AA203 Optimal and Learning-based Control

Lecture 15

Model-free RL: Value-based methods

Autonomous Systems Laboratory
Daniele Gammelli
Roadmap

Control

Feedback control Adaptive control

Adaptive optimal control

Model-free RL Model-based RL

Optimal and learning control

Open-loop MPC Closed-loop

Indirect methods Direct methods

DP HJB / HJI
Review

In previous lectures, we made the distinction between prediction (given a policy π, estimate V_π, Q_π) and control (learn the optimal policy π^*).

Motivated by Dynamic Programming, we discussed exact methods for solving MDPs:
- Policy Iteration
- Value Iteration

<table>
<thead>
<tr>
<th>Problem</th>
<th>Bellman Equation</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction</td>
<td>Bellman Expectation Equation</td>
<td>Iterative Policy Evaluation</td>
</tr>
<tr>
<td>Control</td>
<td>Bellman Expectation Equation + Greedy Policy Improvement</td>
<td>Policy Iteration</td>
</tr>
<tr>
<td>Control</td>
<td>Bellman Optimality Equation</td>
<td>Value Iteration</td>
</tr>
</tbody>
</table>

Limitation: Update equations (i.e., Bellman equations) require access to dynamics model $T(x_{t+1} \mid x_t, u_t)$

We saw how to use sampling and bootstrapping to approximate the expectations in the update equations:
- Monte Carlo (MC) Learning
- Temporal-Difference (TD) Learning
• For prediction:

\[
\hat{V}(x_t) \leftarrow \mathbb{E}_{x_t}[R_t + \gamma \hat{V}(x_{t+1})]
\]

- **Dynamic Programming backup**

- **Monte Carlo backup**

\[
\hat{V}(x_t) \leftarrow \hat{V}(x_t) + \alpha \left(G_t - \hat{V}(x_t) \right)
\]

- **Temporal-Difference backup**

\[
\hat{V}(x_t) \leftarrow \hat{V}(x_t) + \alpha \left(R_t + \gamma \hat{V}(x_{t+1}) - \hat{V}(x_t) \right)
\]

• **Sampling:** define the update through samples to approximate expectations
 - MC samples
 - TD samples
 - DP does not sample

• **Bootstrapping:** define the update through an estimate
 - MC does not bootstrap
 - TD bootstraps
 - DP bootstraps

• Sampling:

- MC samples
- TD samples
- DP does not sample

• Bootstrapping:

- MC does not bootstrap
- TD bootstraps
- DP bootstraps

Terminal state
For control: GPI

Problem 1:

Greedy policy improvement over $V(x)$ requires a model of the MDP!

$$\pi_{k+1}(x) = \arg\max_u \left(R(x, u) + \gamma \sum_{x_{t+1} \in \mathcal{X}} T(x_{t+1} \mid x_t, u_t) V_{k+1}(x_{t+1}) \right)$$

On the other hand, greedy policy improvement over $Q(x, u)$ does not

$$\pi_{k+1}(x) = \arg\max_u Q(x, u)$$

Problem 2:

Exploration! To estimate state-action values through samples, every state-action pair needs to be visited

- With probability $1 - \epsilon$, choose the greedy action
- With probability ϵ, choose a random action
- Ensures that all m actions are tried with non-zero probability

$$\pi(u \mid x) = \begin{cases} \frac{\epsilon}{m} + 1 - \epsilon & \text{if } u^* = \arg\max_{u \in \mathcal{U}} Q(x, u) \\ \frac{\epsilon}{m} & \text{otherwise} \end{cases}$$
A taxonomy of RL

RL Algorithms

- **Model-free**
 - Policy optimization: directly maximize the RL objective
 - Value-based: policy implicitly defined via $V(x)$ or $Q(x, u)$

- **Model-based**
 - Learn the model: estimate $f_\theta \approx T(x_{t+1} | x_t, u_t)$
 - Given the model: $T(x_{t+1} | x_t, u_t)$ is known

- do not use dynamics $T(x_{t+1} | x_t, u_t)$
- use dynamics $T(x_{t+1} | x_t, u_t)$

