
Spring 2021

Stanford
AA 203: Optimal and Learning-based Control

Problem Set 3, due May 26 by 5:00 pm

Problem 1: HJ Reachability
Consider the goal of developing a self-righting quadrotor, i.e., a flying drone that you
can chuck into the air at a range of poses/velocities which will autonomously regulate
to level flight while obeying dynamics/controls/operational-envelope constraints. For
this problem, we’ll consider the 6D dynamics of a planar quadrotor:

ẋ
v̇x
ẏ
v̇y
φ̇
ω̇

 =



vx
−(T1+T2) sinφ−CvDvx

m

vy
(T1+T2) cosφ−CvDvy

m
− g

ω
(T2−T1)`−CφDω

Iyy


, T1, T2 ∈ [0, Tmax], (1)

where the state is given by the position in the vertical plane (x, y), translational velocity
(vx, vy), pitch φ, and pitch rate ω; the controls are the thrusts (T1, T2) for the left and
right prop respectively. Additional constants appearing in the dynamics above are
gravitational acceleration g, the quadrotor’s mass m, moment of inertia (about the
out-of-plane axis) Iyy, half-length `, and translational/rotational drag coefficients Cv

D

and Cφ
D (see problem 1/reachability.py for precise values for these constants).

Figure 1: A planar quadrotor.

We will approach the problem of self-righting through continuous-time dynamic pro-
gramming, in particular employing a Hamilton-Jacobi-Bellman (HJB) formulation.1

1One might also consider an HJI-based extension to handle worst-case disturbances (e.g., wind), but for
simplicity in this exercise we’ll consider just the undisturbed dynamics.

1



To help mitigate the curse of dimensionality, for the goal of achieving level flight we

will consider reduced 4D dynamics with state vector x =
[
y vy φ ω

]T
. In the

context of these reduced dynamics, we define the target set

T = [3, 7]× [−1, 1]× [−π/12, π/12]× [−1, 1].

We assume that if at any time the planar quadrotor can reach this set, then, e.g., an
LQR controller (linearized around hover) can take over and maintain level flight.

To bound the domain of our dynamic programming problem (and also to ensure that
our quadrotor doesn’t plow into the ground), in addition to the dynamics and control
constraints given in Eq. (1) we would also like to constrain our planar quadrotor to
stay within the operational envelope

E = [1, 9]× [−6, 6]× [−∞,∞]× [−8, 8].

Reaching the target set T while avoiding the obstacle set E{ (i.e., the set complement
of E) is referred to as a reach-avoid problem. If we can construct two real-valued,
Lipschitz continuous functions h(x), e(x) defined over the state domain such that

x ∈ T ⇐⇒ h(x) ≤ 0, x ∈ E ⇐⇒ e(x) ≤ 0,

i.e., T , E are the zero-sublevel sets of h, e respectively, then it may be shown (see, e.g.,
[FCTS15], Theorem 1) that the value function V (x, t) defined as

V (x0, t0) = min
u(·)

min
τ∈[t0,0]

h(x(τ))

s.t. ẋ(τ) = f(x(τ),u(τ)) ∀τ ∈ [t0, 0]

x(τ) ∈ E ∀τ ∈ [t0, 0]

x(t0) = x0

(where f is the relevant portion of the full dynamics Eq. (1)) satisfies the HJB PDE2

max

{
∂V

∂t
(x, t) + min{0, H(x,∇xV (x, t))}, e(x)− V (x, t)

}
= 0

where H(x,p) = min
u

pTf(x,u),

V (x, 0) = max{h(x), e(x)}.

Implementing an appropriate solver for this type of PDE is somewhat nontrivial (see,
e.g., [Mit02] for details); for this exercise we will use an existing solver – you will be
responsible for setting the problem up and interpreting the results.

