Automatic Differentiation with JAX

Spencer M. Richards, Thomas Lew
April 11, 2023

1 JAX

JAX follows the *functional programming* paradigm. That is, JAX provides tools to transform a function into another function. Specifically, JAX can automatically compute the *derivative* of a function or composition of functions.

As an example, for \(f(x) = \frac{1}{2}\|x\|^2 \), JAX computes \(\nabla f : \mathbb{R}^n \to \mathbb{R}^n \) where \(\nabla f(x) = x \).

```python
[1]:
import jax
import jax.numpy as jnp

def f(x):
    return jnp.sum(x**2)/2  # identical to numpy syntax

grad_f = jax.grad(f)  # compute the gradient function

x = jnp.array([0., 1., 2.])  # use JAX arrays!
print('x:', x)
print('f(x):', f(x))
print('grad_f(x):', grad_f(x))
```

```
WARNING:jax._src.lib.xla_bridge:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)
```

\[
x: \quad [0. \ 1. \ 2.]
\]

\[
f(x): \quad 2.5
\]

\[
\text{grad}_f(x): \quad [0. \ 1. \ 2.]
\]

2 Automatic Differentiation

Consider the function \(f : \mathbb{R}^n \to \mathbb{R}^m \). The Jacobian of \(f \) evaluated at the point \(x \in \mathbb{R}^n \) is the matrix

\[
\partial f(x) = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\
\frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) & \cdots & \frac{\partial f_2}{\partial x_n}(x) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1}(x) & \frac{\partial f_m}{\partial x_2}(x) & \cdots & \frac{\partial f_m}{\partial x_n}(x)
\end{bmatrix} = \left[\frac{\partial f_i}{\partial x_j}(x) \right]_{i=1,j=1}^{m,n} \in \mathbb{R}^{m \times n}.
\]
As for any matrix, the Jacobian $\partial f(x) : \mathbb{R}^n \to \mathbb{R}^m$ is a linear map $v \mapsto \partial f(x)v$ defined by the usual matrix-vector multiplication rules.

Automatic Differentiation (AD, autodiff) uses pre-defined derivatives and the chain rule to compute derivatives of more complex functions.

In particular, AD can be used to compute the Jacobian-Vector Product (JVP)

$$\partial f(x) : \mathbb{R}^n \to \mathbb{R}^m$$
$$v \mapsto \partial f(x)v$$

and the Vector-Jacobian Product (VJP)

$$\partial f(x)^\top : \mathbb{R}^m \to \mathbb{R}^n$$
$$w \mapsto \partial f(x)^\top w$$

The maps $v \mapsto \partial f(x)v$ and $w \mapsto \partial f(x)^\top w$ are also known as the pushforward and pullback, respectively, of f at x. The vectors v and w are termed seeds in AD literature.

Consider the function composition

$$h(x) = (f_N \circ f_{N-1} \circ \cdots \circ f_1)(x) = f_N(f_{N-1}(\cdots f_1(x)\cdots)), $$

where each $f_k : \mathbb{R}^{d_k} \to \mathbb{R}^{d_k+1}$ is some differentiable map.

We can write this recursively as

$$y_0 = x \in \mathbb{R}^n, \quad y_{k+1} = f_k(y_k) \in \mathbb{R}^{d_k+1}, \quad y_N = h(x) \in \mathbb{R}^{d_N}. $$

By the chain rule, we have

$$\partial h(x) = \partial f_N(y_{N-1})\partial f_{N-1}(y_{N-2})\cdots\partial f_1(y_0).$$

This sequence of matrix multiplications that can get quickly get expensive for complicated functions!

It is more efficient and usually sufficient in practice to compute JVPs via the recursion

$$\partial h(x)v_0 = \partial f_N(y_{N-1})\partial f_{N-1}(y_{N-2})\cdots\partial f_1(y_0)v_0$$

$$= v_N$$

$$v_k = \partial f_k(y_{k-1})v_{k-1}$$

and VJPs via the recursion

$$\partial h(x)^\top w_0 = \partial f_1(y_0)^\top \cdots \partial f_{N-1}(y_{N-2})^\top \partial f_N(y_{N-1})^\top w_0$$

$$= w_N$$

$$w_k = \partial f_{N-k+1}(y_{N-k})^\top w_{k-1}$$
VJPs require more memory than JVPs, since $\{y_k\}_{k=1}^{N-1}$ must be computed and stored first (i.e., the forward pass) before recursing (i.e., the backward pass).

