
Spring 2021

Stanford
AA 203: Optimal and Learning-based Control

Problem Set 2, due May 3 by 5:00 pm

Problem 1: Introduction to Q-Learning

You have just purchased Widget Co., a small shop selling widgets. Congratulations!
Widget Co. is in the business of buying widgets wholesale, and selling them to con-
sumers at a markup. While the previous owners were losing money, you suspect that
you can apply the material that you learned in AA203 to turn the business around.

The shop is able to store between 0 and 5 widgets at a time. We will write the number
of widgets held in the shop on day k as xk. Every day, you choose how many widgets to
order from your supplier. You can order either zero widgets, a “half order” of 2 widgets,
or a “full order” of 4 widgets. We write the number of widgets ordered to arrive on day
k as uk. A random number of customers (following an unknown distribution, though
this distribution may be assumed to be consistent across all days) come in to Widget
Co. every day, and buy a widget if there are any available. We write the demand on
day k as dk, and assume dk ≤ 5. As such, the dynamics are

xk+1 = min(5,max(xk + uk − dk, 0)) (1)

where dk is sampled i.i.d. from p(d).

Your costs are as follows. You must pay a fixed rent on your shop, r = 1. You also
pay a cost s = 0.05 to store each widget overnight. You pay b(u) =

√
u to order from

your supplier. Finally, you earn c = 1.2 for each widget you sell. Thus, the total profit
each day is

r(xk, uk, dk) = cmin(dk, xk + uk)− r − sxk − b(uk) (2)

where min(dk, xk + uk) is the “satisfied” demand.

a) The previous owners were nice enough to give you the details of their last three
years of operation. In particular, they have provided a dataset of the last three
years of (xk, uk, rk, xk+1) data. Write a Q-learning algorithm to learn an optimal
policy π∗ from this dataset. The starter code contains a function to generate the
dataset. Submit a plot of Q-values for each state-action pair versus the number
of iterations (please group these plots by state–i.e. the Q values for each action
should all appear on the same plot for each state, and thus you should have six
total plots). Use a discount factor of 0.95.

Once π∗ has been computed, simulate this policy for five years (5∗365 days/iterations).
Plot the total (aggregate) profit earned in the period from the beginning of the
simulation to each day over the five year period. See problem1 starter.py and
problem1 env.py for starter code.

1

b) Write code to do value iteration, using the knowledge that the demand model is:

dk =

0 with probability 0.1

1 with probability 0.3

2 with probability 0.3

3 with probability 0.2

4 with probability 0.1

(3)

From this, compute the same Q values estimated in part (a). Again, use a discount
factor of 0.95. Compare the values computed by value iteration to those estimated
via Q-learning. What do you notice about the differences between the Q values
computed by each method?

c) Do you think Q learning is the best approach to this problem? What information
from the problem setting have we used in our approach? What information have
we not used?

Hint: Your Q-learning algorithm will likely take on the order of 10000 steps to converge,
depending on the step size used. See the starter code for details on simulating the policy
and functions to use for value iteration.

Problem 2: Cart-pole swing-up
In this problem, we will implement a controller to solve the challenging “swing up”
problem, in which the pendulum begins hanging downwards and is then brought to the
upright position. Unlike in the cart-pole balancing problem, it is no longer sufficient
to linearize around a single stationary point, so we will use iterative LQR control.
We provide starter code in problem2 ilqr starter.py and animations.py; when
submitting code, only provide the lines of code that you are asked to write in your
submission.

Recall that the cart-pole is a continuous-time system with dynamics of the form ṡ =
f(s, u). To compute the iLQR control law, we will consider the Euler discretized
dynamics

sk+1 ≈ fdiscrete(sk, uk) := sk + ∆tf(sk, uk), (4)

with time step ∆t > 0. The provided code will then simulate this control law on the
original continuous-time system.

a) For a given operating point (s̄k, ūk), suppose we define the Jacobians

Ak :=
∂fdiscrete
∂s

(s̄k, ūk), Bk :=
∂fdiscrete
∂u

(s̄k, ūk). (5)

Use JAX on line 22 in problem2 ilqr starter.py to write a single line of code
that computes Ak and Bk, given fdiscrete, s̄k and ūk.

