AA203 Optimal and Learning-based Control

Stability of MPC, implementation aspects

Logistics

- Midterm project report due Friday, May 7 (tomorrow)
- Homework 3 will be out on Monday

MPC details

- Stability of MPC
- Implementation aspects of MPC
- Robust MPC
- Reading:
	- F. Borrelli, A. Bemporad, M. Morari. *Predictive Control for Linear and Hybrid Systems*, 2017.
	- J. B. Rawlings, D. Q. Mayne, M. M. Diehl. *Model Predictive Control: Theory, Computation, and Design*, 2017.

Stability of MPC

- Persistent feasibility does not guarantee that the closed-loop trajectories converge towards the desired equilibrium point
- One of the most popular approaches to guarantee persistent feasibility and stability of the MPC law makes use of a control invariant terminal set X_f for feasibility, and of a terminal function $p(\cdot)$ for stability
- To prove stability, we leverage the tool of Lyapunov stability theory

Lyapunov stability theory

• Lyapunov theorem: Consider the equilibrium point ${\bf x}=0$ for the autonomous system $\{x_{k+1} = f(x_k)\}$ (with $f(0) = 0$). Let $\Omega \subset \mathbb{R}^n$ be a closed and bounded set containing the origin. Let $V: \mathbb{R}^n \to \mathbb{R}$ be a function, continuous at the origin, such that

> $V(\mathbf{0}) = 0$ and $V(\mathbf{x}) > 0 \quad \forall \mathbf{x} \in \Omega \setminus \{\mathbf{0}\}\$ $V(\mathbf{x}_{k+1}) - V(\mathbf{x}_k) < 0 \quad \forall \mathbf{x}_k \in \Omega \setminus \{\mathbf{0}\}\$

Then $x = 0$ is asymptotically stable in Ω

• The idea is to show that with appropriate choices of X_f and $p(\cdot), J_0^*$ is a Lyapunov function for the closed-loop system

• MPC stability theorem (for quadratic cost): Assume A0: $Q = Q^T > 0$, $R = R^T > 0$, $P > 0$ A1: Sets X , X_f and U contain the origin in their interior and are closed A2: $X_f \subseteq X$ is control invariant A3: min $\mathbf{v} \in U$, $A\mathbf{x}+B\mathbf{v} \in X_f$ $-p(\mathbf{x}) + q(\mathbf{x}, \mathbf{v}) + p(A\mathbf{x} + B\mathbf{v}) \leq 0, \forall \mathbf{x} \in X_f$

Then, the origin of the closed-loop system is asymptotically stable with domain of attraction X_0

- Proof:
- 1. Note that, by assumption A2, persistent feasibility is guaranteed for $\alpha ny P, Q, R$
- 2. We want to show that J_0^* is a Lyapunov function for the closedloop system $\mathbf{x}(t + 1) = \mathbf{f}_{\text{cl}}(\mathbf{x}(t))$, with respect to the equilibrium $f_{\text{cl}}(0) = 0$ (the origin is indeed an equilibrium as $0 \in X, 0 \in U$, and the cost is positive for any non-zero control sequence)
- 3. X_0 is bounded and closed by assumption
- 4. $J_0^*(0) = 0$ (for the same previous reasons)

- Proof:
- 5. $J_0^*(\mathbf{x}) > 0$ for all $\mathbf{x} \in X_0 \setminus \{\mathbf{0}\}\$
- 6. Next we show the decay property. Since the setup is time-invariant, we can study the decay property between $t = 0$ and $t = 1$
	- Let $\mathbf{x}(0) \in X_0$, let $U_0^{[0]} = [\mathbf{u}_0^{[0]}, \mathbf{u}_1^{[0]}, \dots, \mathbf{u}_{N-1}^{[0]}]$ be the optimal control sequence, and let $\left[{\bf x}(0),{\bf x}_1^{[0]},\dots,{\bf x}_N^{[0]}\right]$ be the corresponding trajectory
	- After applying $\mathbf{u}_0^{[0]}$, one obtains $\mathbf{x}(1) = A\mathbf{x}(0) + B\mathbf{u}_0^{[0]}$
	- Consider the sequence of controls $[\mathbf{u}_1^{[0]}, \mathbf{u}_2^{[0]}, ...$, $\mathbf{u}_{N-1}^{[0]}, \mathbf{v}],$ where $\mathbf{v}\in U$, and the corresponding state trajectory is $\bm{x}(1)$, $\bm{x}_2^{[\tilde{0}]}$, ... , $\bm{x}_N^{[\tilde{0}]}$, $\tilde{A} \bm{x}_N^{[\tilde{0}]} + B \bm{v}$]

