AA 203
Optimal and Learning-Based Control
Nonlinear optimization theory

Spencer M. Richards

Autonomous Systems Laboratory, Stanford University

April 5, 2023
(last updated May 3, 2023)
Optimization in many dimensions

1-D

2-D

N-D

∞-D
1. Unconstrained optimization

2. Descent methods for unconstrained problems

3. Equality-constrained optimization

4. Inequality-constrained optimization
1. Unconstrained optimization

2. Descent methods for unconstrained problems

3. Equality-constrained optimization

4. Inequality-constrained optimization
Unconstrained optimization

Given an objective function $f : \mathbb{R}^n \to \mathbb{R}$, we denote an *unconstrained nonlinear program* with the notation

$$\min_{x \in \mathbb{R}^n} f(x).$$

We usually assume either $f \in C^1$ (i.e., “continuously differentiable”) or $f \in C^2$ (i.e., “twice continuously differentiable”).

A solution candidate $x^* \in \mathbb{R}^n$ can be a:

- **local minimum** $\exists \varepsilon > 0 : f(x^*) \leq f(x), \forall x : \|x - x^*\| \leq \varepsilon$
- **global minimum** $f(x^*) \leq f(x), \forall x \in \mathbb{R}^n$

If the inequality is strict, i.e., “$<$”, then x^* is a strict unconstrained local/global minimum. Any (strict) global minimum is also a (strict) local minimum.

There can be many minima, or none at all!
Let x^* be a local minimum.

Suppose $f \in C^1$. Then near x^* we have must have

$$f(x^* + \Delta x) - f(x^*) \approx \nabla f(x^*)^T \Delta x \geq 0$$

For each i, take $\Delta x = \delta e^{(i)}$ and $\Delta x_i = -\delta e^{(i)}$ for small $\delta > 0$, where

$$e^{(i)} := (0, \ldots, 0, 1, 0, \ldots) \in \{0, 1\}^n.$$

Then we get

$$\frac{\partial f}{\partial x_i}(x^*) \delta \geq 0, \quad -\frac{\partial f}{\partial x_i}(x^*) \delta \geq 0 \iff \frac{\partial f}{\partial x_i}(x^*) = 0.$$

Overall, we have $\nabla f(x^*) = 0$, i.e., x^* must be a stationary point.
Let x^* be a local minimum.

Suppose $f \in C^2$. Then near x^* we have must have

$$f(x^* + \Delta x) - f(x^*) \approx \nabla f(x^*)^T \Delta x + \frac{1}{2} \Delta x^T \nabla^2 f(x^*) \Delta x \geq 0$$

We know $\nabla f(x^*) = 0$, so we must have

$$\frac{1}{2} \Delta x^T \nabla^2 f(x^*) \Delta x \geq 0.$$

Since we can choose Δx arbitrarily within an ε-sized ball around x^*, we must have $\nabla^2 f(x^*) \succeq 0$, i.e., the Hessian of f at x^* is a positive semi-definite matrix.
Theorem (NOCs for unconstrained problems)

Suppose \(x^* \in \mathbb{R}^n \) is an unconstrained local minimum of \(f : \mathbb{R}^n \to \mathbb{R} \).

- If \(f \in C^1 \) on an open set \(\mathcal{X} \subseteq \mathbb{R}^n \) containing \(x^* \), then \(\nabla f(x^*) = 0 \).
- If \(f \in C^2 \) on \(\mathcal{X} \), then \(\nabla^2 f(x^*) \succeq 0 \).
Sufficient optimality conditions (SOCs) for unconstrained problems

If $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succ 0$, then

$$f(x^* + \Delta x) - f(x^*) \approx \frac{1}{2} \Delta x^T \nabla^2 f(x^*) \Delta x > 0$$

for small Δx.