For Model-free:
- $\mathbb{E}_{\tau \sim p_\pi(\tau)} \left[\sum_{t=0}^{H} \gamma^t r(x_t, u_t) \right]$

For Model-based:
- Policy implicitly defined via $\pi(x_t) = \arg \max_a Q(x_t, u_t)$
- Given the model: $T(x_{t+1} | x_t, u_t)$ is known

Notes
- γ: Discount factor
- r: Reward
Outline

Tabular methods
 • On-policy & Off-policy
 • SARSA
 • Q-learning

Value function approximation

Deep (Value-based) RL Methods & Applications
Temporal-Difference Control

- TD learning has several advantages over MC
 - Lower variance
 - Online
 - Incomplete sequences

- Natural idea: use TD instead of MC in our GPI scheme
 - Apply TD to estimate $Q(x, u)$
 - Use ϵ-greedy policy improvement
 - Update every time-step
Updating action-value functions with Sarsa

- Uses every element of the quintuple of events, \((x_t, u_t, r_t, x_{t+1}, u_{t+1})\), that make up a transition from one state–action pair to the next through the following update rule

\[
Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha \left(r_t + \gamma Q(x_{t+1}, u_{t+1}) - Q(x_t, u_t) \right)
\]

- In RL literature, \((x_t, u_t, r_t, x_{t+1}, u_{t+1})\) is often expressed as \((s_t, a_t, r_t, s_{t+1}, a_{t+1})\): hence the name

\[
\hat{V}(x_t) \leftarrow \hat{V}(x_t) + \alpha \left(R_t + \gamma \hat{V}(x_{t+1}) - \hat{V}(x_t) \right)
\]

Temporal-Difference backup

Every time-step:

- Policy evaluation Sarsa, \(Q \approx q_\pi\)
- Policy improvement \(\epsilon\)-greedy policy improvement
Sarsa algorithm

Initialize $Q(x, u), \forall x \in X, \forall u \in U$, arbitrarily, and $Q(\text{terminal-state}, \cdot) = 0$

Repeat (for each episode):

 Initialize x_t

 Choose u_t from x_t using policy derived from Q (e.g., ϵ-greedy)

Repeat (for each step of episode):

 Take action u_t, observe r_t, x_{t+1}

 Choose u_{t+1} from x_{t+1} using policy derived from Q (e.g., ϵ-greedy)

 \[Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha \left(r_t + \gamma Q(x_{t+1}, u_{t+1}) - Q(x_t, u_t) \right) \]

 $x_t \leftarrow x_{t+1}; u_t \leftarrow u_{t+1}$

until x_t is terminal
Sarsa algorithm for π-policy control

\[
\text{Initialize } Q(x, u), \forall x \in X, \forall u \in U, \text{ arbitrarily, and } Q(\text{terminal-state}, \cdot) = 0
\]

Repeat (for each episode):

- Initialize x_t
- Choose u_t from x_t using policy derived from Q (e.g., ϵ-greedy)

Repeat (for each step of episode):

- Take action u_t, observe r_t, x_{t+1}
- Choose u_{t+1} from u_{t+1} using policy derived from Q (e.g., ϵ-greedy)

\[
Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha \left(r_t + \gamma Q(x_{t+1}, u_{t+1}) - Q(x_t, u_t) \right)
\]

- $x_t \leftarrow x_{t+1}$, $u_t \leftarrow u_{t+1}$

until x_t is terminal

On-policy: evaluate or improve the policy that is used to make decisions

Off-policy: evaluate or improve a policy different from that used to generate the data
Windy Gridworld example

- Reward -1 until goal is reached
- $\epsilon = 0.1$
- $\alpha = 0.5$
- $\gamma = 1$
Windy Gridworld example

Question: Would MC methods easily apply to this problem? And why?
Windy Gridworld example

Question:
Would MC methods easily apply to this problem? And why?

