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Model predictive control

• Introduction: basic setting and key ideas
• Persistent feasibility of MPC

• Readings:
• F. Borrelli, A. Bemporad, M. Morari. Predictive Control 

for Linear and Hybrid Systems, 2017.
• J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model 

Predictive Control: Theory, Computation, and Design, 
2017.
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Model predictive control 
• Model predictive control (or, more broadly, receding horizon 

control) entails solving finite-time optimal control problems in a 
receding horizon fashion 
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Model predictive control 

Key steps:
1. At each sampling time 𝑡, solve an open-loop optimal control 

problem over a finite horizon
2. Apply optimal input signal during the following sampling interval 

𝑡, 𝑡 + 1
3. At the next time step 𝑡 + 1, solve new optimal control problem 

based on new measurements of the state over a shifted horizon
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Basic formulation

• Consider the problem of regulating to the origin the discrete-time 
linear invariant system 

𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝐮 𝑡 , 𝐱 𝑡 ∈ ℝ! , 𝐮 𝑡 ∈ ℝ"

subject to the constraints
𝐱 𝑡 ∈ 𝑋, 𝐮 𝑡 ∈ 𝑈, 𝑡 ≥ 0

where the sets 𝑋 and 𝑈 are polyhedra
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Basic formulation

• Assume that a full measurement of the state 𝐱(𝑡) is available at the 
current time 𝑡
• The finite-time optimal control problem solved at each stage is

𝐽!∗ 𝐱 𝑡 = min
𝐮!|!,…,𝐮!#$%&|!

𝑝 𝐱!&'|! +*
)*+

',-

𝑐(𝐱!&)|!, 𝐮!&)|!)
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subject to 𝐱!&)&-|!= 𝐴𝐱!&)|! + 𝐵𝐮!&)|!, 𝑘 = 0,… ,𝑁 − 1

𝐱!&)|!∈ 𝑋, 𝐮!&)|!∈ 𝑈, 𝑘 = 0,… ,𝑁 − 1

𝐱!&'|!∈ 𝑋.
𝐱!|!= 𝐱(𝑡)



Basic formulation

Notation:
• 𝐱#$%|# is the state vector at time 𝑡 + 𝑘 predicted at time 𝑡 (via the 

system’s dynamics)
• 𝐮#$%|# is the input 𝐮 at time 𝑡 + 𝑘 computed at time 𝑡

Note: 𝐱'|(≠ 𝐱'|)
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Basic formulation

• Let 𝑈#→#$+|#∗ ≔ {𝐮#|#∗ , 𝐮#$(|#∗ , … , 𝐮#$+-(|#∗ } be the optimal solution, 
then 

𝐮 𝑡 = 𝐮#|#∗ (𝐱(𝑡))
• The optimization problem is then repeated at time 𝑡 + 1, based on 

the new state 𝐱#$(|#$(= 𝐱(𝑡 + 1)
• Define 𝜋# 𝐱 𝑡 ≔ 𝐮#|#∗ (𝐱(𝑡))
• Then the closed-loop system evolves as

𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝜋# 𝐱 𝑡 ≔ 𝐟./(𝐱 𝑡 , 𝑡)
• Central question: characterize the behavior of closed-loop system
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Simplifying the notation
• Note that the setup is time-invariant, hence, to simplify the notation, we 

can let 𝑡 = 0 in the finite-time optimal control problem, namely 

• Denote 𝑈!∗ 𝐱 𝑡 = {𝐮!∗ , … , 𝐮#$%∗ }
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𝐽+∗ 𝐱 𝑡 = min
𝐮',…,𝐮$%&

𝑝 𝐱' +*
)*+

',-

𝑐(𝐱), 𝐮))

subject to 𝐱)&-= 𝐴𝐱) + 𝐵𝐮), 𝑘 = 0,… ,𝑁 − 1

𝐱)∈ 𝑋, 𝐮)∈ 𝑈, 𝑘 = 0,… ,𝑁 − 1

𝐱'∈ 𝑋.
𝐱+= 𝐱(𝑡)



Simplifying the notation

• With new notation,
𝐮 𝑡 = 𝐮0∗ 𝐱 𝑡 = 𝜋(𝐱(𝑡))

and closed-loop system becomes 
𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝜋 𝐱 𝑡 ≔ 𝐟./(𝐱 𝑡 )
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Typical cost functions