2This is similar to the backward reachable tube HJI PDE mentioned in class (omitting the disturbance),
where as before the inner min ensures the value function is nondecreasing in time (so that as BRT computation
proceeds backward in time, the value function is nonincreasing at successive iterations, i.e., you get to “lock
in” the lowest value you ever achieve). The outer max is the new addition in this formulation compared to
what we saw in class, and may be interpreted as always making sure V (x, t) ≥ e(x) so that if e(x) > 0 (i.e.,
the state is outside of the operating envelope) then also V (x, t) > 0 (i.e., the state is outside the BRT of
states that can reach the target collision-free).

2



If running problem 1/reachability.py directly or interacting with
problem 1/reachability.ipynb using a local jupyter kernel, install the solver at the
command line using pip:

> pip install --upgrade git+https://github.com/StanfordASL/hj_reachability

Otherwise, if using Google Colab to interact with problem 1/reachability.ipynb,
run a cell containing

!pip install --upgrade git+https://github.com/StanfordASL/hj_reachability

We provide equivalent starter code in two formats: problem 1/reachability.py and
problem 1/reachability.ipynb. When submitting code for parts (a)–(c) below, only
provide the methods/functions that you’ve been asked to modify.

a) Subject to the control constraints T1, T2 ∈ [0, Tmax], derive the locally optimal
action that minimizes the Hamiltonian, i.e., for arbitrary x,p compute

u∗ = arg min
u

pTf(x,u),

where f denotes the last four rows of the dynamics defined by Eq. (1). Use this
knowledge to implement the method PlanarQuadrotor.optimal control.

b) Write down a functional form for h(x) such that x ∈ T ⇐⇒ h(x) ≤ 0. Imple-
ment the function target set.
Hint: Note that a(x) ≤ 0 ∧ b(x) ≤ 0 ⇐⇒ max{a(x), b(x)} ≤ 0. This means
that if you have multiple constraints represented as the zero-sublevel sets of mul-
tiple functions, then the conjunction of the constraints may be represented as a
pointwise maximum of the functions.

c) Write down a functional form for e(x) such that x ∈ E ⇐⇒ e(x) ≤ 0. Implement
the function envelope set.

d) Run the rest of the script/cells to compute V (x,−5) and take a look at some of the
controlled trajectories; hopefully they look reasonable (see the note below if you’re
picky/have extra time, though if the quad rights itself and gets to the target set
T that’s sufficient for our purposes). Do not submit any trajectory plots; instead
include a 3D plot of the zero isosurface (equivalent of a contour/isoline, but in 3D)
for a slice of the value function at some fixed y value (e.g., y = 7.5 as pre-selected
in the starter code). Explain why one of the bumps/ridges has the shape that it
does.
Note: If the behavior of your control policy isn’t as nice as you’d like (e.g.,
height/pitch oscillations), consider modifying your target set function h(x) (e.g.,
by scaling how you account for each dimension in your construction). For the
purpose of reachable set computation, at least theoretically3 the zero-sublevel

3With a relatively coarse grid discretization and not-particularly-high-accuracy finite difference
schemes/time integrators for PDE solving (sacrifices made so you don’t have to wait for hours to see results),
for numerical reasons the BRT may have some dependence on your formulation of h(x).

3



set of the value function V (corresponding to the set of feasible initial states) is
unaffected by the details of h as long as h(x) ≤ 0 ⇐⇒ x ∈ T . In the context
of dynamic programming to compute an optimal control policy, however, h(x)
also defines the terminal cost in a way that materially affects the policy once the
set is reached (though in practice, this is where we’d have some other stabilizing
controller take over).

e) In a few sentences, write down some pros/cons of this approach (i.e., computing
a policy using dynamic programming) for a self-righting quadrotor vs. alterna-
tives, e.g., applying model-predictive control. Potential things to think/write
about: computational resources (time, memory) required for online operation,
local/global optimality, flexibility to accommodate additional obstacles in the en-
vironment, bang-bang controls, etc.

Problem 2: MPC Feasibility
Consider the second-order, discrete-time LTI system

xk+1 =

[
1 1
0 1

]
xk +

[
0
1

]
uk.