2.1 Example: VJP as a gradient

For a scalar function $f : \mathbb{R}^n \to \mathbb{R}$, the Jacobian at x is $\partial f(x) \in \mathbb{R}^{1 \times n}$, so

$$\nabla f(x) = \partial f(x)^\top 1.$$

E.g., if $f(x) = \frac{1}{2}||x||_2^2$, then $\nabla f(x) = x \cdot 1$.

```python
[2]: f = lambda x: jnp.sum(x**2)/2  # anonymous functions work as well
x = jnp.array([0., 1., 2.])
f_x, dfxT = jax.vjp(f, x)  # compute forward pass and VJP function
dfxT_1 = dfxT(1.)

print('x: ', x)
print('f(x): ', f_x)
print('dfxT(1): ', dfxT_1)
```

```
x:  [0. 1. 2.]
f(x):  2.5
dfxT(1):  (DeviceArray([0., 1., 2.], dtype=float32),)
```

2.2 Example: JVP as a directional derivative

The directional derivative of $f : \mathbb{R}^n \to \mathbb{R}$ at $x \in \mathbb{R}^n$ along $v \in \mathbb{R}^n$ is

$$\nabla f(x)^\top v = \partial f(x)v.$$

E.g., if $f(x) = \frac{1}{2}||x||_2^2$, then $\nabla f(x)^\top v = x^\top v$.

```python
[4]: f = lambda x: jnp.sum(x**2)/2
x = jnp.array([0., 1., 2.])
v = jnp.array([1., 1., 1.])

# use tuples to separate inputs from seeds
f_x, dfx_v = jax.jvp(f, (x,), (v,))

print('x: ', x)
print('f(x): ', f_x)
print('dfx(v): ', dfx_v)
```

```
x:  [0. 1. 2.]
f(x):  2.5
dfx(v):  3.0
```
2.3 Example: Multi-input, multi-output VJP

Let’s try something more complicated:

\[f : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R} \times \mathbb{R} \]
\[(x, y) \mapsto \left(\frac{1}{2} \|x\|_2^2 + \frac{1}{2} \|y\|_2^2, \sum_{i=1}^{n} x_i \right) \]

```python
[5]: def f(x, y):
    f1 = jnp.sum(x**2)/2 + jnp.sum(y**2)/2
    f2 = jnp.sum(x)
    return f1, f2

x = jnp.array([0., 1., 2.])
y = jnp.array([0., 1., 2.])
f_xy, dfT = jax.vjp(f, x, y)
print('x,y: ', x, y)
print('f(x,y): ', f_xy)
print('dfT(1,1): ', dfT((1., 1.)))  # provide tuple as input
```

```
x,y:  [0. 1. 2.] [0. 1. 2.]
f(x,y):  (DeviceArray(5., dtype=float32), DeviceArray(3., dtype=float32))
dfT(1,1):  (DeviceArray([1., 2., 3.], dtype=float32), DeviceArray([0., 1., 2.], dtype=float32))
```

2.4 Example: VJP and JVP for a Matrix Input

We can generalize VJPs and JVPs to non-vector inputs as well:

\[f : \mathbb{R}^{n \times n} \rightarrow \mathbb{R} \]
\[X \mapsto a^T X b \]

```python
[6]: def f(X):
    a, b = jnp.array([0., 1., 2.]), jnp.array([0., 1., 2.])
    return a @ (X @ b)

X = jnp.ones((3, 3))
f_x = f(X)
w, V = jnp.array(1.), jnp.eye(3)
f_x, dfT = jax.vjp(f, X)
f_x, df_v = jax.jvp(f, (X,), (V,))
print('X:
', X, '
', sep='')
print('f(X):
', f_x, '
', sep='')
print('dfT(1):
', dfT(w), '
', sep='')
print('df(I):
', df_v, sep='')
```

```
x:
 [[0. 1. 2.]
 [0. 1. 2.]
 [0. 1. 2.]]
f(X):
 (DeviceArray(15., dtype=float32), DeviceArray(3., dtype=float32))
dfT(1):
 (DeviceArray([1., 2., 3., 4., 5., 6., 7., 8., 9.], dtype=float32), DeviceArray([0., 1., 2., 3., 4., 5., 6., 7., 8.], dtype=float32))
```

4
3 Auto-Vectorizing Functions with \texttt{jax.vmap}

For some complicated function $f : \mathbb{R}^n \to \mathbb{R}^m$, we want to calculate $f(x)$ for many different values of x without looping.