• 2-norm:
𝑝 𝐱+ = 𝐱+1 𝑃𝐱+ , 𝑐 𝐱% , 𝐮% = 𝐱%1 𝑄𝐱%+ 𝐮%1 𝑅𝐮% , 𝑃 ≥ 0, 𝑄 ≥ 0, 𝑅 > 0

• 1-norm or ∞-norm:
𝑝 𝐱+ = 𝑃𝐱+ 2 𝑐 𝐱% , 𝐮% = 𝑄𝐱% 2+ 𝑅𝐮% 2, 𝑝 = 1 or ∞

where 𝑃, 𝑄, 𝑅 are full column ranks
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Online model predictive control 

repeat
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measure the state 𝐱(𝑡) at time instant 𝑡
obtain 𝑈0∗ 𝐱 𝑡 by solving finite-time optimal control problem
if 𝑈0∗ 𝐱 𝑡 = ∅ then ‘problem infeasible’ stop
apply the first element 𝐮0∗ of 𝑈0∗ 𝐱 𝑡 to the system
wait for the new sampling time 𝑡 + 1



Main implementation issues

1. The controller may lead us into a situation where after a few steps 
the finite-time optimal control problem is infeasible→ persistent 
feasibility issue 

2. Even if the feasibility problem does not occur, the generated 
control inputs may not lead to trajectories that converge to the 
origin (i.e., closed-loop system is unstable) → stability issue 

Key question: how do we guarantee that such a “short- sighted” 
strategy leads to effective long-term behavior?
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Analysis approaches

1. Analyze closed-loop behavior directly → generally very difficult

2. Derive conditions on terminal function 𝑝, and terminal constraint 
set 𝑋3 so that persistent feasibility and closed-loop stability are 
guaranteed
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Addressing persistent feasibility

Goal: design MPC controller so that feasibility for all future times is 
guaranteed

Approach: leverage tools from invariant set theory
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Set of feasible initial states 

• Set of feasible initial states 

𝑋+ ≔ 𝐱+ ∈ 𝑋 ∃ 𝐮+, … , 𝐮',- such that 𝐱) ∈ 𝑋, 𝐮) ∈ 𝑈, 𝑘 = 0,… ,𝑁 − 1,
𝐱' ∈ 𝑋. where 𝐱)&- = 𝐴𝐱) + 𝐵𝐮), 𝑘 = 0,… ,𝑁 − 1}

• A control input can be found only if 𝐱(0) ∈ 𝑋0!
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Controllable sets

• For the autonomous system 𝐱 𝑡 + 1 = 𝜙(𝐱(𝑡))with 
constraints 𝐱 𝑡 ∈ 𝑋, 𝐮 𝑡 ∈ 𝑈, the one-step 
controllable set to set 𝑆 is defined as

Pre 𝑆 ≔ {𝐱 ∈ ℝ! ∶ 𝜙 𝐱 ∈ 𝑆}

• For the system 𝐱 𝑡 + 1 = 𝜙 𝐱 𝑡 , 𝐮 𝑡 with
constraints 𝐱 𝑡 ∈ 𝑋, 𝐮 𝑡 ∈ 𝑈, the one-step 
controllable set to set 𝑆 is defined as
Pre 𝑆 ≔ {𝐱 ∈ ℝ! ∶ ∃𝑢 ∈ 𝑈 such that 𝜙 𝐱, 𝐮 ∈ 𝑆}
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Control invariant sets

• A set 𝐶 ⊆ 𝑋 is said to be a control invariant set for the system 
𝐱 𝑡 + 1 = 𝜙 𝐱 𝑡 , 𝐮 𝑡 with constraints 𝐱 𝑡 ∈ 𝑋, 𝐮 𝑡 ∈
𝑈, if:
𝐱 𝑡 ∈ 𝐶 ⇒ ∃𝐮 ∈ 𝑈 such that 𝜙 𝐱 𝑡 , 𝐮 𝑡 ∈ 𝐶, for all 𝑡

• The set 𝐶& ⊆ 𝑋 is said to be the maximal control invariant 
set for the system 𝐱 𝑡 + 1 = 𝜙 𝐱 𝑡 , 𝐮 𝑡 with
constraints 𝐱 𝑡 ∈ 𝑋, 𝐮 𝑡 ∈ 𝑈, if it is control invariant and 
contains all control invariant sets contained in 𝑋

• These sets can be computed by using the MPT toolbox 
https://www.mpt3.org/
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https://www.mpt3.org/