We want to compute a receding horizon controller for the case where the cost is
quadratic, i.e., h(xN) = 1

2
xTNPxN , g(xk,uk) = 1

2
xTkQxk + 1

2
uTkRuk. Assume (if not

otherwise stated) that Q =

[
1 0
0 1

]
and R = 0.01, and that the system is subject to

the input constraints [
−ū
]
≤ uk ≤

[
ū
]
, k = 0, . . . , N − 1,

and to the state constraints[
−x̄
−x̄

]
≤ xk ≤

[
x̄
x̄

]
, k = 0, . . . , N.

(Note: this setup is similar to the setup in Example 12.1 (pg. 247) in the BBM book4).
Let P∞ be the solution to the algebraic Riccati equation:

P∞ = ATP∞A+Q− ATP∞B(BTP∞B +R)−1BTP∞A.

a) Implement the receding horizon control strategy for this system using CVXPY.

b) Let x̄ = 5, ū = 0.5, N = 3, P =

[
1 0
0 1

]
, R = 10, and Xf = R2. Simulate the

closed-loop trajectories with initial states x0 = [−4.5, 2] and x0 = [−4.5, 3]. You
should be able to reproduce Figure 12.2 (pg. 248) in the BBM book.

4F. Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid Systems, 2017. Available
online at https://drive.google.com/file/d/1zaaZZjoXm73klAWfC62YlrUzujJOXUMt/view.

4

https://drive.google.com/file/d/1zaaZZjoXm73klAWfC62YlrUzujJOXUMt/view


c) Let x̄ = 10, ū = 1, N = 2, P = P∞, and Xf = 0. Discretize the state space
(pick a reasonable discretization step) and find the set of initial points leading
to feasible closed-loop trajectories converging to the origin (i.e., the domain of
attraction for the RHC policy).
Hint: To compute P∞, either iterate the Riccati recursion until convergence (as
in HW1) or take a look at scipy.linalg.solve discrete are.

d) Let x̄ = 10, ū = 1, N = 6, P = P∞, and Xf = 0. Discretize the state space and
find the domain of attraction for the RHC policy.

e) Let x̄ = 10, ū = 1, N = 2, P = P∞, and Xf = R2. Discretize the state space and
find the domain of attraction for the RHC policy.

f) Let x̄ = 10, ū = 1, N = 6, P = P∞, and Xf = R2. Discretize the state space and
find the domain of attraction for the RHC policy.

g) Discuss and compare the results in parts c), d), e), and f).

h) Consider the case x̄ = 10, ū = 1, P = P∞, and Xf = 0. Consider several different
values of N and discuss, by presenting simulation experiments, how the trajectory
and its cost are affected by the choice of N (you should use an appropriate initial
condition).

Problem 3: MPC Terminal Invariant and Stability
Consider the discrete-time LTI system xk+1 = Axk +Buk, with

A =

[
0.95 0.5

0 0.95

]
, B =

[
0
1

]
,

and state and control constraints

‖xk‖2 ≤ 5, ‖uk‖2 ≤ 1.

We wish to synthesize a controller to stabilize the system to the origin while minimizing
a quadratic cost function

J = xTNPxN +
N−1∑
k=0

(
xTkQxk + uTkRuk

)
.

a) Consider the weights

Q =

[
1 0
0 1

]
, R = 1.

Propose a final condition Xf and a final cost P that, together, guarantee asymp-
totic stability and persistent feasibility of the closed-loop system.

b) While maximal positive invariant sets may be computed via iterative methods
using tools from computational geometry, we will propose a large set and verify

5

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_discrete_are.html


that it satisfies the definition of a positive invariant set. In particular, consider
the ellipsoid5 given by

Xf = {x ∈ Rn : xTMx ≤ 1} (2)

with

M =

[
0.04 0

0 1.06

]
. (3)

Verify that this set is open-loop invariant.

