
Spring 2021

Stanford
AA 203: Optimal and Learning-based Control

Problem Set 4, due June 4 by 5:00 pm

Problem 1: Deep reinforcement learning
As seen in lecture and in homework 3, a näıve Monte Carlo policy gradient method
is quite unstable, due to its high variance. To address this, we will implement an
actor-critic method, in which a value function is used as baseline (referred to as the
critic, which predicts the cost associated with actions), with the policy referred to as
the actor (which selects the actions). In particular, we will implement advantage-based
actor-critic algorithm that was discussed in lecture 14. Combining the policy gradient
Q-function with the value function baseline we obtain the following formulation:

∇θJ(θ) = E [δπ∇θ log π(uτ | xτ )] (1)

with: δπ =
∑N

τ=t rτ − V π(xt) and E[δπ | x,u] = Aπ(x,u) the advantage.

To implement this method in practice, we fit our value function (for the critic) to target
values:

yt =
N∑
τ=t

rτ (2)

and use gradient descent to regress onto these target value with the following objective:

min
w

∑
i,t

(V π
w (xit)− yit)2. (3)

Implementation: We have provided starter code and added TODOs in the follow-
ing functions that are required to be implemented:

• forward: Sets up the neural network

• select-action: Selects the action

• finish-episode: Training code, computes actor and critic loss

Results: We will implement the method on the LunarLanderContinuous-v2 envi-
ronment. To get good results, you should run the algorithm for approximately 1500-
2000 episodes. Provide a plot of the total reward versus episode. Run the script as
follows (render can be toggled to True or False (default) to view the performance of
the agent):

python run_actor_critic.py --render True

1



Improvements (optional): Many improvements over the method implemented above
are possible and can improve performance. A non-exhaustive list is given below, feel
free to experiment with these (you can also try them out on more complicated envi-
ronments such as BipedalWalker-v2):

• Experience replay: Stores transitions (xt, ut, rt, xt+1) in a buffer. Old examples are
deleted as we store new transitions. To update the parameters of our network, we
sample a (mini-)batch from the buffer and perform the stochastic gradient update
on this batch.

• Bootstrap with value function, instead of using the sum of the tail rewards to
estimate advantage.

• Iterate between computing target values and updating the value function to
regress to these target values. You can add parameters that control the num-
ber of target value updates and the number of gradient updates.

• Using different policy or value networks.

Problem 2: Extremal curves
Given the functional

J(x) =

∫ 1

0

(
1

2
ẋ(t)2 + 5x(t)ẋ(t) + x(t)2 + 5x(t)

)
dt,

find an extremal curve x∗ : [0, 1]→ R that satisfies x∗(0) = 1 and x∗(1) = 3.

Problem 3: Minimum control effort
Consider the dynamics

ẋ(t) = −2x(t) + u(t)

with the initial constraint x(0) = 2, terminal constraint x(1) = 0, and cost functional

J(u) =

∫ 1

0

u(t)2 dt.

Write down the Hamiltonian and use the necessary optimality conditions to derive an
optimal control u∗(t) and corresponding state trajectory x∗(t).

Problem 4: Zermelo’s ship
Zermelo’s ship must travel through a region of strong currents. The position of the
ship is denoted by (x(t), y(t)) ∈ R2. The ship travels at a constant speed v > 0, yet
its heading θ(t) can be controlled. The current moves in the positive x-direction with
speed w(y(t)). The equations of motion for the ship are

ẋ(t) = v cos θ(t) + w(y(t))

ẏ(t) = v sin θ(t)
.

We want to control the heading θ(t) such that the ship travels from a given initial
position (x(t0), y(t0)) = (x0, y0) to the origin (0, 0) in minimum time.

2



a) Suppose w(y(t)) = v
h
y(t), where h > 0 is a known constant. Show that an optimal

control law θ∗(t) must satisfy a linear tangent law of the form

tan θ∗(t) = α− v

h
t

for some constant α ∈ R.

b) Suppose w(y(t)) ≡ β for some constant β > 0. Derive an expression for the
optimal transfer time t∗1 − t0.

Learning goals for this problem set:

Problem 1: Gain experience implementing a neural network based actor-critic algorithm,
to give insight into modern reinforcement learning practice.

Problem 2: To familiarize with the process of solving calculus of variations problems.

Problem 3: To familiarize with necessary conditions for minimum control effort problems.

Problem 4: To familiarize with necessary conditions for minimum time problems.

3


