
Spring 2021

Stanford
AA 203: Optimal and Learning-based Control

Problem Set 1, due April 21 by 5:00 pm

Problem 1: Introduction to MRAC
Consider the continuous-time system

ẏ(t) + αy(t) = βu(t).

We want to control this system, but we do not know the true plant parameters α, β ∈ R.
In this problem, we will use direct Model-Reference Adaptive Control (MRAC) to match
the behavior of the true plant with that of the reference model

ẏm(t) + αmym(t) = βmr(t)

where αm, βm ∈ R are known constant parameters, and r(t) is a chosen bounded refer-
ence signal.

a) Consider the control law

u(t) = kr(t)r(t) + ky(t)y(t),

where kr(t) and ky(t) are time-varying feedback gains. Write out the differential
equation for the resulting closed-loop dynamics. Use this to verify that, if y(0) =
ym(0) and we knew α and β, the constant control gains

k∗r :=
βm
β
, k∗y :=

α− αm
β

would make the true plant dynamics perfectly match the reference model.

b) When we do not know α and β, we adaptively update our controller over time
in response to measurements of y(t). Specifically, we want an adaptation law for
kr(t) and ky(t) to make y(t) tend towards ym(t) asymptotically. For this, we define
the tracking error e(t) := y(t)− ym(t) and the parameter errors

δr(t) := kr(t)− k∗r , δy(t) := ky(t)− k∗y.

Determine a differential equation for e in terms of e, ė, y, r, δy, δr, and suitable
constants.

We consider the adaptation law for kr and ky described by

k̇r(t) = − sign(β)γe(t)r(t)

k̇y(t) = − sign(β)γe(t)y(t)
,

1

where γ > 0 is a chosen constant adaptation gain. Since we are adapting the gains
kr and ky of our controller directly, rather than estimates of the system parameters α
and β, this is a direct adaptation law. We must at least know the sign of β, which
indicates in what direction the input u(t) “pushes” the output y(t). For example, when
modeling a car, you could reasonably assume that an increased braking force slows
down the car. To show that the tracking error and parameter errors are stabilized by
our chosen control law and adaptation law, we use Lyapunov theory.

Theorem 1 (Lyapunov). Consider the continuous-time system ẋ = f(x, t), where
x = 0 is an equilibrium point, i.e., f(0, t) ≡ 0. Suppose there exists a continuously
differentiable scalar function V (x, t) such that V is positive-definite in x for each t ≥ 0,
and V̇ is negative semi-definite in x for each t ≥ 0. Then x = 0 is a stable point in
the sense of Lyapunov, i.e., ‖x(t)‖2 remains bounded as long as ‖x(0)‖2 is bounded.

c) Consider the state x := (e, δr, δy) and the Lyapunov function candidate

V (x) =
1

2
e2 +

|β|
2γ

(δ2r + δ2y).

Show that V̇ = −αme2. Based on Lyapunov theory, what can you say about e(t),
δr(t), and δy(t) for all t ≥ 0 if αm > 0?

In general, adaptive controllers yield time-varying closed-loop dynamics, even for LTI
systems. As a result, we require more mathematical machinery beyond basic Lyapunov
theory to establish anything stronger than Lyapunov stability. To this end, we use
Barbalat’s Lemma.

Theorem 2 (Barbalat’s Lemma). Suppose g : R → R is differentiable. If g has a
finite limit as t→∞ and ġ is uniformly continuous, then limt→∞ ġ(t) = 0.

Boundedness of the derivative of a function is a sufficient condition for Lipschitz con-
tinuity and hence uniform continuity. As a result, we have the following corollary.

Corollary 1. Suppose g : R → R is twice differentiable. If g has a finite limit as
t→∞ and g̈ is bounded, then limt→∞ ġ(t) = 0.

d) Apply Barbalat’s Lemma to V to prove a stronger statement about e(t) than we
could originally make with basic Lyapunov theory in part (c).

With the given control law and adaptation law, MRAC proceeds as follows. We choose
a reference signal r(t) to excite the reference output ym(t) and construct the input
signal u(t). We use u(t) to excite the true model, from which the output y(t) and
tracking error e(t) are observed. The output y(t) is fed back into the control law, while
the tracking error e(t) is fed into the adaptation law.

2

e) Apply MRAC to the unstable plant

ẏ(t)− y(t) = 3u(t).

That is, simulate an adaptive controller for this system that does not have access
to the true model parameters α = −1 and β = 3. The desired reference model is

ẏm(t) + 4ym(t) = 4r(t),

with αm = 4 and βm = 4. Use an adaptation gain of γ = 2, and zero initial
conditions for y, ym, kr, and ky. For t ∈ [0, 10], plot both y(t) and ym(t) in one
figure, and kr(t), k

∗
r , ky(t), and k∗y in another figure for r(t) ≡ 4. Then repeat

this for r(t) = 4 sin(3t). Overall, you should have four figures in total. What do
you notice about the trends for different reference signals? Why do you think this
occurs? In your explanation, try to link your observations with the statements
about e(t), δr(t), and δy(t) we were able and unable to prove in parts (c,d).