Hint: We wish to verify the open-loop invariance of the set Xf . This equates to
proving:

AXf ⊆ Xf (4)

where
AXf = {z ∈ Rn : z = Ax, x ∈ Xf} (5)

is the set Xf transformed by the open-loop dynamics. This claim is equivalent to
saying

xTMx ≤ 1 =⇒ xTATMAx ≤ 1. (6)

A sufficient condition for the above holding is that

xTATMAx ≤ xTMx ∀x. (7)

This holds iff
ATMA �M, (8)

i.e., M − ATMA is positive semidefinite.

c) Solve the MPC problem from xT0 = [−3,−2.5] and with planning horizon N = 4
in the following cases:

i. With both the terminal constraint computed in the previous part, as well as
the associated terminal cost.

ii. With only the terminal cost.

iii. With only the terminal constraint.

iv. With neither the terminal cost of the terminal constraint.

For all cases, submit two plots. The first plot should show the trajectory taken,
all planned trajectories at all time, the terminal invariant set constraint, and
the state constraints. The second plot should show the control actions versus
iteration, satisfying the control constraints.

5Since we plan to use this invariant set as a terminal constraint in a convex program for our MPC
implementation in this problem, we would like our invariant set to be convex, and an ellipsoid is a convenient
choice of form. Computing the ellipsoid with maximum volume that is (i) contained in the state constraint
set {x : ‖x‖ ≤ 5}, and (ii) an invariant set with respect to the open-loop dynamics xk+1 = Axk can be posed
as a Semidefinite Program (SDP); see Recitation 1.

6



Problem 4: Introduction to Reinforcement Learning
In this problem, you will investigate three different approaches to solving the LQR
problem with unknown dynamics and reward. In particular, we will assume dynamics
of the form

xt+1 = Axt +But + wt (9)

with x0 ∼ N (0,Σ0) and wt ∼ N (0,Σw), xt ∈ Rn, ut ∈ Rm for all t. The running cost
function is

c(x,u) = xTQx + uTRu (10)

with Q,R positive definite. We will investigate three approaches to solving this prob-
lem: a model-based method; a model-free, value-based method, and a model-free,
policy-based method. We will solve the discounted problem for a time-invariant policy,

min
π

E[
N∑
t=0

γtc(xt, π(xt))] (11)

All code is provided in the starter code repository.

For all problems, run the method for both the stochastic dynamics and the determin-
istic dynamics. This can be changed via a boolean variable in the starter code.

a) First, implement the optimal controller for the known cost and dynamics via solv-
ing the Riccati equation. Although we are considering a finite horizon problem, it
is typical in reinforcement learning to use a stationary (non-time-varying) policy
to reduce the complexity of the learning problem. Simulate this controller from
many random initial states to get an estimate of the average cost. This will be the
optimal baseline to which we will compare the performance of other controllers.

b) We will now implement a model-based approach to the presented problem. This
approach will consist of three steps, iteratively performed:

• Fit a linear dynamics model using least squares regression.

• Fit a model for the cost function using least squares. Let

x =


x1
x2
...
xn

 u =


u1
u2
...
um

 (12)

To use linear regression for cost function estimation, rewrite the reward as

c(x,u) = qT



x21
x1x2

...
x1xn
x22
...
x2n


+ rT



u21
u1u2

...
u1um
u22
...
u2m


(13)

7



for some vectors q, r.

• Compute the optimal policy for the estimated dynamics and reward model
via Riccati recursion.

Let L∗ denote the optimal policy, computed in part (a) with exact model knowl-
edge, and let Li denote the policy computed at iteration i. Plot ‖L∗−Lt‖2 versus
time. Also, plot the achieved cost in the episode versus episode number.

