
AA203
Optimal and Learning-based Control

Stability of MPC, implementation aspects



Logistics

• Midterm project report due Friday, May 7 (tomorrow)
• Homework 3 will be out on Monday
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Roadmap
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MPC details

• Stability of MPC
• Implementation aspects of MPC
• Robust MPC

• Reading:
• F. Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid 

Systems, 2017.
• J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory, 

Computation, and Design, 2017.
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Stability of MPC

• Persistent feasibility does not guarantee that the closed-loop 
trajectories converge towards the desired equilibrium point

• One of the most popular approaches to guarantee persistent 
feasibility and stability of the MPC law makes use of a control 
invariant terminal set 𝑋! for feasibility, and of a terminal function 
𝑝(⋅) for stability 

• To prove stability, we leverage the tool of Lyapunov stability theory
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Lyapunov stability theory

• Lyapunov theorem: Consider the equilibrium point 𝐱 = 0 for the 
autonomous system 𝐱"#$ = 𝐟 𝐱" (with 𝐟 𝟎 = 𝟎). Let Ω ⊂ ℝ% be 
a closed and bounded set containing the origin. Let 𝑉:ℝ% →ℝ be a 
function, continuous at the origin, such that 

𝑉 𝟎 = 0 and 𝑉 𝐱 > 0 ∀𝐱 ∈ Ω ∖ {𝟎}
𝑉 𝐱"#$ − 𝑉 𝐱" < 0 ∀𝐱" ∈ Ω ∖ {𝟎}

Then 𝐱 = 0 is asymptotically stable in Ω

• The idea is to show that with appropriate choices of 𝑋! and 𝑝(⋅), 𝐽&∗
is a Lyapunov function for the closed-loop system 
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MPC stability theorem

• MPC stability theorem (for quadratic cost): Assume
A0: 𝑄 = 𝑄( > 0, 𝑅 = 𝑅( > 0, 𝑃 > 0
A1: Sets 𝑋, 𝑋! and 𝑈 contain the origin in their interior and are closed
A2: 𝑋! ⊆ 𝑋 is control invariant

A3: min
𝐯∈+, -𝐱#/𝐯 ∈ 0!

−𝑝 𝐱 + 𝑞 𝐱, 𝐯 + 𝑝 𝐴𝐱 + 𝐵𝐯 ≤ 0, ∀𝐱 ∈ 𝑋!

Then, the origin of the closed-loop system is asymptotically stable 
with domain of attraction 𝑋&
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MPC stability theorem

• Proof: 
1. Note that, by assumption A2, persistent feasibility is guaranteed 

for any 𝑃, 𝑄, 𝑅
2. We want to show that 𝐽&∗ is a Lyapunov function for the closed-

loop system 𝐱 𝑡 + 1 = 𝐟12(𝐱 𝑡 ), with respect to the equilibrium 
𝐟12 𝟎 = 𝟎 (the origin is indeed an equilibrium as 0 ∈ 𝑋, 0 ∈ 𝑈, 
and the cost is positive for any non-zero control sequence)

3. X& is bounded and closed by assumption
4. 𝐽&∗ 𝟎 = 0 (for the same previous reasons)
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MPC stability theorem

• Proof: 
5. 𝐽&∗ 𝐱 > 0 for all 𝐱 ∈ 𝑋& ∖ {𝟎}
6. Next we show the decay property. Since the setup is time-invariant, 

we can study the decay property between 𝑡 = 0 and 𝑡 = 1
• Let 𝐱 0 ∈ 𝑋!, let 𝑈!

[!] = [𝐮!
! , 𝐮$

! , … , 𝐮%&$
! ] be the optimal control sequence, 

and let [𝐱(0), 𝐱$
! , … , 𝐱%

! ] be the corresponding trajectory 
• After applying 𝐮!

! , one obtains 𝐱 1 = 𝐴𝐱 0 + 𝐵𝐮!
!

• Consider the sequence of controls [𝐮$
! , 𝐮'

! , … , 𝐮%&$
! , 𝐯], where 𝐯 ∈ 𝑈, and the 

corresponding state trajectory is [𝐱(1), 𝐱'
! , … , 𝐱%

! , 𝐴𝐱%
! + 𝐵𝐯]

5/6/21 AA 203 | Lecture 12 9



MPC stability theorem

• Since 𝐱%
! ∈ 𝑋((by terminal constraint), and since 𝑋( is control invariant, 

∃4𝐯 ∈ 𝑈 | 𝐴𝐱%
! + 𝐵4𝐯 ∈ 𝑋(

• With such a choice of 4𝐯, the sequence [𝐮$
! , 𝐮'

! , … , 𝐮%&$
! , 4𝐯] is feasible for the 

MPC optimization problem at time 𝑡 = 1
• Since this sequence is not necessarily optimal 

𝐽!∗ 𝐱 1 ≤ 𝑝 𝐴𝐱%
! + 𝐵4𝐯 + :

*+$

%&$

𝑞 𝐱*
! , 𝐮*

! + 𝑞(𝐱%
! , 4𝐯)
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MPC stability theorem

• Equivalently 
𝐽!∗ 𝐱 1 ≤ 𝑝 𝐴𝐱%

! + 𝐵4𝐯 + 𝐽!∗ 𝐱 0 − 𝑝 𝐱%
! − 𝑞 𝐱(0), 𝐮!

