮*∈ 𝑈 ∀𝑘 ≥ 1 − 𝛿/



Computing confidence sets 

• Most common approach: take Bayesian approach, assume noises is 
Gaussian
• Model: linearly parameterized or Gaussian process

• Frequentist approaches:
• Bootstrapping
• If noise model sub-Gaussian, can use concentration inequalities (effectively 

yields same result as Gaussian confidence intervals)
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A robust approach to stochastic control

• Simple set-theoretic computations of robust MPC are convenient 
• Common approach: divide “risk” equally over timesteps, so at each 

time constraints must be satisfied with probability ⁄1 − 𝛿 𝑇

• Then guarantee that 𝑇!(
#'(
)
) satisfied constraints; better chance 

constraint satisfaction typically relies on Monte Carlo methods
• Typically over-conservative in practice
• Recursive feasibility arguments difficult
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Application
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Estimator comparison
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• System: y 𝑡 = w! 𝜙! x 𝑡 + w" 𝜙" x 𝑡 + v(𝑡)

Sinha, Harrison, Richards, Pavone. Under review.



Learning the terminal constraint

• Line of work from Rosolia and Borrelli over multiple papers 
(2017-2020)
• Assume we have access to terminal control invariant 𝑋* .
• Know that backward reachable set of 𝑋* is also invariant
• Therefore, given trajectory 𝐱 0 ,… , 𝐱 𝑁 + 1 such that 
𝑥 𝑁 + 1 ∈ 𝑋*, know:

𝑋* ∪ 𝐱 0 ,… , 𝐱 𝑁
is control invariant.
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Learning the terminal constraint

• Algorithm: assume access to a demonstration trajectory or 
stabilizing controller.
• Initialize 𝑋* = {0}
• Iterate over episodes k = 1,… 
• Each episode k yields data 

𝐷* = 𝐱* 0 ,… , 𝐱* 𝑁 ,   𝐶* = 𝑐 𝐱* 0 ,… , 𝑐 𝐱* 𝑁
• Expand terminal constraint via 

𝑋* ← 𝑋* ∪ 𝐷&
• Terminal cost 𝑝 𝐱 is the sum of all future costs from the last time that state 

was visited
• Solve MPC problem with terminal constraint 𝑋0 and terminal cost 𝑝 𝐱
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Learning the terminal constraint

• Can show that for systems without disturbances, this results in 
monotonic performance improvement. 
• In practice, to make optimization problem tractable, use convex 

hull of sampled set and weighted sum of tail costs. 
• Blanchini & Pellegrino (2005) showed that the convex hull of the 

sampled set is also control invariant for LTI systems!
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Performance
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Learning the terminal cost

• Important to also learn the terminal cost.
• Simple approach: use the tail cost from the previous visit to a given 

state 
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What else could we learn?

• Learn terminal cost: use e.g. similar ideas to Q-learning 
• Learn controller hyperparameters (e.g. planning horizon)
• Learn constraints (based on e.g. binary signals of constraint 

violation)
• Learning from demonstrations (behavioral cloning, imitation 

learning–not covered in this class but practically very useful)
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Next time

• Unconstrained model-based methods in the tabular and nonlinear 
setting 
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