Learning goals for this problem set:

Problem 1: To review stability of discrete LTI systems.

Problem 2: To review unconstrained convex optimization.

Problem 3: To review linear regression techniques, and numerical and plotting libraries in Python.

0.1 Discrete-time LTI stability

Consider the system $x_{t+1} = Ax_t + Bu_t$, where

$$A = \begin{bmatrix} 4/5 & 0 & 0 \\ 0 & \sqrt{3} & 1 \\ 0 & -1 & \sqrt{3} \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

(a) Explain whether or not this system is “open-loop stable”, i.e., asymptotically stable for $u_t \equiv 0$.

(b) Design a linear feedback controller $u_t = Kx_t$ with fixed gain matrix $K \in \mathbb{R}^{2 \times 3}$ such that the closed-loop system is asymptotically stable.

0.2 Poisson maximum likelihood

Suppose we observe the number of customers X to a store over N days, and we want to fit a Poisson distribution to the resulting data $D := \{x_1, x_2, \ldots, x_N\}$. The Poisson distribution is a distribution over non-negative integers with a single parameter $\lambda \geq 0$. It is often used to model arrival times of random events or count the number of random arrivals within a given amount of time. Its probability mass function is

$$\Pr(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}.$$

To fit our model, we want to choose the parameter λ of the Poisson distribution to maximize the probability of the data D. Assuming the number of customers on each day is independent and identically distributed (IID), the likelihood of D is

$$p(D; \lambda) := \prod_{t=1}^{N} \Pr(X = x_t).$$

Specifically, we will maximize the log-likelihood of D by solving the optimization problem

$$\max_{\lambda \geq 0} \log p(D; \lambda).$$

(a) What property of the logarithm allows us to replace the likelihood with the log-likelihood in this maximization problem?

(b) Derive the maximum likelihood estimator $\hat{\lambda} := \arg \max_{\lambda \geq 0} \log p(D; \lambda).$
0.3 Asteroid regression. Suppose we obtain measurements \(\{(d_i, m_i)\}_{i=1}^{N} \) for \(N \) asteroids, where \(d_i > 0 \) and \(m_i > 0 \) are the diameter and mass, respectively, of the \(i \)-th asteroid. If the asteroids were radially symmetric and uniformly dense, then we could posit that \(m \sim d^3 \). However, the asteroids are not radially symmetric nor uniformly dense, yet we still suspect that \(d \) and \(m \) exhibit a cubic polynomial relationship, i.e.,

\[
m = x_1 d + x_2 d^2 + x_3 d^3,
\]

for some coefficients \(x := (x_1, x_2, x_3) \in \mathbb{R}^3 \). We do not include a constant term since the asteroid mass should be zero when its diameter is zero.

(a) Formulate this regression problem (i.e., the problem of fitting the coefficients \(x \) to the data \(\{(d_i, m_i)\}_{i=1}^{N} \)) as a convex least-squares optimization of the form

\[
\min_x \|Ax - y\|_2^2.
\]

Specifically, describe how the matrix \(A \) and the vector \(y \) are formed from the data \(\{(d_i, m_i)\}_{i=1}^{N} \).

(b) Express the optimal least-squares solution \(x^* \) in terms of \(A \) and \(y \).

Hint: You may assume \(A^T A \) is invertible.

(c) Data of the form \(\{(d_i, m_i)\}_{i=1}^{N} \) is provided in `data_asteroid_regression.csv`. Using NumPy in Python, load this data and implement the least-squares solution for \(x^* \). Report \(x^* \) up to two decimal places for each entry.

In general, the \(\ell_2 \)-norm is susceptible to overfitting to outliers. We can find a more robust solution by solving the \(\ell_1 \)-norm optimization

\[
\min_x \|Ax - y\|_1.
\]

Unlike the \(\ell_2 \)-norm problem, the \(\ell_1 \)-norm problem does not have a closed-form solution. However, we can use gradient descent to solve for \(x^* \) by iteratively producing estimates of a minimizer for the objective \(f(x) := \|Ax - y\|_1 \). Gradient descent is described by the update rule

\[
x^{(k+1)} = x^{(k)} - \alpha^{(k)} \nabla f(x^{(k)})
\]

at the \(k \)-th iteration, where \(\alpha^{(k)} > 0 \) is the step size.

(d) Derive the gradient of the \(\ell_1 \)-norm regression objective \(f(x) \) in terms of \(A, y \), and \(x \).

Hint: Technically, the \(\ell_1 \)-norm is not differentiable at zero or any vector containing a zero entry. You may choose any number in the interval \([-1, 1]\) for \(\frac{\partial}{\partial x_i} |x_i| \) at \(x_i = 0 \). The set \([-1, 1]\) is the sub-differential of \(|x_i| \) at \(x_i = 0 \), and any element of this set is a sub-gradient.

(e) Using NumPy in Python, implement sub-gradient descent for the \(\ell_1 \)-norm regression problem for the data in `data_asteroid_regression.csv`. Initialize \(x^{(0)} = 0 \) and use a constant step size of \(\alpha^{(k)} = 10^{-4} \) for all iterations. At each iteration, set \(x^* \) as the best solution found so far by keeping track of the objective value \(f(x) \). Terminate after 10000 iterations. Report the \(\ell_1 \)-norm-optimized \(x^* \) up to two decimal places for each entry.

(f) Plot the \(\ell_2 \)-fit, \(\ell_1 \)-fit, and data on the same \((d, m)\)-axes using Matplotlib in Python.