! + 𝑞(𝐱%
! , 4𝐯)

• Since 𝐱%
! ∈ 𝑋(, by assumption A3, we can select 4𝐯 such that 

𝐽!∗ 𝐱 1 ≤ 𝐽!∗ 𝐱 0 − 𝑞 𝐱(0), 𝐮!
!

• Since 𝑞 𝐱(0), 𝐮!
! > 0 for all 𝐱 0 ∈ 𝑋! ∖ {0},

𝐽!∗ 𝐱 1 − 𝐽!∗ 𝐱 0 < 0
• The last step is to prove continuity; details are omitted and can be 

found in Borrelli, Bemporad, Morari, 2017
• Note: A2 is used to guarantee persistent feasibility; this assumption 

can be replaced with an assumption on the horizon 𝑁
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How to choose 𝑋! and 𝑃?

• Case 1: assume 𝐴 is asymptotically stable 
• Set 𝑋( as the maximally positive invariant set 𝑂, for system 𝐱 𝑡 + 1 =
𝐴𝐱 𝑡 , 𝐱 𝑡 ∈ 𝑋
• 𝑋( is a control invariant set for system 𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝐮(𝑡), as 𝐮 =
0 is a feasible control 
• As for stability, 𝐮 = 0 is feasible and 𝐴𝐱 ∈ 𝑋( if 𝐱 ∈ 𝑋(, thus assumption A3 

becomes 
−𝐱-𝑃𝐱 + 𝐱-𝑄𝐱 + 𝐱-𝐴-𝑃𝐴𝐱 ≤ 0, for all 𝐱 ∈ 𝑋(,

which is true since, due to the fact that 𝐴 is asymptotically stable, 
∃𝑃 > 0 | − 𝑃 + 𝑄 + 𝐴-𝑃𝐴 = 0
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How to choose 𝑋! and 𝑃?

• Case 2: general case
• Let 𝐹, be the optimal gain for the infinite-horizon LQR controller
• Set 𝑋( as the maximal positive invariant set for system {𝐱 𝑡 + 1 =
𝐴 + 𝐵𝐹, 𝐱(𝑡)} (with constraints 𝐱 𝑡 ∈ 𝑋, and 𝐹,𝐱 𝑡 ∈ 𝑈)

• Set 𝑃 as the solution 𝑃, to the discrete-time Riccati equation
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Explicit MPC

• In some cases, the MPC law can be pre-computed→ no need for 
online optimization
• Important case: constrained LQR
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𝐽!∗ 𝐱 = min
𝐮!,…,𝐮"#$

𝐱%-𝑃𝐱% +:
*+!

%&$

𝐱*-𝑄𝐱* + 𝐮*-𝑅𝐮*

subject to 𝐱*1$= 𝐴𝐱* + 𝐵𝐮*, 𝑘 = 0,… ,𝑁 − 1

𝐱*∈ 𝑋, 𝐮*∈ 𝑈, 𝑘 = 0,… ,𝑁 − 1

𝐱%∈ 𝑋(
𝐱!= 𝐱



Explicit MPC

• The solution to the constrained LQR problem is a control which is a 
continuous piecewise affine function on polyhedral partition of the 
state space 𝑋, that is 𝐮"∗ = 𝜋"(𝐱")where 

𝜋" 𝐱 = 𝐹"
3𝐱 + 𝑔"

3 if   𝐻"
3𝐱 ≤ 𝐾"

3 ,   𝑗 = 1,… ,𝑁"4

• Thus, online, one has to locate in which cell of the polyhedral 
partition the state 𝐱 lies, and then one obtains the optimal control 
via a look-up table query
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Tuning and practical Use 

• At present there is no other technique to design controllers for 
general large linear multivariable systems with input and output 
constraints with a stability guarantee
• Objective function: The squared 2-norm is employed more often as 

an indicator of control quality than the 1- or ∞-norm
• Design approach:
• Choose horizon length 𝑁 and the control invariant target set 𝑋(
• Control invariant target set 𝑋( should be as large as possible for performance 
• Choose the parameters 𝑄 and 𝑅 freely to affect the control performance 
• Adjust 𝑃 as per the stability theorem 
• Useful toolbox: https://www.mpt3.org/
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https://www.mpt3.org/