- Since $\mathbf{x}_N^{[0]} \in X_f$ (by terminal constraint), and since X_f is control invariant, $\exists \bar{\mathbf{v}} \in U \mid A\mathbf{x}_N^{[0]} + B\bar{\mathbf{v}} \in X_f$
- With such a choice of $\bar{\mathbf{v}},$ the sequence $[\mathbf{u}_1^{[0]}, \mathbf{u}_2^{[0]},...,\mathbf{u}_{N-1}^{[0]},\bar{\mathbf{v}}]$ is feasible for the MPC optimization problem at time $t = 1$
- Since this sequence is not necessarily optimal

$$
J_0^*(\mathbf{x}(1)) \le p\left(A\mathbf{x}_N^{[0]} + B\overline{\mathbf{v}}\right) + \sum_{k=1}^{N-1} q\left(\mathbf{x}_k^{[0]}, \mathbf{u}_k^{[0]}\right) + q(\mathbf{x}_N^{[0]}, \overline{\mathbf{v}})
$$

- Equivalently $J_0^*(\mathbf{x}(1)) \le p\left(A\mathbf{x}_N^{[0]} + B\overline{\mathbf{v}}\right) + J_0^*(\mathbf{x}(0)) - p\left(\mathbf{x}_N^{[0]}\right) - q\left(\mathbf{x}(0), \mathbf{u}_0^{[0]}\right) + q(\mathbf{x}_N^{[0]}, \overline{\mathbf{v}})$ • Since $\mathbf{x}_N^{[0]} \in X_f$, by assumption A3, we can select $\bar{\mathbf{v}}$ such that $J_0^*(\mathbf{x}(1)) \leq J_0^*(\mathbf{x}(0)) - q(\mathbf{x}(0), \mathbf{u}_0^{[0]})$ • Since $q\left(\mathbf{x}(0),\mathbf{u}_0^{[0]}\right)>0$ for all $\mathbf{x}(0)\in X_0\setminus\{0\},$ $J_0^*(\mathbf{x}(1)) - J_0^*(\mathbf{x}(0)) < 0$
- The last step is to prove continuity; details are omitted and can be found in Borrelli, Bemporad, Morari, 2017
- Note: A2 is used to guarantee persistent feasibility; this assumption can be replaced with an assumption on the horizon N

How to choose X_f and P?

- Case 1: assume A is asymptotically stable
	- Set X_f as the maximally positive invariant set O_∞ for system $\mathbf{x}(t + 1) =$ $Ax(t), x(t) \in X$
	- X_f is a control invariant set for system $\mathbf{x}(t+1) = A\mathbf{x}(t) + B\mathbf{u}(t)$, as $\mathbf{u} =$ 0 is a feasible control
	- As for stability, $\mathbf{u} = 0$ is feasible and $A\mathbf{x} \in X_f$ if $\mathbf{x} \in X_f$, thus assumption A3 becomes

 $-{\bf x}^T P {\bf x} + {\bf x}^T Q {\bf x} + {\bf x}^T A^T P A {\bf x} \leq 0$, for all ${\bf x} \in X_f$,

which is true since, due to the fact that A is asymptotically stable, $\exists P > 0 \mid -P + Q + A^T P A = 0$

How to choose X_f and P?

