AA203
Optimal and Learning-based Control

Stability of MPC, implementation aspects

A Stanford ASEY
&%/ University :



Logistics

* Midterm project report due Friday, May 7 (tomorrow)
 Homework 3 will be out on Monday
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MPC details

* Stability of MPC
* Implementation aspects of MPC
* Robust MPC

* Reading;:
 F. Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid
Systems, 2017.

» J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory,
Computation, and Design, 2017.
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Stability of MPC

* Persistent feasibility does not guarantee that the closed-loop
trajectories converge towards the desired equilibrium point

* One of the most popular approaches to guarantee persistent
feasibility and stability of the MPC law makes use of a control
invariant terminal set X, for feasibility, and of a terminal function

p(-) for stability
* To prove stability, we leverage the tool of Lyapunov stability theory
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Lyapunov stability theory

 Lyapunov theorem: Consider the equilibrium point x = 0 for the

autonomous system {x;,; = f(x;)} (wit
a closed and bounded set containing the
function, continuous at the origin, such t

nf(0) = 0).Let Q c R™ be
origin. LetV: R"™ - R bea

nat

V(0)=0andV(x) >0 vxe Q\ {0}
V(Xpr1) = V(X)) <0 VX € QN {0}

Then x = 0 is asymptotically stable in Q

* The idea is to show that with appropriate choices of X and p(-), /g
is a Lyapunov function for the closed-loop system
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-
MPC stability theorem

* MPC stability theorem (for quadratic cost): Assume

AO:Q =0T >0,R=RT>0,P>0

Al: Sets X, Xr and U contain the origin in their interior and are closed
A2: X, € X is control invariant

: - _ <
A3: veu Ar)grlgvexf( p(x) + g(x,v) + p(4Ax + Bv)) < 0,Vx € X

Then, the origin of the closed-loop system is asymptotically stable
with domain of attraction X,
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MPC stability theorem

* Proof:

1.

5/6/21

Note that, by assumption A2, persistent feasibility is guaranteed
forany P,Q,R

We want to show that J, is a Lyapunov function for the closed-
loop system x(t + 1) = f(x(t)), with respect to the equilibrium
f,(0) = 0 (the origin is indeed an equilibriumas 0 € X,0 € U,
and the cost is positive for any non-zero control sequence)

X, is bounded and closed by assumption
J5(0) = 0 (for the same previous reasons)
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MPC stability theorem

* Proof:
5. Jop(x) > 0forallx € X, \ {0}
6. Next we show the decay property. Since the setup is time-invariant,
we can study the decay property betweent = 0andt =1
* Letx(0) € X, let U[ I = [ug)],ugo], ...,ul[\(,)]_l] be the optimal control sequence,
and let [x(0), x1 ) e, X [O]] be the corresponding trajectory
* After applying ug ], one obtains x(1) = Ax(0) + Bu([)o]

* Consider the sequence of controls [ugo], u[z?] ,\J, Where v € U, and the

corresponding state trajectory is [x(1), x2 xN ,AxN + Bv]|
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MPC stability theorem

e Since xl[\(,)] € Xr(by terminal constraint), and since X¢ is control invariant,

IV € U | Ax\) + BV € X;

 With such a choice of v, the sequence [ugo], ugo], e “1[\(1)]—1» v] is feasible for the

MPC optimization problem attimet =1
* Since this sequence is not necessaril olptimal

]S(X(l)) <p (Axl[\(,)] + B\_/) + 2 q (XLO], uLO]) + q(xl[\(,)],\_/)
k=1
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MPC stability theorem

* Equivalently

]S(X(l)) <p (AXI[\(,)] + B\_/) + /o (x(O)) —p (x,[\(,)]) —q (x(O), u([)o]) + q(xl[\(,)],\_/)

* Since xl[\(,)] € Xr, by assumption A3, we can select v such that

J(x(D) < J(x(0)) — q (x(0), ul")
* Sinceq (x(O), u([)o]) > (0 forallx(0) € X, \ {0},
Jo(x(1)) = J5(x(0)) < 0

* The last step is to prove continuity; details are omitted and can be
found in Borrelli, Bemporad, Morari, 2017

* Note: A2 is used to guarantee persistent feasibility; this assumption
can be replaced with an assumption on the horizon N
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How to choose Xf and P?

e Case 1: assume A is asymptotically stable

* Set X as the maximally positive invariant set O, for system x(t + 1) =
Ax(t), x(t) e X

* Xrisa controlinvariant set for system x(t + 1) = Ax(t) + Bu(t),asu =
0 is a feasible control

* Asfor stability, u = 0 is feasible and Ax € X; if X € X, thus assumption A3
becomes

—x"Px +x"Qx + x"A"PAx < 0, forall x € Xy,

which is true since, due to the fact that 4 is asymptotically stable,
IP>0| —P+Q+A"PA=0
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How to choose Xf and P?

