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Model predictive control

* Introduction: basic setting and key ideas
* Persistent feasibility of MPC

* Readings:
* F. Borrelli, A. Bemporad, M. Morari. Predictive Control
for Linear and Hybrid Systems, 2017.

 J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model
Predictive Control: Theory, Computation, and Design,
2017.
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Model predictive control

* Model predictive control (or, more broadly, receding horizon
control) entails solving finite-time optimal control problems in a
receding horizon fashion

past future

predicted outputs y(t + 1 + k|t + 1)

—I_|—|

manipulated inputs u(t + 1 + k)

t+1t+2 t+14+Np t+1+N,
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Model predictive control

Key steps:

1. Ateachsamplingtimet, solve an open-loop optimal control
problem over a finite horizon

2. Apply optimal input signal during the following sampling interval
lt,t+ 1)

3. Atthenexttimestept + 1, solve new optimal control problem
based on new measurements of the state over a shifted horizon
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Basic formulation

* Consider the problem of regulating to the origin the discrete-time
linear invariant system

x(t+ 1) = Ax(t) + Bu(t), x(t) e R", u(t) e R™

subject to the constraints
x(t) € X, u(t) e U, t=>0

where the sets X and U are polyhedra
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Basic formulation

* Assume that a full measurement of the state x(t) is available at the
currenttime t

* The finite-time optimal control problem 51\9[\1/ed at each stageis

]:(X(t)) = min P(Xt+N|t) + 2 C(Xt+k|t» ut+k|t)

Ug|t,--»Ut+N—-1]t
k=0

subjectto  X¢ip41;e= AXpyk)t + BUpsge, k=0,...,N—1
Xerk|t€ X, Ueqpt € U, k=0,..,.N—1
Xt+N|tE€ Xf
X¢1t= X(t)
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Basic formulation

Notation:

* X¢+k|t IS the state vectorattimet + k predicted at time t (via the
system’s dynamics)
* Ui iIStheinputuattimet + k computed attimet

Note: X31# X3)2
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Basic formulation

* Let Upleine = {U¢pe Uegq)er - Uppy—1)¢ } D€ the optimal solution,
then
u(t) = ug (x(1))

* The optimization problem is then repeated attime t + 1, based on
the new state X, q;41=X(t + 1)

» Define . (x(¢)) = u; . (X(1))
* Then the closed-loop system evolves as
x(t + 1) = Ax(t) + Br,(x(t)) := £ (x(¢), t)

 Central question: characterize the behavior of closed-loop system
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Simplitying the notation

* Note that the setup is time-invariant, hence, to simplify the notation, we

can lett = 0 in the finite-time optimal control problem, namely
N—-1

Jo(x(@®)) = min pxy) + ) c(Xg uy)
Ug,..,.UN—-1 =0
subjectto Xxp,1=4X;+Bu,, k=0,..,.N—-1

XkEX, ukE U, k=0,,N—1
XNE Xf
Xo= X(¢)

» Denote Uj(x(t)) = {ug, ..., uy_1}
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-
Simplitying the notation
* With new notation,
u() = uy(x(0)) = m(x(6))

and closed-loop system becomes
x(t+1) = Ax(t) + Bn(x(t)) = f(x(t))
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Typical cost functions

* 2-norm:
p(Xy) = Xy Pxy, c(X,uy) = x,.0x,+u,Ru,, P>0,Q0Q=0,R>0

e 1-norm or co-norm:

p(Xy) = IPxyll, ¢k, ug) = [1Qxkllp+ [[Rugll,, p=1oro
where P, Q, R are full column ranks
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Online model predictive control

repeat
measure the state x(t) at timeinstantt
obtain U;(x(t)) by solving finite-time optimal control problem
if U (x(t)) = @ then ‘problem infeasible’ stop
apply the first element ug of U§(x(t)) to the system
wait for the new sampling time t + 1
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Main implementation issues

1. The controller may lead us into a situation where after a few steps
the finite-time optimal control problem is infeasible — persistent
feasibility issue

2. Even if the feasibility problem does not occur, the generated
control inputs may not lead to trajectories that converge to the
origin (i.e., closed-loop system is unstable) — stability issue

Key question: how do we guarantee that such a “short- sighted”
strategy leads to effective long-term behavior?
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Analysis approaches

1. Analyze closed-loop behavior directly — generally very difficult

2. Derive conditions on terminal function p, and terminal constraint
set X; so that persistent feasibility and closed-loop stability are
guaranteed
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Addressing persistent feasibility