Persistent feasibility lemma

• Define “truncated” feasibility set:
𝑋- ≔ 𝐱- ∈ 𝑋 ∃ 𝐮-, … , 𝐮',- such that 𝐱) ∈ 𝑋, 𝐮) ∈ 𝑈, 𝑘 = 1,… ,𝑁 − 1,

𝐱' ∈ 𝑋. where 𝐱)&- = 𝐴𝐱) + 𝐵𝐮), 𝑘 = 1,… ,𝑁 − 1}

• Feasibility lemma: if set 𝑋( is a control invariant set for system:
𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝐮 𝑡 , 𝐱 𝑡 ∈ 𝑋, 𝐮 𝑡 ∈ 𝑈, 𝑡 ≥ 0

then the MPC law is persistently feasible
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Persistent feasibility lemma

• Proof:
1. Pre 𝑋( = {𝐱 ∈ ℝ! ∶ ∃𝐮 ∈ 𝑈 such that 𝐴𝐱 + 𝐵𝐮 ∈ 𝑋(}
2. Since 𝑋( is control invariant 

∀𝐱 ∈ 𝑋( ∃𝐮 ∈ 𝑈 such that 𝐴𝐱 + 𝐵𝐮 ∈ 𝑋(
3. Thus 𝑋( ⊆ Pre 𝑋( ∩ 𝑋
4. One can write
𝑋0 = 𝐱0 ∈ 𝑋 ∃𝐮0 ∈ 𝑈 such that 𝐴𝐱0 + 𝐵𝐮 ∈ 𝑋(} = Pre 𝑋( ∩ 𝑋

5. Thus, 𝑋( ⊆𝑋0
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Persistent feasibility lemma

• Proof:
6. Pick some 𝐱0 ∈ 𝑋0. Let 𝑈0∗ be the solution to the finite-time 

optimization problem, and 𝐮0∗ be the first control. Let
𝐱( = 𝐴𝐱0 + 𝐵𝐮0∗

7. Since 𝑈0∗ is clearly feasible, one has 𝐱( ∈ 𝑋(. Since 𝑋( ⊆𝑋0, one 
has 

𝐱( ∈ 𝑋0
hence the next optimization problem is feasible!
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Practical significance 

• For 𝑁 = 1, we can set 𝑋3 = 𝑋(. If we choose the terminal set to be 
control invariant, then MPC will be persistently feasible independent
of chosen control objectives and parameters
• Designer can choose the parameters to affect performance (e.g., 

stability)
• How to extend this result to 𝑁 > 1?
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Persistent feasibility theorem

• Feasibility theorem: if set 𝑋3 is a control invariant set for system:
𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝐮 𝑡 , 𝐱 𝑡 ∈ 𝑋, 𝐮 𝑡 ∈ 𝑈, 𝑡 ≥ 0

then the MPC law is persistently feasible
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Persistent feasibility theorem

• Proof
1. Define “truncated” feasibility set at step 𝑁 − 1:

𝑋+-( ≔ 𝐱+-( ∈ 𝑋 ∃ 𝐮+-( such that 𝐱+-( ∈ 𝑋, 𝐮+-( ∈ 𝑈,
𝐱+∈ 𝑋3 where 𝐱+ = 𝐴𝐱+-( + 𝐵𝐮+-(}

2. Due to the terminal constraint
𝐴𝐱+-( + 𝐵𝐮+-( = 𝐱+ ∈ 𝑋3
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Persistent feasibility theorem

• Proof
3. Since 𝑋' is a control invariant set, there exists a 𝐮 ∈ 𝑈

such that 
𝐱( = 𝐴𝐱# + 𝐵𝐮 ∈ 𝑋'

4. The above is indeed the requirement to belong to set 𝑋#$%
5. Thus, 𝐴𝐱#$% + 𝐵𝐮#$% = 𝐱# ∈ 𝑋#$%
6. We have just proved that 𝑋#$% is control invariant 
7. Repeating this argument, one can recursively show that 

𝑋#$), 𝑋#$*, ⋯ , 𝑋% are control  invariant, and the 
persistent feasibility lemma then applies
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Practical aspects of persistent feasibility

• The terminal set 𝑋3 is introduced artificially for the sole purpose of 
leading to a sufficient condition for persistent feasibility
• We want it to be large so that it does not compromise closed-loop 

performance
• Though it is simplest to choose 𝑋3 = 0, this is generally undesirable 
• We’ll discuss better choices in the next lecture
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Next time

• Stability of MPC, explicit MPC, and practical aspects
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