No, because termination is not guaranteed for all policies. If a policy was ever found that caused the agent to stay in the same state, then the next episode would never end.
Off-policy learning

• Evaluate target policy $\pi(u \mid x)$ to compute $V_\pi(x)$ or $Q_\pi(x, u)$ while following behavior policy $\mu(u \mid x)$, i.e.,

$$\{x_1, u_1, r_1, \ldots, x_T\} \sim \mu, \text{“the data we observe is obtained under policy } \mu\text{”}$$

Why is this important?
• Learn from observing humans or other agents
• Re-use experience generated from old policies $\pi_1, \pi_2, \ldots, \pi_{t-1}$
• Learn about optimal policy while following exploratory policy
• Learn about multiple policies while following one policy
Off-policy learning of action-values

- We consider off-policy learning of action-values \(Q(x, u)\)

- As in Sarsa, we use the behavior policy \(\mu\) to obtain \((x_t, u_t, r_t, x_{t+1}, u'_{t+1})\), but we consider an alternative successor action \(u'_{t+1} \sim \pi(u'_{t+1} | x_{t+1})\)

- And update \(Q(x, u)\) towards value of alternative action

\[
Q(x, u_t) \leftarrow Q(x, u_t) + \alpha \left(r_t + \gamma Q(x_{t+1}, u'_{t+1}) - Q(x, u_t) \right)
\]
Q-learning

Specifically, in Q-learning

- The target policy π is chosen as the \textit{greedy} policy w.r.t. $Q(x, u)$

$$\pi(x_{t+1}) = \arg\max_{u'_{t+1}} Q(x_{t+1}, u'_{t+1})$$

- The behavior policy μ is chosen as the ϵ-\textit{greedy} policy w.r.t. $Q(x, u)$

Which leads to the following Q-learning target and update:

$$r_{t+1} + \gamma Q(x_{t+1}, u'_{t+1})$$

$$= r_{t+1} + \gamma Q \left(x_{t+1}, \arg\max_{u'_{t+1}} Q \left(x_{t+1}, u'_{t+1} \right) \right)$$

$$Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha \left(r_t + \gamma \max_{u'_{t+1}} Q \left(x_{t+1}, u'_{t+1} \right) - Q(x_t, u_t) \right)$$

$$= r_{t+1} + \gamma \max_{u'_{t+1}} Q \left(x_{t+1}, u'_{t+1} \right)$$
Q-learning algorithm for off-policy control

Initialize $Q(x, u), \forall x \in X, \forall u \in U$, arbitrarily, and $Q(\text{terminal-state}, \cdot) = 0$
Repeat (for each episode):
 Initialize x_t
 Repeat (for each step of episode):
 Choose u_t from x_t using policy derived from Q (e.g., ϵ-greedy)
 Take action u_t, observe r_t, x_{t+1}
 $Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha \left(r_t + \gamma \max_{u'_{t+1}} Q(x_{t+1}, u'_{t+1}) - Q(x_t, u_t) \right)$
 until x_t is terminal

Theorem

Q-learning control converges to the optimal action-value function, $Q(s, a) \to q_*(s, a)$
Differences between Sarsa and Q-learning

- Reward -1 until goal is reached, -100 if on “The Cliff”
- $\epsilon = 0.1$
- $\alpha = 0.5$
- $\gamma = 1$

- Sarsa converges to the optimal ϵ-greedy policy
- Q-learning converges to the optimal policy π^* / value function Q^*
Relationship between DP and TD

<table>
<thead>
<tr>
<th></th>
<th>Full Backup (DP)</th>
<th>Sample Backup (TD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellman Expectation Equation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for $V_\pi(x)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bellman Expectation Equation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for $Q_\pi(x,u)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bellman Optimality Equation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for $Q^*(x,u)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

Tabular methods
- On-policy & Off-policy
 - SARSA
 - Q-learning

Value function approximation

Deep (Value-based) RL Methods & Applications
Solving large-scale problems with RL

- Reinforcement learning can be used to solve *large* problems, e.g.,

 - Backgammon: 10^{20} states
 - Go: 10^{170} states

All those problems where we have a continuous state space

How can we scale the methods for model-free RL we developed over the last lectures?
Value function approximation

- So far we used **lookup tables** to represent value functions:
 - One entry for every state x in $V(x)$
 - One entry for every state-action pair (x, u) in $Q(x, u)$