Problem 2: Shortest path through a grid
Consider the shortest path problem in Figure 1 where it is only possible to travel to
the right and the numbers represent the travel times for each segment. The control
input is the decision to go “up-right” or “down-right” at each node.

Figure 1: Shortest path problem on a grid.

a) Use Dynamic Programming (DP) to find the shortest path from A to B.

b) Consider a generalized version of the shortest path problem in Figure 1 where the
grid has n segments on each side. Find the number of computations required by
an exhaustive search algorithm (i.e., the number of routes that such an algorithm
would need to evaluate) and the number of computations required by a DP algo-
rithm (i.e., the number of DP evaluations). For example, for n = 3 as in Figure 1,
an exhaustive search algorithm requires 20 computations, while the DP algorithm
requires only 15.

3

Problem 3: Machine maintenance
Suppose we have a machine that is either running or is broken down. If it runs through-
out one week, it makes a gross profit of $100. If it fails during the week, gross profit is
zero. If it is running at the start of the week and we perform preventive maintenance,
the probability that it will fail during the week is 0.4. If we do not perform such main-
tenance, the probability of failure is 0.7. However, maintenance will cost $20. When
the machine is broken down at the start of the week, it may either be repaired at a cost
of $40, in which case it will fail during the week with a probability of 0.4, or it may
be replaced at a cost of $150 by a new machine that is guaranteed to run through its
first week of operation. Find the optimal repair, replacement, and maintenance policy
that maximizes total profit over four weeks, assuming a new machine at the start of
the first week.

Problem 4: Markovian drone
In this problem, we will apply techniques for solving a Markov Decision Process (MDP)
to guide a flying drone to its destination through a storm. The world is represented as
an n× n grid, i.e., the state space is

S := {(x1, x2) ∈ R2 | x1, x2 ∈ {0, 1 . . . , n− 1}}.

In these coordinates, (0, 0) represents the bottom left corner of the map and (n−1, n−1)
represents the top right corner of the map. From any location x = (x1, x2) ∈ S, the
drone has four possible directions it can move in, i.e.,

A := {up, down, left, right}.

The corresponding state changes for each action are:

• up: (x1, x2) 7→ (x1, x2 + 1)

• down: (x1, x2) 7→ (x1, x2 − 1)

• left: (x1, x2) 7→ (x1 − 1, x2)

• right: (x1, x2) 7→ (x1 + 1, x2)

Additionally, there is a storm centered at xeye ∈ S. The storm’s influence is strongest
at its center and decays farther from the center according to the equation ω(x) =

exp
(
−‖x−xeye‖

2
2

2σ2

)
. Given its current state x and action a, the drone’s next state is

determined as follows:

• With probability ω(x), the storm will cause the drone to move in a uniformly
random direction.

• With probability 1 − ω(x), the drone will move in the direction specified by the
action.

• If the resulting movement would cause the drone to leave S, then it will not move
at all. For example, if the drone is on the right boundary of the map, then moving
right will do nothing.

4

The quadrotor’s objective is to reach xgoal ∈ S, so the reward function is the indicator
function R(x) = Ixgoal(x). In other words, the drone will receive a reward of 1 if it
reaches the xgoal ∈ S, and a reward of 0 otherwise. The reward of a trajectory in this
infinite horizon problem is a discounted sum of the rewards earned in each timestep,
with discount factor γ ∈ (0, 1).

a) Given n = 20, σ = 10, γ = 0.95, xeye = (15, 15), and xgoal = (19, 9), write
code that uses value iteration to find the optimal value function for the drone to
navigate the storm. Recall that value iteration repeats the Bellman update

V (x)← max
a∈A

(∑
x′∈S

p(x′;x, a)(R(x′) + γV (x′))

)

until convergence, where p(x′;x, a) is the probability distribution of the next state
being x′ after taking action a in state x, and R is the reward function. Plot a
heatmap of the optimal value function obtained by value iteration over the grid
S, with x = (0, 0) in the bottom left corner, x = (n − 1, n − 1) in the top right
corner, the x1-axis along the bottom edge, and the x2-axis along the left edge.

b) Recall that a policy π is a mapping π : S → A where π(x) specifies the action
to be taken should the drone find itself in state x. An optimal value function V ∗

induces an optimal policy π∗ such that

π∗(x) ∈ arg max
a∈A

(∑
x′∈S

p(x′;x, a)(R(x′) + γV ∗(x′))

)

Use the value function you computed in part (a) to compute an optimal policy.
Then, use this policy to simulate the MDP starting from over N = 100 time
steps starting at x = (0, 19). Plot the policy as a heatmap where the actions
{up, down, left, right} correspond to the values {0, 1, 2, 3}, respectively. Plot the
simulated drone trajectory overlaid on the policy heatmap, and briefly describe
in words what the policy is doing.