Theorem (SOCs for unconstrained problems)

Suppose $f \in C^2(\mathcal{X}, \mathbb{R})$ on some open set $\mathcal{X} \subseteq \mathbb{R}^n$. If $x^* \in \mathcal{X}$ satisfies

$$\nabla f(x^*) = 0, \quad \nabla^2 f(x^*) \succ 0,$$

then x^* is an unconstrained strict local minimum of f.

We cannot just use $\nabla^2 f(x^*) \succeq 0$ due to saddle points.
Convex sets and convex functions

A set $\mathcal{X} \subseteq \mathbb{R}^n$ is convex if

$$\alpha x + (1 - \alpha)y \in \mathcal{X}, \ \forall x, y \in \mathcal{X}, \ \forall \alpha \in [0, 1].$$

A function $f : \mathcal{X} \to \mathbb{R}^n$ is convex on \mathcal{X} if

$$f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y), \ \forall x, y \in \mathcal{X}, \ \forall \alpha \in [0, 1].$$

If the inequality is strict, then f is strictly convex.

A function $f \in C^2$ is convex on \mathcal{X} if and only if $\nabla^2 f(x) \succeq 0$ for all $x \in \mathcal{X}$. If $\nabla^2 f(x) > 0$ for all $x \in \mathcal{X}$, then f is strictly convex.

Important examples of convex functions for this course are:

- **Quadratic** $f(x) = x^TQx$ (where $Q \succeq 0$)
- **Affine** $f(x) = Ax + b$ (both convex and concave)
Theorem (NOCs are SOCs for unconstrained convex problems)

Let $f : \mathcal{X} \to \mathbb{R}$ be a convex function over a convex set $\mathcal{X} \in \mathbb{R}^n$.

- If $x^* \in \mathcal{X}$ is local minimum of f, then it is also a global minimum over \mathcal{X}.
- If f is strictly convex, then there exists at most one global minimum of f over \mathcal{X}.
- Suppose additionally that \mathcal{X} is open and $f \in C^1(\mathcal{X}, \mathbb{R})$. Then $\nabla f(x^*) = 0$ if and only if x^* is a global minimum of f over \mathcal{X}.
1. Unconstrained optimization

2. Descent methods for unconstrained problems

3. Equality-constrained optimization

4. Inequality-constrained optimization
Iterative descent methods start at an initial guess $x^{(0)}$, and try to successively generate vectors $\{x^{(1)}, x^{(2)}, \ldots\}$ such that the objective decreases at each iteration, i.e.,

$$f(x^{(k+1)}) \leq f(x^{(k)}), \quad \forall k \in \{0, 1, 2, \ldots\}.$$

The hope is that we can decrease f all the way to a minimum.

Consider the update rule

$$x^{(k+1)} = x^{(k)} + \alpha^{(k)} d^{(k)},$$

where $\alpha^{(k)} > 0$ is the step-size and $d^{(k)} \in \mathbb{R}^n$ is the descent direction. Then

$$f(x^{(k+1)}) \approx f(x^{(k)}) + \alpha^{(k)} \nabla f(x^{(k)})^T d^{(k)}.$$

The goal is to choose $\alpha^{(k)} > 0$ and $d^{(k)} \in \mathbb{R}^n$ such that this approximation is appropriate and $\nabla f(x^{(k)})^T d^{(k)} < 0$.

Let $d^{(k)} = -D^{(k)} \nabla f(x^{(k)})$, where $D^{(k)} \succ 0$. Then
\[
\begin{align*}
f(x^{(k+1)}) &\approx f(x^{(k)}) + \alpha^{(k)} \nabla f(x^{(k)})^T d^{(k)} \\
&= f(x^{(k)}) - \alpha^{(k)} \nabla f(x^{(k)})^T D^{(k)} \nabla f(x^{(k)}).
\end{align*}
\]
Since $D^{(k)} \succ 0$, we have that $f(x^{(k+1)}) \leq f(x^{(k)})$ for small enough $\alpha^{(k)} > 0$.

Popular choices for the descent scaling $D^{(k)}$ are:

- **steepest** $D^{(k)} = I$.
- **Newton** $D^{(k)} = \nabla^2 f(x^{(k)})^{-1}$, provided that the inverse exists.