2

For our iLQR controller, we will use the quadratic cost function

1

2
(sN − s∗)TQN(sN − s∗) +

1

2

N−1∑
k=0

(
(sk − s∗)TQ(sk − s∗) + uTkRuk

)
, (6)

where s∗ is the goal state (i.e., the upright position). The entries of QN � 0 are chosen
to be large to enforce a soft terminal constraint.

b) Rewrite the cost function in terms of the deviations ∆sN := sN − s̄N , ∆sk :=
sk − s̄k, and ∆uk := uk − ūk. This will result in a quadratic cost function with
linear terms of the form qTN∆sN , qTk ∆sk, and rTk ∆uk; identify the vectors qN , qk,
and rk.

c) Use NumPy to complete the iLQR controller code in the delineated section be-
ginning on line 89 in problem2 ilqr starter.py. Specifically, your code must
update the controller terms {Lk}N−1k=0 and {lk}N−1k=0 , and the forward-simulated
states {sk}Nk=1 and control inputs {uk}N−1k=0 .

d) Toggle the boolean on line 148 in problem2 ilqr starter.py to simulate using
continuous-time dynamics instead of the Euler-discretized dynamics considered by
iLQR. Notice that your iLQR control sequence no longer accomplishes the task if
applied open-loop. Use the fact that iLQR additionally outputs a feedback policy
that stabilizes around the optimized trajectory to modify the applied control
(line 159) and accomplish the swing-up task even when simulating with the “true”
system.

e) Run problem2 ilqr starter.py to view a plot of the cart-pole state variables
over time and an animation of the swing-up maneuver. Submit the plot only.

Problem 3: Cart-pole swing-up with limited actuation
We used iterative LQR to solve the cart-pole swing-up problem in Problem 2. However,
we did not account for constraints on the control (which moves the cart horizontally).
In practice, control constraints often arise from motor limitations. In this problem,
we consider we study the swing up problem with the following control constraints:
u ∈ U = [−5, 3].1

We will solve this problem using a direct method, relying on Sequential Convex Pro-
gramming (SCP) as seen in lecture. The key idea is iteratively re-linearizing the dy-
namics and constructing a convex approximation of the cost function around a nominal
trajectory. Since linearization provides a good approximation to the nonlinear dynam-
ics only in a small neighborhood around the nominal trajectory (s̄, ū), the accuracy
of the convex model may be poor if s, u deviate far from (s̄, ū). To ensure smooth
convergence, we consider a convex trust region on the state and the input, which is
imposed as an additional constraint in the convex optimization problem. We consider
a box around the nominal trajectory (s̄, ū), which can be written as:

T := {s, u : ||s− s̄||∞ ≤ ρ, ||u− ū||∞ ≤ ρ}
1Some DC motors run with better performance (more torque) in one direction than the other, so asym-

metrical constraints are definitely common in practice.

3

We will use CVX to solve this problem.

a) Given a nominal trajectory (s̄, ū), where s̄ = (s̄1, s̄2, ..., s̄N) and ū = ū1, ū2, ..., ūN),
write down the convex approximation to the optimal control problem for iteration
k + 1, including trust region constraints. The derived problem should have lin-
ear equality constraints obtained by linearizing the dynamics about the nominal
trajectory (s̄, ū).

b) The linearized dynamics will have the form sk+1 = Aksk + Bkuk + ck. Using
JAX, complete the function linearize in problem3_scp_starter.py to compute
Ak, Bk, ck from s̄k, ūk.

c) Complete the code for scp_iteration starting on line 59 of problem3_scp_starter.py.
Specifically, given a nominal trajectory (s̄, ū), use CVX to specify and solve the con-
vex optimization problem derived in part a) to obtain an updated solution (s, u).

Hint: Consider using ρ = 0.5.

d) Run problem3_scp_starter.py to run a simulation after you complete the con-
troller. This script will generate plots of the state and control trajectories. Submit
the plots only.

Learning goals for this problem set:

Problem 1: To gain experience with Q-learning in a “real world” setting with implemen-
tation details left open-ended.

Problem 2: Apply iLQR for nonlinear trajectory optimization and stabilization; use JAX
for dynamics linearization.

Problem 3: Apply sequential convex programming to include control constraints in non-
linear trajectory optimization; build familiarity with CVX.

4