- Case 2: general case
	- Let F_{∞} be the optimal gain for the infinite-horizon LQR controller
	- Set X_f as the maximal positive invariant set for system $\{x(t + 1) =$ $(A + BF_{\infty})\mathbf{x}(t)$ (with constraints $\mathbf{x}(t) \in X$, and $F_{\infty}\mathbf{x}(t) \in U$)
	- Set P as the solution P_{∞} to the discrete-time Riccati equation

Explicit MPC

- In some cases, the MPC law can be *pre-computed* → no need for online optimization
- Important case: constrained LQR

$$
J_0^*(\mathbf{x}) = \min_{\mathbf{u}_0, \dots, \mathbf{u}_{N-1}} \mathbf{x}_N^T P \mathbf{x}_N + \sum_{k=0}^{N-1} \mathbf{x}_k^T Q \mathbf{x}_k + \mathbf{u}_k^T R \mathbf{u}_k
$$

subject to $\mathbf{x}_{k+1} = A \mathbf{x}_k + B \mathbf{u}_k, \quad k = 0, \dots, N-1$
 $\mathbf{x}_k \in X, \quad \mathbf{u}_k \in U, \quad k = 0, \dots, N-1$
 $\mathbf{x}_N \in X_f$
 $\mathbf{x}_0 = \mathbf{x}$

Explicit MPC

• The solution to the constrained LQR problem is a control which is a continuous piecewise affine function on polyhedral partition of the state space X, that is $\mathbf{u}_k^* = \pi_k(\mathbf{x}_k)$ where

$$
\pi_k(\mathbf{x}) = F_k^j \mathbf{x} + g_k^j \text{ if } H_k^j \mathbf{x} \le K_k^j, \ j = 1, \dots, N_k^r
$$

• Thus, online, one has to locate in which cell of the polyhedral partition the state x lies, and then one obtains the optimal control via a look-up table query

Tuning and practical Use

- At present there is no other technique to des general large linear multivariable systems wi constraints with a stability guarantee
- Objective functi[on: The squared 2-no](https://www.mpt3.org/)rm is en an indicator of control quality than the 1- or
- Design approach:
	- Choose horizon length N and the control invariant
	- Control invariant target set X_f should be as large
	- Choose the parameters Q and R freely to affect the
	- Adjust P as per the stability theorem
	- Useful toolbox: https://www.mpt3.org/

MPC for reference tracking

• Usual cost

$$
\sum_{k=0}^{N-1} \mathbf{x}_k^T Q \mathbf{x}_k + \mathbf{u}_k^T R \mathbf{u}_k
$$

does not work, as in steady state control does not need to be zero

 \cdot δu - formulation: reason in terms of *control changes*

$$
\mathbf{u}_k = \mathbf{u}_{k-1} + \delta \mathbf{u}_k
$$

MPC for reference tracking

• The MPC problem is readily modified to

 $J_0^*(\mathbf{x}(t)) = \lim_{s \to \infty}$ $\delta {\bf u}_0,...,\delta {\bf u}_{N-1}$ $\left\langle \right\rangle$ \boldsymbol{k} $\mathbf{y}_k - \mathbf{r}_k \|^2_Q + \|\delta \mathbf{u}_k\|^2_R$ subject to ${\bf x}_{k+1} = A{\bf x}_k + B{\bf u}_k, \quad k = 0, ..., N - 1$ $\mathbf{x}_k \in X$, $\mathbf{u}_k \in U$, $k = 0, ..., N - 1$ $X_N \in X_f$ $x_0 = x(t)$, $u_{-1} = u(t - 1)$ $y_k = C x_k,$ $k = 0, ..., N - 1$ ${\bf u}_k = {\bf u}_{k-1} + \delta {\bf u}_k, \qquad k = 0, ..., N - 1$

• The control input is then $\mathbf{u}(t) = \delta \mathbf{u}_0^* + \mathbf{u}(t-1)$

Robust MPC

- We have so far not explicitly considered disturbances in constraint satisfaction
- Consider system of the form

$$
\mathbf{x}_{k+1} = A\mathbf{x}_k + B\mathbf{u}_k + \mathbf{w}_k
$$

$$
\mathbf{w}_k \in W \quad \forall k
$$

with constraints $x \in X$, $u \in U$.