The Newton descent direction analytically minimizes the quadratic approximation
\[
f(x^{(k+1)}) \approx f(x^{(k)}) + \nabla f(x^{(k)})^T d^{(k)} + \frac{1}{2} d^{(k)^T} \nabla^2 f(x^{(k)}) d^{(k)}
\]
at each iteration k, assuming $\nabla^2 f(x^{(k)})$ is invertible.
Selecting the step-size

Constant Choose $\alpha^{(k)} \equiv \alpha > 0$. Convergence can be slow, or the iterates could diverge if α is too large.

Diminishing Ensure $\alpha^{(k)} \to 0$ and $\sum_{k=0}^{\infty} \alpha^{(k)} = \infty$. This does not guarantee descent at each iteration, but it can avoid diverging iterates.

Line search Given the current iterate $x^{(k)}$ and a descent direction $d^{(k)}$, compute

$$\alpha^{(k)} = \arg \min_{\alpha > 0} f(x^{(k)} + \alpha d^{(k)})$$

exactly if possible. Otherwise, do backtracking line search

- **initialize** $\alpha^{(k)} = 1$
- **while** $f(x^{(k)} + \alpha d^{(k)}) > f(x^{(k)}) + \gamma \alpha^{(k)} \nabla f(x^{(k)})^T d^{(k)}$

 $\alpha^{(k)} \leftarrow \beta \alpha^{(k)}$

where $\gamma \in (0, 0.5)$ and $\beta \in (0, 1)$ are hyperparameters.
Further topics to explore

There is a wealth of mathematical analyses of descent methods involving:

- guarantees for convergence to a stationary point
- good convergence criteria (e.g., \(\|x^{(k)} - x^{(k-1)}\| < \varepsilon, \|f(x^{(k)}) - f(x^{(k-1)})\| < \varepsilon, \|\nabla f(x^{(k)})\| < \varepsilon \))
- convergence rates (e.g., \(f(x^{(k)}) - f(x^*) \leq \frac{1}{k} \|x^{(0)} - x^*\|_2^2 \))

There are other descent methods that can be implemented “derivative-free”, such as

- coordinate descent
- Nelder-Mead algorithms
1. Unconstrained optimization

2. Descent methods for unconstrained problems

3. Equality-constrained optimization

4. Inequality-constrained optimization
Equality-constrained optimization

Given an objective function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) and a constraint function \(h : \mathbb{R}^n \rightarrow \mathbb{R}^m \), we denote an equality-constrained nonlinear program with the notation

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad h(x) = 0
\end{align*}
\]

We assume \(f \in C^1(\mathbb{R}^n, \mathbb{R}) \) and \(h \in C^1(\mathbb{R}^n, \mathbb{R}^m) \).
Lagrange multipliers for equality-constrained problems

Define the *Lagrangian* function

\[
L(x, \lambda) := f(x) + \lambda^T h(x) = f(x) + \sum_{i=1}^{m} \lambda_i h_i(x),
\]

where \(\lambda \in \mathbb{R}^m \) is a vector of *Lagrange multipliers*.

Theorem (First-order NOC for equality-constrained problems)

Suppose \(x^* \in \mathbb{R}^n \) is a local minimum of \(f \in C^1(\mathbb{R}^n, \mathbb{R}) \) subject to \(h(x^*) = 0 \) with \(h \in C^1(\mathbb{R}^n, \mathbb{R}^m) \). Moreover, assume \(\{\nabla h_i(x^*)\}_{i=1}^{m} \) are linearly independent. Then there exists a unique \(\lambda^* \in \mathbb{R}^m \) such that

\[
\nabla_x L(x^*, \lambda^*) = \nabla f(x^*) + \sum_{i=1}^{m} \lambda^*_i \nabla h_i(x^*) = 0.
\]