Problem 5: Cart-pole balance
In this problem, we will design a controller to balance an inverted pendulum on a
cart, i.e., the classic “cart-pole” benchmark. This system has two degrees of freedom
corresponding to the horizontal position x of the cart, and the angle θ of the pendulum
(where θ = 0 occurs when the pendulum is handing straight down). We can apply a
force u ∈ R to push the cart horizontally, where u > 0 corresponds to a force in the
positive x-direction. With the state s := (x, θ, ẋ, θ̇) ∈ R4, we can write the continuous-
time dynamics of the cart-pole system as

ṡ = f(s, u) =


ẋ

θ̇
mp sin θ(`θ̇2+g cos θ)+u

mc+mp sin2 θ

− (mc+mp)g sin θ+mp`θ̇2 sin θ cos θ+u cos θ

(mc+mp sin2 θ)`

 ,

5

where mp is the mass of the pendulum, mc is the mass of the cart, ` is the length of the
pendulum, and g is the acceleration due to gravity. We can discretize the continuous-
time dynamics using Euler integration with a fixed time step ∆t to get the approximate
discrete-time dynamics

sk+1 ≈ sk + ∆tf(sk, uk),

where sk and uk are the state and control input, respectively, at time t = k∆t.

a) Consider the upright state s∗ := (0, π, 0, 0) with u∗ := 0, and define ∆sk := sk−s∗.
Linearizing the approximate discrete-time dynamics sk+1 ≈ sk+∆tf(sk, uk) about
(s∗, u∗) yields an approximate LTI system of the form

∆sk+1 ≈ A∆sk +Buk.

Express A and B in terms of mp, mc, `, g, and ∆t. You may use the fact that

∂f

∂s
(s∗, u∗) =


0 0 1 0

0 0 0 1

0 mpg

mc
0 0

0 (mc+mp)g

mc`
0 0

 , ∂f

∂u
(s∗, u∗) =


0

0
1
mc

1
mc`

 .
We will design a stabilizing LQR controller for this discrete-time LTI system to solve

minimize
{uk}∞k=0

∞∑
k=0

(
1

2
∆sTkQ∆sk +

1

2
uTkRuk

)
subject to ∆sk+1 = A∆sk +Buk, ∀k ∈ N≥0

,

for fixed Q,R � 0. Recall that after N iterations of the discrete-time Riccati recursion

Kk = −(R +BTPk+1B)−1BTPk+1A

Pk = Q+ ATPk+1(A+BKk)
,

the cost-to-go matrices {Pk}Nk=0 and the time-varying feedback gains {Kk}N−1k=0 describe
the optimal LQR controller for a finite-horizon version of the problem above. If (A,B)
is stabilizable, then these iterates asymptotically converge to some P∞ � 0 and K∞,
such that (s0−s∗)TP∞(s0 − s∗) > 0 is the finite optimal cost-to-go for any initialization
s0, and uk = K∞∆sk is the time-invariant feedback law for the corresponding optimal
LQR controller1.

b) Write code to approximate P∞ and K∞ for the linearized, discretized cart-pole
system by initializing P∞ = 0 and then applying the Ricatti recursion until conver-
gence with respect to the maximum element-wise norm condition ‖Pk+1−Pk‖max <
10−4. Use mp = 2 kg, mc = 10 kg, ` = 1 m, g = 9.81 m/s2, ∆t = 0.1 s, Q = I4,
and R = I1. Report the value of K∞ up to two decimal places for each entry.

1The infinite-horizon LQR problem also converges for fixed Q � 0 and R � 0, as long as (A,B) is
stabilizable and (A,Q) is observable.

6

c) Write code to simulate the continuous-time, nonlinear cart-pole system with the
linear feedback controller u = K∞∆s. Initialize the system at s = (0, 3π/4, 0, 0),
and use a controller sampling rate of 10 Hz. Plot each state variable over time
for t ∈ [0, 30]. For your own interest, we provide the function animate cartpole

in animations.py to create a video animation of the cart-pole over time2.

Hint: Write a function ds = cartpole(s,t,u) that computes the state deriva-
tive ds for the continuous-time, nonlinear cart-pole dynamics. To simulate the
cart-pole with the fixed control input u[k] from state s[k] at time t[k] to state
s[k+1] at time t[k+1], you can use the following Python code:

from scipy.integrate import odeint

s[k+1] = odeint(cartpole, s[k], t[k:k+2], (u[k],))[1]

Make sure to review the documentation for odeint.

d) To investigate the disturbance rejection ability of the controller, add noise to the
system dynamics. Specifically, after each controller sampling period (i.e., every
0.1 s), sample a new noise vector w ∈ R4 from the Gaussian distribution with
mean µ = 0 and covariance Σ = diag(0, 0, 10−4, 10−4), and add it to the state.
Simulate the noisy system and plot each state variable over time for t ∈ [0, 30].

Learning goals for this problem set:

Problem 1: To explore the theoretical underpinnings of MRAC, and observe its behaviour
on an example system in simulation.

Problem 2: To familiarize with the DP algorithm and to appreciate the computational
savings of DP versus an exhaustive search algorithm.

Problem 3: To apply dynamic programming in stochastic environments by reasoning about
expected utilities.

Problem 4: To solve a stochastic optimization problem with value iteration by formulating
it as a MDP.

Problem 5: To gain experience with implementing LQR controllers.

2See https://github.com/StanfordASL/AA203-Homework.

7

https://github.com/StanfordASL/AA203-Homework