- In large MDPs, lookup table might be prohibitive. For two main reasons:
 - Memory: too many actions/states to store
 - Sparsity/Curse of dimensionality: learning the value of each state/action pair individually might take too long

Solution:
- Estimate the value function through function approximation, i.e., define a parametric function with parameters θ
 \[
 \hat{Q}_\theta(x, u) \approx Q(x, u)
 \hat{V}_\theta(x) \approx V(x)
 \]
 → Represent the value function compactly (depends only on parameters θ)
 → Generalize *across states* (avoid having to visit the entire state-action space by generalizing from seen to unseen states)
Different types of value function approximations

\[\hat{V}(x) \]
\[\hat{Q}(x, u) \]
\[\hat{Q}(x, u_1) \]
\[\hat{Q}(x, u_2) \]
\[\ldots \]
\[\hat{Q}(x, u_m) \]

There are many possible function approximators
- Linear regression, Neural network, Random forest, Nearest neighbor, etc.
Approximating value fn. by (stochastic) gradient descent

Goal: find the parameter vector θ that minimizes the mean-squared error between the estimated value $\hat{V}_\theta(x)$ and the true value $V_\pi(x)$

$$J(\theta) = \mathbb{E}_\pi \left[V_\pi(x) - \hat{V}_\theta(x) \right]$$

Gradient descent converges to a local minimum

$$\Delta \theta = -\frac{1}{2} \alpha \nabla_\theta J(\theta)$$

$$= \alpha \mathbb{E}_\pi \left[\left(V_\pi(x) - \hat{V}_\theta(x) \right) \nabla_\theta \hat{V}_\theta(x) \right]$$

Stochastic GD samples the gradient

$$\Delta \theta = \alpha \left(V_\pi(x) - \hat{V}_\theta(x) \right) \nabla_\theta \hat{V}_\theta(x)$$
Approximating value fn. by (stochastic) gradient descent

In the previous slide, we assumed to know the true value function $V_{\pi} \rightarrow$ in RL there is no supervisor, only reward

In practice, we use a *target* for V_{π}

- Monte-Carlo: the target is the return

$$\Delta \theta = \alpha \left(G_t - \hat{V}_\theta(x_t) \right) \nabla_{\theta} \hat{V}_\theta(x_t)$$

- Temporal-Difference: the target is the TD target

$$\Delta \theta = \alpha \left(r_t + \gamma \hat{V}_\theta(x_{t+1}) - \hat{V}_\theta(x_t) \right) \nabla_{\theta} \hat{V}_\theta(x_t)$$
Intuition

MC

1) Compute return \(G_t = r_t + \gamma r_{t+1} + \ldots, \forall t \)

2) Update estimate

\[
\hat{V}(x) = \left[\hat{V}(x_t) + \alpha (G_t - \hat{V}(x_t)) \right] \]

TD

1) Compute target \(r_t + \gamma \hat{V}(x_{t+1}), \forall t \)

2) Update estimate

\[
\hat{V}(x) = \left[\hat{V}(x_t) + \alpha (r_t + \gamma \hat{V}(x_{t+1}) - \hat{V}(x_t)) \right] \]

1) Collect dataset \(\mathcal{D} = \{(x_t, G_t)\} \)

2) Update \(\theta \)

\[
\theta = \theta + \alpha \left(G_t - \hat{V}_\theta(x_t) \right) \nabla_\theta \hat{V}_\theta(x_t) \]

1) Collect dataset \(\mathcal{D} = \{(x_t, r_t + \gamma \hat{V}_\theta(x_t))\} \)

2) Update estimate

\[
\theta = \theta + \alpha \left(r_t + \gamma \hat{V}_\theta(x_t) - \hat{V}_\theta(x_t) \right) \nabla_\theta \hat{V}_\theta(x_t) \]
Control with function approximation

\[q_w = q_\pi \]

\[\pi = \varepsilon\text{-greedy}(q_w) \]

Policy evaluation: Approximate policy evaluation, \(\hat{q}(\cdot, \cdot, w) \approx q_\pi \)

Policy improvement: \(\varepsilon\)-greedy policy improvement
Action-value function approximation

Exactly the same intuitions apply when we try to approximate the action value function:

- Minimize the mean-squared error between the estimated value $\hat{Q}_\theta(x, u)$ and the true value $Q_\pi(x, u)$

$$J(\theta) = \mathbb{E}_\pi \left[Q_\pi(x, u) - \hat{Q}_\theta(x, u) \right]$$

- Use stochastic gradient descent to find a local minimum

$$\Delta \theta = \alpha \left(Q_\pi(x, u) - \hat{Q}_\theta(x, u) \right) \nabla_\theta \hat{Q}_\theta(x, u)$$

Fitted Q-Iteration: update θ via stochastic gradient descent on TD target

$$\Delta \theta = \alpha \left(r_t + \gamma \max_{u'_{t+1}} Q_\theta(x_{t+1}, u'_{t+1}) - \hat{Q}_\theta(x_t, u_t) \right) \nabla_\theta \hat{Q}_\theta(x_t, u_t)$$
Example: Sarsa with fn. approximation
The skeleton of fitted Q-learning

1. Generate samples
2. Run the policy and observe \((x_t, u_t, r_t, x_{t+1})\)
3. Set target
 \[y_t \leftarrow r_t + \gamma \max_u Q_\theta(x_{t+1}, u) \]
4. Improve the policy
 \[\pi(x_t) = \arg \max_a Q_\theta(x_t, u_t) \]
5. Fit a model / estimate return
6. Update \(\theta\) to minimize
 \[J(\theta) = \mathbb{E}_\pi [y_t - Q_\theta(x_t, u_t)] \]
Deep Q-Networks (DQN)

One of the most popular Deep RL algorithms and arguably one of the first successes of RL with neural networks

(1) Use **deep neural nets** to represent Q_θ in Q-learning

(2) Uses **experience replay** and **fixed Q-targets**
Deep Q-Networks (DQN)

(2) Uses experience replay and fixed Q-targets

- These two ideas turned out to be very important to stabilize training. Specifically, these concepts attempt to solve two issues:

 i) Samples within a trajectory are highly correlated → makes supervised learning unstable

 ii) The target $r_t + \gamma \max_{u_{t+1}} Q_{\theta}(x_{t+1}, u_{t+1})$ is a moving target (i.e., as we update θ, the target of our regression also changes)

Intuitively:

- Take action u_t according to ϵ-greedy policy
- Store transition (x_t, u_t, r_t, x_{t+1}) in replay memory \mathcal{D}
- Sample batch of transitions $\{(x_t, u_t, r_t, x_{t+1})\}_{i=1}^B$ from \mathcal{D} (Experience replay decorrelates data)
- Compute Q-learning targets w.r.t. old, fixed parameters ϕ
- Optimize MSE between Q-network prediction and Q-learning targets (Fixed targets stabilize the objective)

$$J(\theta) = \mathbb{E}_{(x_t, u_t, r_t, x_{t+1}) \sim \mathcal{D}} \left[r_t + \gamma \max_u Q_{\phi}(x_{t+1}, u) - \hat{Q}_\theta(x_t, u_t) \right]$$
Maximization bias

• In the algorithms we covered so far, a maximum over estimated values is used implicitly as an estimate of the maximum value

\[
\max_u \hat{Q}_\theta(x_t, u_t) \approx \max_u Q_\pi(x_t, u_t)
\]

• This can lead to a significant positive bias. For example:

![Diagram showing the maximization bias concept](image-url)
Double Q-learning

- Several possible solutions; in general, want to avoid using \textit{max of estimates as estimate of max}

- Double Q-learning [van Hasselt, NeurIPS 2010]: use two independent estimates Q_1, Q_2
 - Use one estimate to determine the maximizing action $u^* = \arg \max_u Q_1(x, u)$
 - And the other to provide the estimate of its value $Q_2(x, u^*) = Q_2(x, \arg \max_u Q_1(x, u))$
 - This estimate will be unbiased

- Alternative approach: maintain two independent q-networks, always use $\min(Q_1, Q_2)$ [Fujimoto et al, ICML 2018]
Next time

• Model-free RL: policy optimization methods
References

- Fujimoto et al. *Addressing Function Approximation Error in Actor-Critic Methods*. ICML 2018