* Case 2: general case
* Let F, be the optimal gain for the infinite-horizon LQR controller

* Set X as the maximal positive invariant set for system {x(¢ + 1) =
(A + BF,)x(t)} (with constraints x(t) € X, and F.x(t) € U)

» Set P as the solution P, to the discrete-time Riccati equation
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Explicit MPC

* In some cases, the MPC law can be pre-computed — no need for
online optimization

* Important case: constrained LQR
N-1

J6(x) = min xLPxy + ) Xp0Xj + ujRuy
Up,..,UN-1 k=0

subjectto Xxj41=4X;p+Bu,, k=0,..,.N-—-1
XkEX, ukE U, k=0,,N—1
XNE Xf

X0= X
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Explicit MPC

* The solution to the constrained LQR problem is a control which is a
continuous piecewise affine function on polyhedral partition of the
state space X, thatis u;, = m;, (X;) where

m.(X) =F/x+ gl if Hx<K], j=1,..,N]

* Thus, online, one has to locate in which cell of the polyhedral
partition the state x lies, and then one obtains the optimal control
via a look-up table query
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Tuning and practical Use

* At present there is no other technique to design controllers for
general large linear multivariable systems with input and output
constraints with a stability guarantee

* Objective function: The squared 2-norm is employed more often as
an indicator of control quality than the 1- or co-norm

* Design approach:
* Choose horizon length N and the control invariant target set X¢

* Controlinvariant target set Xy should be as large as possible for performance

* Choose the parameters Q and R freely to affect the control performance
* Adjust P as per the stability theorem
 Useful toolbox: https://www.mpt3.org/
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https://www.mpt3.org/

MPC for reference tracking

* Usual cost
Yr=0 X QX + upRuy
does not work, as in steady state control does not need to be zero
* du- formulation: reason in terms of control changes
U, = Ui+ + 5uk
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MPC for reference tracking

* The MPC problem is readily modified to

Ji(x(®) =, min > llye = rell3 + 15wl
k

uO,...,SUN_l

subjectto Xxj41=4X;p+Bu,, k=0,..,.N—-1

V= CXk, k=0,.. N—1
XkEX, ukE U, k=0,,N—1
XNEXf

uk=uk_1+5uk, k=0,,N—1
Xo=Xx(t), u_;=u(t—1)
* The controlinputisthenu(t) = duy + u(t — 1)
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e
Robust MPC

* We have so far not explicitly considered disturbances in constraint
satisfaction

 Consider system of the form
Xpy1 = AXy + Bug + wy,
Wi, eEW Vk

with constraintsx € X, u € U.
« Can we guarantee stability and persistent feasibility for this system?
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Robust optimal control problem

N-1

]S(X(t)) = max min p(Xy) + C(Xp, Ug)
Wo,...WnN—-1 Ug,-.,UN—-1 k=0

subjectto Xp41=A4Xp +Bu,+wg, k=0,..,N—1
x,€X, €U, weW k=0,..,N—1
XNE Xr
Xo= X(t)
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Robust MPC

 Key idea: consider forward reachable sets at each time:

S50(Xg) = {Xo}
Sk (X0, Wo.—1 ) = ASk—1(Xg, Wg.—2 ) + Bug_; + W

All trajectories in these “tubes” must satisfy constraints.
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Robust MPC

N-1

]S(X(t)) = max min p(Xy) + C(Xp, Ug)
Wo,...WN-1 Ug,--,UN—-1 k=0

subjectto Xp41=A4Xp +Bu,+wg, k=0,..,N—1
S €EX, u,elU, woeW k=0,..,.N—1
Sy € X¢
Xo= X(¢)

Where p(Xy ) is robustly stable and X; is robust control invariant.
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Tube MPC

* Forward tubes can be prohibitively large
* Introduce coordinates:

Nominaltrajectory: Xy, = A% +Bw, | . » | 1
E . = — X \ e - . 0 \\\ ' x ' 9
rror: e, = X;, — Xy, CONL L P PP Nl PP
Yields dynamics: e, = Aey + wy : N el

(a) Open-loop trajectories. (b) Feedback trajectories,

 Consider feedback law: u;, = u + F ey
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Tube MPC

* Adding error feedback gives dynamics

)_(k+1 — A)_(k + Bﬁk
ex+1 = (A + BF,)e, + wy

Must choose u;, to guarantee that x;, + e, satisfy state, action, and
terminal constraintsfork =1, ..., N.
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MPC: advanced topics

e Excellent references:

* F.Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid
Systems, 2017.

» J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory,
Computation, and Design, 2017.
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Next time

* Back to learning! Learning and adaptive MPC.
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