MPC for reference tracking

• Usual cost 
∑"5&67$ 𝐱"(𝑄𝐱" + 𝐮"(𝑅𝐮"

does not work, as in steady state control does not need to be zero 
• 𝛿𝑢- formulation: reason in terms of control changes 

𝐮" = 𝐮"7$ + 𝛿𝐮"
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MPC for reference tracking

• The MPC problem is readily modified to

• The control input is then 𝐮 𝑡 = 𝛿𝐮!∗ + 𝐮(𝑡 − 1)
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𝐽!∗ 𝐱 𝑡 = min
2𝐮!,…,2𝐮"#$

:
*

𝐲* − 𝐫* 3
' + 𝛿𝐮* 4

'

subject to 𝐱*1$= 𝐴𝐱* + 𝐵𝐮*, 𝑘 = 0,… ,𝑁 − 1

𝐱*∈ 𝑋, 𝐮*∈ 𝑈, 𝑘 = 0,… ,𝑁 − 1
𝐱%∈ 𝑋(

𝐱!= 𝐱 𝑡 , 𝐮&$= 𝐮(𝑡 − 1)

𝐲*= 𝐶𝐱*, 𝑘 = 0,… ,𝑁 − 1

𝐮* = 𝐮*&$ + 𝛿𝐮*, 𝑘 = 0,… ,𝑁 − 1



Robust MPC 

• We have so far not explicitly considered disturbances in constraint 
satisfaction
• Consider system of the form 

𝐱"#$ = 𝐴𝐱" + 𝐵𝐮" +𝐰"
𝐰" ∈ 𝑊 ∀𝑘

with constraints 𝐱 ∈ 𝑋, 𝐮 ∈ 𝑈.
• Can we guarantee stability and persistent feasibility for this system?
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Robust optimal control problem 
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𝐽!∗ 𝐱 𝑡 = max
𝐰!,…,𝐰"#$

min
𝐮!,…,𝐮"#$

𝑝 𝐱% +:
*+!

%&$

𝑐(𝐱*, 𝐮*)

subject to 𝐱*1$= 𝐴𝐱* + 𝐵𝐮* +𝐰*, 𝑘 = 0,… ,𝑁 − 1
𝐱*∈ 𝑋, 𝐮*∈ 𝑈, 𝐰* ∈ 𝑊 𝑘 = 0,… ,𝑁 − 1

𝐱%∈ 𝑋(
𝐱!= 𝐱(𝑡)



Robust MPC

• Key idea: consider forward reachable sets at each  time :

𝑆&(𝐱&) = {𝐱&}
𝑆" 𝐱&, 𝐮&:"7$ = 𝐴𝑆"7$ 𝐱&, 𝐮&:"79 + 𝐵𝐮"7$ +𝑊

All trajectories in these “tubes” must satisfy constraints. 
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Robust MPC
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𝐽!∗ 𝐱 𝑡 = max
𝐰!,…,𝐰%#$

min
𝐮!,…,𝐮"#$

𝑝 𝐱% +:
*+!

%&$

𝑐(𝐱*, 𝐮*)

subject to 𝐱*1$= 𝐴𝐱* + 𝐵𝐮* +𝐰*, 𝑘 = 0,… ,𝑁 − 1
𝑆* ∈ 𝑋, 𝐮*∈ 𝑈, 𝐰* ∈ 𝑊 𝑘 = 0,… ,𝑁 − 1

𝑆% ∈ 𝑋(
𝐱!= 𝐱(𝑡)

Where 𝑝 𝐱! is robustly stable and 𝑋" is robust control invariant.



Tube MPC

• Forward tubes can be prohibitively large
• Introduce coordinates:
Nominal trajectory: _𝐱"#$ = 𝐴_𝐱" + 𝐵𝐮"
Error: 𝐞" = 𝐱" − _𝐱"
Yields dynamics: 𝐞"#$ = 𝐴𝐞" +𝐰"

• Consider feedback law: 𝐮𝒌 = a𝐮" + 𝐹;𝐞"
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Tube MPC

• Adding error feedback gives dynamics 

_𝐱"#$ = 𝐴_𝐱" + 𝐵a𝐮"
𝐞"#$ = 𝐴 + 𝐵𝐹; 𝐞" +𝐰"

Must choose a𝐮" to guarantee that _𝐱" + 𝐞" satisfy state, action, and 
terminal constraints for 𝑘 = 1,… ,𝑁.
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MPC: advanced topics 

• Excellent references: 
• F. Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid 

Systems, 2017.
• J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory, 

Computation, and Design, 2017.
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Next time

• Back to learning! Learning and adaptive MPC.
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