• Can we guarantee stability and persistent feasibility for this system?

Robust optimal control problem

$$
J_0^*(\mathbf{x}(t)) = \max_{\mathbf{w}_0, \dots, \mathbf{w}_{N-1}} \min_{\mathbf{u}_0, \dots, \mathbf{u}_{N-1}} p(\mathbf{x}_N) + \sum_{k=0}^{N-1} c(\mathbf{x}_k, \mathbf{u}_k)
$$

subject to $\mathbf{x}_{k+1} = A\mathbf{x}_k + B\mathbf{u}_k + \mathbf{w}_k, \quad k = 0, \dots, N-1$
 $\mathbf{x}_k \in X, \mathbf{u}_k \in U, \mathbf{w}_k \in W \quad k = 0, \dots, N-1$
 $\mathbf{x}_N \in X_f$
 $\mathbf{x}_0 = \mathbf{x}(t)$

Robust MPC

• Key idea: consider forward reachable sets at each time :

$$
S_0(\mathbf{x}_0) = {\mathbf{x}_0}
$$

$$
S_k(\mathbf{x}_0, \mathbf{u}_{0:k-1}) = AS_{k-1}(\mathbf{x}_0, \mathbf{u}_{0:k-2}) + B\mathbf{u}_{k-1} + W
$$

All trajectories in these "tubes" must satisfy constraints.

Robust MPC

$$
J_0^*(\mathbf{x}(t)) = \max_{\mathbf{w}_0, \dots, \mathbf{w}_{N-1}} \min_{\mathbf{u}_0, \dots, \mathbf{u}_{N-1}} p(\mathbf{x}_N) + \sum_{k=0}^{N-1} c(\mathbf{x}_k, \mathbf{u}_k)
$$

subject to $\mathbf{x}_{k+1} = A\mathbf{x}_k + B\mathbf{u}_k + \mathbf{w}_k, \quad k = 0, \dots, N-1$
 $S_k \in X, \mathbf{u}_k \in U, \mathbf{w}_k \in W \quad k = 0, \dots, N-1$
 $S_N \in X_f$
 $\mathbf{x}_0 = \mathbf{x}(t)$

Where $p(\mathbf{x}_N)$ is *robustly stable* and X_f is *robust control invariant*.

Tube MPC

- Forward tubes can be prohibitively large
- Introduce coordinates:

Nominal trajectory: $\bar{\mathbf{x}}_{k+1} = A\bar{\mathbf{x}}_k + B\mathbf{u}_k$

Error:
$$
\mathbf{e}_k = \mathbf{x}_k - \overline{\mathbf{x}}_k
$$

Yields dynamics: $\mathbf{e}_{k+1} = A\mathbf{e}_k + \mathbf{w}_k$

• Consider feedback law: $\mathbf{u}_k = \overline{\mathbf{u}}_k + F_{\infty} \mathbf{e}_k$

Tube MPC

• Adding error feedback gives dynamics

$$
\overline{\mathbf{x}}_{k+1} = A\overline{\mathbf{x}}_k + B\overline{\mathbf{u}}_k
$$

$$
\mathbf{e}_{k+1} = (A + BF_{\infty})\mathbf{e}_k + \mathbf{w}_k
$$

Must choose $\overline{\mathbf{u}}_k$ to guarantee that $\overline{\mathbf{x}}_k + \mathbf{e}_k$ satisfy state, action, and terminal constraints for $k = 1, ..., N$.

MPC: advanced topics

- Excellent references:
	- F. Borrelli, A. Bemporad, M. Morari. *Predictive Control for Linear and Hybrid Systems*, 2017.
	- J. B. Rawlings, D. Q. Mayne, M. M. Diehl. *Model Predictive Control: Theory, Computation, and Design*, 2017.

Next time

• Back to learning! Learning and adaptive MPC.