Second-order NOCs and SOCs for constrained problems are discussed in *AA203-Notes* and *(Bertsekas, 2016).*
Re-arrange $\nabla_x L(x^*, \lambda^*) = 0$ to get

$$-\nabla f(x^*) = \sum_{i=1}^{m} \lambda_i^* \nabla h_i(x^*).$$

Further reduction of the objective value would produce a change in the constraint function, thereby violating $h(x) = 0$.
The first-order NOC required that x^* is a regular point, i.e., that $\{\nabla h_i(x^*)\}_{i=1}^m$ are linearly independent vectors. Since $\nabla h_i(x^*) \in \mathbb{R}^n$, this implicitly requires $m \leq n$ (i.e., you cannot find more than n linearly independent vectors in \mathbb{R}^n).

Solving $\min_{x : h(x) = 0} f(x)$ can be viewed as solving for n variables subject to m constraints.

The proof of the first-order NOC relies on eliminating m variables to arrive at an unconstrained problem in $n - m$ variables, which in turn relies on $\{\nabla h_i(x^*)\}_{i=1}^m$ being linearly independent to apply the implicit function theorem.

See (Bertsekas, 2016, §4.1.2) for further details.
1. Unconstrained optimization

2. Descent methods for unconstrained problems

3. Equality-constrained optimization

4. Inequality-constrained optimization
Inequality-constrained optimization

Given an objective function \(f : \mathbb{R}^n \to \mathbb{R} \) and constraint functions \(h : \mathbb{R}^n \to \mathbb{R}^m \) and \(g : \mathbb{R}^n \to \mathbb{R}^r \), we denote an inequality-constrained nonlinear program with the notation

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad h(x) = 0 \\
& \quad g(x) \preceq 0
\end{align*}
\]

We assume \(f \in C^1(\mathbb{R}^n, \mathbb{R}) \), \(h \in C^1(\mathbb{R}^n, \mathbb{R}^m) \), and \(g \in C^1(\mathbb{R}^n, \mathbb{R}^r) \). We use “\(\preceq \)” to denote element-wise inequality in this scenario.

For any feasible point \(x \), i.e., such that \(h(x) = 0 \) and \(g(x) \preceq 0 \), define the set of active inequality constraints by

\[
A_g(x) := \{ j \in \{1, 2, \ldots, r\} \mid g_j(x) = 0 \}.
\]
Karush-Kuhn-Tucker (KKT) NOC conditions

With Lagrangian multipliers $\lambda \in \mathbb{R}^m$ and $\mu \in \mathbb{R}^r$, define the Lagrangian

$$L(x, \lambda, \mu) := f(x) + \lambda^T h(x) + \mu^T g(x) = f(x) + \sum_{i=1}^{m} \lambda_i h_i(x) + \sum_{j=1}^{r} \mu_j g_j(x).$$

Theorem (First-order NOC for inequality-constrained problems)

Suppose $x^* \in \mathbb{R}^n$ is a local minimum of $f \in C^1(\mathbb{R}^n, \mathbb{R})$ subject to $h(x^*) = 0$ and $g(x^*) \preceq 0$ with $h \in C^1(\mathbb{R}^n, \mathbb{R}^m)$ and $g \in C^1(\mathbb{R}^n, \mathbb{R}^r)$. Moreover, assume

$$\{\nabla h_i(x^*)\}_{i=1}^{m} \cup \{\nabla g_j(x^*)\}_{j \in A_g(x^*)}$$

are linearly independent. Then there exist unique $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^r$ such that

$$\nabla_x L(x^*, \lambda^*, \mu^*) = 0, \quad \mu^* \succeq 0, \quad \mu_j^* = 0, \quad \forall j \notin A_g(x^*).$$

We can also write the last condition succinctly as $\mu^*^T g(x^*) = 0$.
Consider when \(f \) is convex, each \(g_j(x) \) is convex, and \(h(x) \) is affine, i.e., \(h(x) = Ax - b \). Then we have

\[
\min_{x \in \mathbb{R}^n} f(x)
\]

subject to \(Ax = b \)

\[
g(x) \leq 0
\]

for which the feasible set \(\mathcal{X} := \{ x \in \mathbb{R}^n \mid Ax = b, g(x) \leq 0 \} \) is convex.