Goal: design MPC controller so that feasibility for all future times is
guaranteed

Approach: leverage tools from invariant set theory
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Set of feasible initial states

e Set of feasible initial states

Xo=1{xp €X|3(ugp,.., uy_1)suchthatx, € X,u, € U,k=0,..,N —1,
XN S Xf where Xi+1 = Axk + Buk,k = O, ,N — 1}

* A control input can be found only if X(0) € X!
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Controllable sets

* For the autonomous system x(t + 1) = ¢(x(t)) with
constraints x(t) € X,u(t) € U, the one-step
controllable set to set S is defined as

Pre(S) = {x € R": ¢(x) € S}

* For the system x(¢t + 1) = ¢(x(t), u(t)) with
constraints x(t) € X, u(t) € U, the one-step

controllable set to set S is defined as
Pre(S) == {x € R" : 3u € U such that ¢(x,u) € S}
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e
Control invariant sets

* Aset C € X issaid to be a control invariant set for the system
x(t + 1) = ¢p(x(t), u(t)) with constraints x(t) € X, u(t) €
U, if:

x(t) € C = Ju € U such that ¢(x(t),u(t)) € C,forall ¢

* Theset C,, € X is said to be the maximal control invariant
set for the system x(t + 1) = ¢(x(t), u(t)) with
constraints x(t) € X, u(t) € U, ifitis control invariant and
contains all control invariant sets contained in X

* These sets can be computed by using the MPT toolbox
https://www.mpt3.org/
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Persistent feasibility lemma

* Define “truncated” feasibility set:
X ={x;€X|3(uy,..,uy_q)suchthatx, € X,u, € U,k=1,..,N—1,
Xy € Xr where X = AXy + Bug, k=1,..,N — 1}

* Feasibility lemma: if set X, is a control invariant set for system:
x(t+1) =A4Ax(t) + Bu(t), x(t)eX, u@®)eU, t=0

then the MPC law is persistently feasible
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Persistent feasibility lemma

* Proof:
1. Pre(X;) = {x € R":3u € Usuchthat Ax+ Bu € X;}

2. Since X; is control invariant
Vx € X; Ju € U such that Ax + Bu € X;

3. ThusX; CPre(X;) NX

4. One can write
Xo =1{Xy € X|3uy € Usuchthat Ax, + Bu € X;} =Pre(X;) N X

5. Thus, X; € X,
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Persistent feasibility lemma

* Proof:

6. Picksomex, € X,. Let U; be the solution to the finite-time
optimization problem, and uy be the first control. Let

X, = AXy + Bu,

7. Since Uj is clearly feasible, one has x; € X;. Since X; € X,,, one

has
X, € X

hence the next optimization problem is feasible!
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Practical significance

* For N = 1, we canset X = X;. If we choose the terminal set to be

control invariant, then MPC will be persistently feasible independent
of chosen control objectives and parameters

 Designer can choose the parameters to affect performance (e.g.,
stability)

* How to extend this resultto N > 1?
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Persistent feasibility theorem

* Feasibility theorem: if set X, is a control invariant set for system:
x(t+1) =Ax(t) + Bu(t), x(t)eX, u@)eU, t=0

then the MPC law is persistently feasible
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Persistent feasibility theorem

* Proof

1. Define “truncated” feasibility set at step N — 1:
Xy_1 ={Xy_1 €EX|Tuy_;suchthatxy_,; € X,uy_, € U,
Xy€E X where Xy = AXy_; + Buy_q}

2. Dueto the terminal constraint
AXN—l + BuN_l — XN - Xf
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Persistent feasibility theorem

* Proof

3. Since Xy is a control invariant set, there existsau € U

such that
X" = AXy + Bu € X;

The above is indeed the requirement to belong to set Xy _4
ThUS, AXN_]_ + BuN_1 — XN € XN—I
We have just proved that X _4 is control invariant

~N o 0k

Repeating this argument, one can recursively show that
Xy_o2,Xn_3,+,Xq are control invariant, and the
persistent feasibility lemma then applies
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Practical aspects of persistent feasibility

* The terminal set X, is introduced artificially for the sole purpose of
leading to a sufficient condition for persistent feasibility

* We want it to be large so that it does not compromise closed-loop
performance

* Though itis simplest to choose X = 0, thisis generally undesirable
* We’'ll discuss better choices in the next lecture
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Next time

« Stability of MPC, explicit MPC, and practical aspects
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