This is known as \textit{vectorizing} a function. JAX can do this automatically!

```python
[7]: f = \texttt{lambda } x: \texttt{jnp.array([jnp.sum(x**2)/2, jnp.linalg.norm(x, jnp.inf)])}
f = \texttt{jax.vmap(f)}
```

```python
batch_size, n = 100, 3
x = \texttt{jnp.ones((batch_size, n))}  \textit{# dummy values with desired shape}
```

```python
\texttt{print(x.shape)}
\texttt{print(f(x).shape)}
```

(100, 3)
(100, 2)

3.1 Example: Batch Evaluation of a Neural Network

```python
[8]: def \texttt{f}(x, W, b):
    \texttt{return W[1] @ jnp.tanh(W[0] @ x + b[0]) + b[1]}
f = \texttt{jax.vmap(f, in_axes=(0, None, None))}
f = \texttt{jax.vmap(f, in_axes=(0, None, None))}
```

```python
n, m = 3, 5
batch_size = 100
hdim = 32
W = \texttt{(jnp.ones((hdim, n)), jnp.ones((m, hdim)))}
b = \texttt{(jnp.ones(hdim), jnp.ones(m))}
x = \texttt{jnp.ones((40, batch_size, n))}
```

```python
\texttt{print(x.shape)}
\texttt{print(f(x, W, b).shape)}
```

(40, 100, 3)
(40, 100, 2)

3.2 Example: Jacobian Matrix from JVPs and VJPs

Let $e_k^{(d)} \in \{0,1\}^d$ denote the k^{th} coordinate vector in d dimensions.

For $f: \mathbb{R}^n \to \mathbb{R}^m$, we can compute the full Jacobian $\partial f(x) \in \mathbb{R}^{m \times n}$ with either n JVPs

$$\partial f(x) = \partial f(x) I_n = \begin{bmatrix} \partial f(x)e_1^{(n)} & \partial f(x)e_2^{(n)} & \cdots & \partial f(x)e_n^{(n)} \end{bmatrix},$$

or m VJPs

$$\partial f(x)^\top = \partial f(x)^\top I_m = \begin{bmatrix} \partial f(x)^\top e_1^{(m)} & \partial f(x)^\top e_2^{(m)} & \cdots & \partial f(x)^\top e_m^{(m)} \end{bmatrix}.$$

This is what the source code for jax.jacfwd and jax.jacrev does.

```python
[9]: f = lambda x: jnp.array([x[0], x[0]**2 + x[2]**2])

def df(x, v):
    fx, dfx_v = jax.jvp(f, (x,), (v,))
    return dfx_v

def dfT(x, w):
    fx, dfxT = jax.vjp(f, x)
    return dfxT(w)[0]  # need to index into tuple

n, m = 3, 2
x = jnp.ones(n)
Jx = jax.vmap(df, in_axes=(None, 0))(x, jnp.eye(n))
JxT = jax.vmap(dfT, in_axes=(None, 0))(x, jnp.eye(m))
print('Jacobian (forward AD):')
print(Jx)
print('\nJacobian (reverse AD):')
print(JxT)
```

Jacobian (forward AD):
```
[[1. 2.]
[0. 0.]
[0. 2.]]
```

Jacobian (reverse AD):
```
[[1. 0. 0.]
[2. 0. 2.]]
```

3.3 Example: Linearizing Dynamics at Many Points

For $\dot{x} = f(x, u)$ with $x \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$, recall the first-order Taylor approximation
\[
f(x, u) \approx f(\bar{x}_k, \bar{u}_k) + \partial_x f(\bar{x}_k, \bar{u}_k)(x - \bar{x}) + \partial_u f(\bar{x}_k, \bar{u}_k)(u - \bar{u}).
\]

We want \(A_k \Delta x_t, B_k \Delta u_t, \) and \(c_k \) for \(\{ (\bar{x}_k, \bar{u}_k) \}_{k=1}^K \) and \(\{ (\Delta x_t, \Delta u_t) \}_{t=1}^T \).

This scenario may correspond to evaluating Taylor approximations for \(T \) perturbations \((\Delta x_t, \Delta u_t) \) that we want to test at the \(K \) points \((\bar{x}_k, \bar{u}_k) \).

Inverted pendulum (with unit mass and unit length)

```python
f = lambda x, u: jnp.array([x[1], 9.81*jnp.sin(x[0]) + u[0]])
def taylor(xbar, ubar, Δx, Δu):
    f_xu, AΔx = jax.jvp(lambda x: f(x, ubar), (xbar,), (Δx,))
    _, BΔu = jax.jvp(lambda u: f(xbar, u), (ubar,), (Δu,))
    return f_xu, AΔx, BΔu

taylor = jax.vmap(taylor, in_axes=(None, None, 0, 0))
taylor = jax.vmap(taylor, in_axes=(0, 0, None, None))
c, Ax, Bu = taylor(xbar, ubar, Δx, Δu)
```