Theorem (KKT conditions are NOCs and SOCs for convex problems)

Suppose \(f \in C^1(\mathbb{R}^n, \mathbb{R}) \) and \(g \in C^1(\mathbb{R}^n, \mathbb{R}^r) \) are convex, and that there exists at least one strictly feasible point \(x \in \mathcal{X} \), i.e., \(Ax = b \) and \(g(x) \prec 0 \). Then \((x^*, \lambda^*, \mu^*) \) describe a global minimum if and only if

\[
Ax^* = b, \quad g(x^*) \leq 0, \quad \nabla_x L(x^*, \lambda^*, \mu^*) = 0, \quad \mu^* \succeq 0, \quad \mu^*^T g(x^*) = 0.
\]
Example: Maximal rectangle inside a circle

\[
\begin{align*}
\text{maximize} & \quad x_1 + x_2 \\
\text{subject to} & \quad x_1^2 + x_2^2 = r^2
\end{align*}
\]

We have \(f(x) = -x_1 - x_2 \) (for minimization) with \(h(x) = x_1^2 + x_2^2 - r^2 \), so

\[
L(x, \lambda) = -x_1 - x_2 + \lambda(x_1^2 + x_2^2 - r^2).
\]

The first-order NOC at a local minimum \((x^*, \lambda^*)\) is

\[
\nabla_x L(x^*, \lambda^*) = \begin{pmatrix} -1 + 2\lambda^*x_1^* \\ -1 + 2\lambda^*x_2^* \end{pmatrix} = 0 \iff x_1^* = x_2^* = \frac{1}{2\lambda^*}.
\]

Substitute into \(x_1^{*^2} + x_2^{*^2} = r^2 \) to get \(\lambda^* = \pm \frac{1}{\sqrt{2}r} \iff x_1^* = x_2^* = \pm \frac{1}{\sqrt{2}}r \).

Of the two possible solutions, \(x_1^* = x_2^* = \frac{1}{\sqrt{2}}r \) is the global maximum (i.e., a square).
Why should we care about characterizing optimality conditions?

- Even just NOCs can form a filter for distilling local minima from feasible points.

- NOCs and SOCs can serve as a means for “measuring progress” towards optimality during an optimization procedure, particularly for convex problems.

- Problem structure (e.g., quadratic objective with linear constraints) coupled with convexity and the KKT conditions can be leveraged to implement efficient solvers with good convergence properties (Boyd and Vandenberghe, 2004).

- Even for non-convex problems, convex solvers can be used in iterative convex sub-problems that can converge to a local minimum.
Consider the non-convex problem

$$\begin{align*}
\text{minimize} \quad & f(x) \\
\text{subject to} \quad & h(x) = 0, \quad g(x) \preceq 0
\end{align*}$$

The basic idea of sequential convex programming (SCP) is to maintain an estimate $x^{(k)}$ and iteratively solve for $x^{(k+1)}$ via the convex sub-problem

$$\begin{align*}
\text{minimize} \quad & \hat{f}^{(k)}(x) \\
\text{subject to} \quad & \hat{h}^{(k)}(x) := \hat{A}^{(k)} x - \hat{b}^{(k)} = 0, \quad \hat{g}^{(k)}(x) \preceq 0, \quad x \in T^{(k)}
\end{align*}$$

where $(\hat{f}^{(k)}, \hat{g}^{(k)})$ and $\hat{h}^{(k)}$ are convex and affine, respectively, approximations of (f, g) and h, respectively, over a convex trust region constructed around $x^{(k)}$, e.g.,

$$T^{(k)} := \{x \mid \|x - x^{(k)}\|_{\infty} \leq \rho\},$$

for some $\rho > 0$.

28
Pontryagin’s maximum principle and indirect methods for optimal control (i.e., applying NOCs to optimal control problems)