Hint: It is convenient to use the iterative formulation of least squares to update
the model at every iteration, which can then be interleaved after every timestep
with policy optimization. For a system for which we receive input-output pairs
(zt,yt) at each timestep, which obey the relationship

yt = CTzt + wt (14)

for zero mean normal wt, the iterative update can be written

P̂t = P̂t−1 −
P̂t−1ztz

T
t P̂t−1

1 + zTt P̂t−1zt
(15)

Ĉt = Ĉt−1 +
(P̂t−1zt)(y

T
t − zTt Ĉt−1)

1 + zTt P̂t−1zt
(16)

with P̂0 = I. For Ĉ0, you may choose any initialization that satisfies positive def-
initeness constraints. We recommend initializing Â0 and B̂0 to random matrices,
and Q̂0, R̂0 to the identity matrix to satisfy the constraints.

c) Implement the policy iteration scheme for LQR presented in [BYB94]. Note that
the iterative least square algorithm used in that work is the same as the above.

Plot ‖L∗−Li‖2 versus time, where Li denotes the policy after improvement after
every episode. Also, plot the achieved cost in the episode versus episode number.

Hint: This approach can be quite sensitive to various factors. Make sure your Q
function estimate is symmetric by setting

Q̂t =
1

2
(Q̂t + Q̂T

t ). (17)

It is necessary to add exploration noise to the action selection to ensure conver-
gence. Set the action to

ut = −L̂txt + εt (18)

where εt ∼ N (0, I).

d) Implement Monte Carlo policy gradient (REINFORCE) for a Gaussian policy of
the form

πW (u | x) = N (Wx,Σ) (19)

and a choice of Σ. Specifically, find ∇W log πW (u | x) and then implement the
Monte Carlo policy gradient algorithm. Plot ‖L∗ − Li‖2 versus time, where Li
denotes the policy at the end of each episode. Also, plot the achieved cost in the
episode versus episode number.

8



Hint: Näıve policy gradient is quite unstable on this problem, so we will provide
some hyperparameters that should enable you to get a basic version working.
First, initialize your policy as the zero matrix, and set Σ = 0.1I. As a step size
parameter α, we recommend values in the neighborhood of 10−13. These hyper-
parameters should yield a functional if unimpressive policy gradient algorithm, if
used on top of the standard REINFORCE policy gradient. Expect this approach
to take at least 5000 episodes to yield visible performance improvement. This
approach will perform one to two orders of magnitude worse than the other meth-
ods; just report the performance, do not try to optimize this method to compete
with the others.

There are numerous ways to improve the performance of the policy gradient
method. One simple approach is to whiten the reward signal. This can be done by
maintaining the mean of the received rewards, as well as the empirical standard
deviation, and subtracting off this mean and dividing this difference by the stan-
dard deviation. This approach shifts and rescales the reward to have mean zero
and unit covariance, and should result in substantially improved performance.
With this modification, choose a step size in the neighborhood of α = 10−8. This
modification is not required.

e) Each of the previous methods required access to some amount of problem-specific
information. For each of the four methods above, describe the problem infor-
mation that was used in the design of the algorithm. How does the amount of
assumptions for each of the methods compare to the performance of the methods?

Learning goals for this problem set:

Problem 1: To gain familiarity with tools for computing HJ reachability; develop an un-
derstanding of sublevel sets in the context of backward reachability.

Problem 2: To understand the basics of feasibility in model predictive control.

Problem 3: To gain an intuitive understanding of the role of terminal costs and invariant
constraints in model predictive control.

Problem 4: To understand the most fundamental reinforcement learning algorithms and
their strengths and weaknesses.

References

[BYB94] S. J. Bradtke, B. E. Ydstie, and A. G. Barto, Adaptive linear quadratic control
using policy iteration, Proc. IEEE Conf. on Decision and Control, 1994.

[FCTS15] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry, Reach-avoid problems with
time-varying dynamics, targets and constraints, Hybrid Systems: Computation
and Control, 2015.

[Mit02] I. M. Mitchell, Application of level set methods to control and reachability problems
in continuous and hybrid systems, Ph.D. thesis, Stanford University, 2002.

9