If, instead, we have \(K = 5 \) trajectories \(\{ (\bar{x}_k, \bar{u}_k) \}_{k=1}^K \) and each trajectory \(\bar{x}_k \) has \(T = 10 \) timesteps \(\{ (\bar{x}_{k,t}, \bar{u}_{k,t}) \}_{t=1}^T \), and similarly for \((\Delta x, \Delta u) \), then we can evaluate Taylor approximations for all these trajectories with two calls to `vmap` as below.

```python
f = lambda x, u: jnp.array([x[1], 9.81*jnp.sin(x[0]) + u[0]])
def taylor(xbar, ubar, Δx, Δu):
```
f_xu, Δx = jax.jvp(lambda x: f(x, ubar), (xbar,), (Δx,))
f_xu, Δu = jax.jvp(lambda u: f(xbar, u), (ubar,), (Δu,))
return f_xu, Δx, Δu

n, m = 2, 1
K, T = 5, 10
xbar = jnp.ones((K, T, n)) # note the different sizes
ubar = jnp.ones((K, T, m))
Δx, Δu = jnp.ones((K, T, n)), jnp.ones((K, T, m))

two successive calls to vmap:
we linearize for the K trajectories that each have T timesteps
taylor = jax.vmap(taylor)
taylor = jax.vmap(taylor)
c, Ax, Bu = taylor(xbar, ubar, Δx, Δu)
print(c.shape)
print(Ax.shape)
print(Bu.shape)

(5, 10, 2)
(5, 10, 2)
(5, 10, 2)

4 Other Features and Nuances of JAX

See the JAX documentation for more details.

4.1 Just-In-Time (JIT) Compilation

JAX can compile code to run fast on both CPUs and GPUs. The first call to a "jitted" function
will compile and cache the function; subsequent calls are then much faster.

```python
[12]: def selu(x, alpha=1.67, lmbda=1.05):
    return lmbda * jnp.where(x > 0, x, alpha * jnp.exp(x) - alpha)

x = jnp.ones(int(1e7))
%timeit -r10 -n100 selu(x).block_until_ready()

selu_jit = jax.jit(selu)
%timeit -r10 -n100 selu_jit(x).block_until_ready()
```

42.6 ms ± 3.47 ms per loop (mean ± std. dev. of 10 runs, 100 loops each)
11.1 ms ± 803 μs per loop (mean ± std. dev. of 10 runs, 100 loops each)

4.2 In-Place Updates

JAX arrays are immutable. In keeping with the functional programming paradigm, updates to array
values at indices are done via JAX functions.
```python
X = jnp.zeros((3,3))
try:
    X[0, :] = 1.
except Exception as e:
    print("Exception: ", e)
print("\nX:\n", X, sep=''")
Y = X.at[0, :].set(1.)
print("\nY:\n", Y, sep=''")
```

```
Exception: '<class 'jaxlib.xla_extension.DeviceArray'> object does not support item assignment. JAX arrays are immutable. Instead of `x[idx] = y`, use `x = x.at[idx].set(y)` or another .at[] method: https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.ndarray.at.html
```

```
X:
[[ 0.  0.  0.]
 [ 0.  0.  0.]
 [ 0.  0.  0.]]
Y:
[[ 1.  1.  1.]
 [ 0.  0.  0.]
 [ 0.  0.  0.]]
```

4.3 Pseudo-Random Number Generation (PRNG)

JAX does explicit PRNG; after initializing a PRNG state, it can be forked into new PRNG states for parallel stochastic generation.

This enables reproducible results; propagate the key and make new subkeys whenever new random numbers are needed.

```python
seed = 0
key = jax.random.PRNGKey(seed)
print(jax.random.normal(key, shape=(1,)))
print(jax.random.normal(key, shape=(1,))) # same value sampled!
print('\nkey', key)
key, *subkeys = jax.random.split(key, 3)
print('|-- SPLIT --> key  ', key)
print('  --> subkeys', subkeys[0],
      '  --> normal', jax.random.normal(subkeys[0], shape=(1,)))
print('    ', subkeys[1],
      '  --> normal', jax.random.normal(subkeys[1], shape=(1,)))
```

```
[-0.20584226]
[-0.20584226]
```

13: X = jnp.zeros((3,3))
 try:
 X[0, :] = 1.
 except Exception as e:
 print("Exception: ", e)
 print("\nX:\n", X, sep=''")

14: seed = 0
 key = jax.random.PRNGKey(seed)
 print(jax.random.normal(key, shape=(1,)))
 print(jax.random.normal(key, shape=(1,))) # same value sampled!
 print('\nkey', key)
 key, *subkeys = jax.random.split(key, 3)
 print('|-- SPLIT --> key ', key)
 print(' --> subkeys', subkeys[0],
 ' --> normal', jax.random.normal(subkeys[0], shape=(1,)))
 print(' ', subkeys[1],
 ' --> normal', jax.random.normal(subkeys[1], shape=(1,)))

[-0.20584226]
[-0.20584226]
key [0 0]
|-- SPLIT -- key [2467461003 4281485000]
 -- subkeys [3186719485 3840466878] -- normal [0.5781488]
 [2562233961 1946702221] -- normal [0.8535516]