AA203
Optimal and Learning-based Control

Course overview; control, stability, performance metrics

Stanford ASEJ
&%/ University :



Course mechanics

Teaching team:

* Instructors: Ed Schmerling (OH: W 11am-12pm; Project OH: W 4:30-5:30pm)
James Harrison (OH: M 10-11am; Project OH: Th 2-3pm)

* CAs: Matt Tsao and Spencer M. Richards (OH: Tu 4-6pm, Th 8:30-10:30am)

Logistics:

* Class info, lectures, and homework assignments on class web page:
http://asl.stanford.edu/aa203/

* Forum: http://piazza.com/stanford/spring2021/aa203

* Forurgent questions: 2a203-spr2021-staff@lists.stanford.edu
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Course requirements

 Homework: there will be a total of four problem sets
 Homework submissions: https://www.gradescope.com/courses/257531

* Final project (details on the course website)

* Grading;:
* homework 60% (15% per HW)
* final project 40%
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Course material

 Course notes: a set of course notes will be provided covering all the
content presented in the lectures

* Recitations: Friday lecture sessions (F 10:30-11:50AM, weeks 2—5) led
by the CAs covering relevant tools (computational and mathematical)

» Textbooks that may be valuable for context or further reference are
listed in the syllabus
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Prerequisites

» Strong familiarity with calculus (e.g., CME100)
* Strong familiarity with linear algebra (e.g., EE263 or CME200)
 Familiarity with optimization (e.g., EE364a, CME307, CS2690, AA222)

* To get the most out of this class, at least one of:

* A course in machine learning (e.g., CS229, CS230, CS231n)
or

* A course in control (e.g., ENGR105, ENGR205, AA212)
Homework 0 (ungraded) is out now to gauge preparedness.
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Today’s Outline

1. Context and course goals
2. State-space models

3. Problem formulation for optimal control
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Feedback control

* Tracking a reference signal
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Feedback control

* Tracking a reference signal
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Feedback control

* Reference tracking, with uncertainty Disturbance
Ref + Control Output
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Reinforcement learning

* A brief aside...
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Environment}

State

Reward
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Feedback control desiderata

* Stability: multiple notions; loosely system output is “under control”
* Tracking: the output should track the reference “as closely as possible”

* Disturbance rejection: the output should be “as insensitive as possible”
to disturbances/noise

* Robustness: controller should still perform well up to “some degree of”
model misspecification
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S
What’s missing?

* Performance: mathematical quantification of the above desiderata,
and providing a control that best realizes the tradeoffs between them

 Planning: providing an appropriate reference trajectory for the
controller to track (particularly nontrivial, e.g., when controlling
mobile robots)

* Learning: a controller that adapts to an initially unknown, or possibly
time-varying system
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Course overview
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Course goals

To learn the theoretical and implementation aspects of main
techniques in optimal and learning-based control

To provide a unified framework and context for understanding and
relating these techniques to each other
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Today’s Outline

1. Context and course goals
2. State-space models

3. Problem formulation for optimal control
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Mathematical model

Cifl t) — fl(xl t CIL’Q(t) ..... CEn(t) U1 t (V) t),..., Um t), 1

332(75) — fz(ajl t) ZEQ(t) ..... ﬂin(t) ul(t) UQ(t) ..... um(t) t)

Tn(t) = fn(x1(t), z2(t),. .., Ty (t),ur(t),us(t), ..., U (T), 1)
Where

* x1(t), z2(t),...,x,(t) arethe state variables
* ui(t),us(t),...,un(t) arethe controlinputs



Mathematical model

In compact form

* a history of control input values during the interval [to, tf] is called a
control history and is denoted by u

* a history of state values during the interval [to, tf] is called a state
trajectory and is denoted by x
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Illustrative example

* Double integrator: point mass under
controlled acceleration

5(t) = a(t) S
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Example system

* Double integrator: point mass under
controlled acceleration
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Example controller

Let’s drive from [5, 0] to [0, 0]".

Proposal: use a linear feedback control law. - £
a = —kys — kqu s
s [0 1] [s] [0 s
v 0 0] |v 1 v

_S_
U _—kp —kd_ _U_
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Analyzing stability




Analyzing stability
] Rt I ) R | Rl PR R ]

where Ay = (—kd + \/kfi — 4k;p> /2 where A\ = —kg/2, if k3 — 4k, = 0

Kd

Re(\) > exponential growth (> 0), - stem exaonentially
exponential decay (< 0), converges to 0

or constant (=0) o e
| system OSCllla SS
Im(A) = sinusoidal oscillation L
p

N )

or

at least one eigenvzi\jltjve has positive
real part; system blgws up
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Mathematical definitions of stability

Many notions:

* Asymptotic stability
* Global: all trajectories converge to the equilibrium

 Local: all trajectories starting near the equilibrium converge to the
equilibrium

* Exponential stability
* Same as asymptotic stability, but with exponential rate

* Marginal stability
* Bounded-input, bounded-output stability
* Lyapunov stability
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Quantifying performance

ty
min / ()12 + [[u(t)|2dt

s.t. x(t) = Ax(t) + Bu(t)
x(0) = xq
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Quantifying performance

mim/O f x(t)1 Qx(t) + ||u(t)||1dt

s.t. x(t) = Ax(t) + Bu(t)
x(0) = x0, x(tf) = X¢
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Today’s Outline

1. Context and course goals
2. State-space models

3. Problem formulation for optimal control
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Problem formulation

* Mathematical description of the system to be controlled
 Statement of the constraints
* Specification of a performance criterion
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Performance measure

J = h(x(t), t7) + / " g(x(t), u(t), ) dt

to

* h and g are scalar functions
* tr may be specified or free
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Constraints

e initial and final conditions (boundary conditions)
X(to) = %0,  X(tf) =%y
* constraints on state trajectories
X <x(t)<X
 control authority

U<u(t)<U

IN

e and many more...
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Constraints

* A control history which satisfies the control constraints during the
entire time interval [to, tf] is called an admissible control

* A state trajectory which satisfies the state variable constraints
during the entire time interval [¢, ¢/ ] is called an admissible
trajectory
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Optimal control problem

Find an admissible control u™ which causes the system
x(t) = £(x(t), u(t),?)

to follow an admissible trajectory x* that minimizes the performance
measure

J = h(x(ty), t) + / " g(x(), u(t), ¢) dt

to
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Optimal control problem

Comments:

* minimizer (x*,u") called optimal trajectory-control pair
* existence: in general, not guaranteed

* unigueness: optimal control may not be unique

* minimality: we are seeking a global minimum

 for maximization, we rewrite the problem as muin —]
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Form of optimal control

1. ifu* =n(x(t),t),thenmis called optimal control law or optimal
policy (closed-loop)
* important example: m(x(t),t) = F x(t)

2. ifu” =e(x(ty),t), then the optimal control is open-loop
 optimal only for a particular initial state value
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Discrete-time formulation

e System: X, ., =f(X,uy, k), k=0,...,N—1
* Control constraints: u,€ U

e Cost:
N-—1

JXo; ug, -, uy—1) = hy(Xy) + zgk(xk»uk» k)
k=0

* Decision-making problem:

(X)) = min Xn: U, ..., Un_
J (Xo) ukEU,k=O,...,N—1]( 0 Ug N—1)

Extension to stochastic setting will be covered later in the course
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Next class

Introduction to learning;
System identification and adaptive control
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